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Interpretation of non-coding genome remains an unsolved challenge in human genetics due to 

impracticality of exhaustively annotate biochemically active elements in all conditions. Deep 

learning based computational approaches emerge recently to help interpretating non-coding 

regions. Here we present LOGO (Language of Genome), a self-attention based contextualized 

pre-trained language model containing only 2 self-attention layers with 1 million parameters 

as a substantially light architecture that applies self-supervision techniques to learn 

bidirectional representations of unlabeled human reference genome. LOGO is then fine-tuned 

for sequence labelling task, and further extended to variant prioritization task via a special 

input encoding scheme of alternative alleles followed by adding a convolutional module. 

Experiments show that LOGO achieves 15% absolute improvement for promoter 

identification and up to 4.5% absolute improvement for enhancer-promoter interaction 

prediction. LOGO exhibits state-of-the-art multi-task predictive power on thousands of 

chromatin features with only 3% parameterization benchmarking against fully supervised 

model, DeepSEA and 1% parameterization against a recent BERT-based language model for 

human genome. For allelic-effect prediction, locality introduced by one dimensional 

convolution shows improved sensitivity and specificity for prioritizing non-coding variants 

associated with human diseases. In addition, we apply LOGO to interpret type 2 diabetes (T2D) 

GWAS signals and infer underlying regulatory mechanisms. We make a conceptual analogy 

between natural language and human genome and demonstrate LOGO is an accurate, fast, 

scalable, and robust framework to interpret non-coding regions for global sequence labeling 

as well as for variant prioritization at base-resolution. 

 

In 2003, the Human Genome Project (HGP) has successfully digitalized the ‘book of life’. It is 

convinced that biological structure and function are intrinsically encoded in the primary genome 

sequence. The non-coding regions, accounting for over 98% of the whole genome, implement 

significant yet largely unknown regulatory functions. Recent large consortia projects, including the 

ENCyclopedia of DNA Elements (ENCODE)1,2, Roadmap Epigenomics3, and the Genomics of 

Gene Regulation (GGR), have produced large amount of experimental mapping readouts to help 

annotate non-coding genome in specific tissues or cell-lines. On the other hand, Genome-wide 

association studies (GWAS) have discovered that vast majority (>90%) of associated genome loci 

for complex disease and traits fall in non-coding regions4. Hence, it is of exceptional utility to 

explore these datasets and derive novel hypothesis to interpret non-coding genome. Unlike the 

protein coding region where there is a clear genetic code, incorporating broader sequence context is 

critical to understand functional effects of regulatory variants, which requires more powerful and 

semantic-rich representational model to capture higher-order complexity in the region. Deep leaning 

has transformed ranges of tasks in computer vision and natural language processing (NLP). In 

bioinformatics field, deep learning based computational methods have also been proposed in various 

applications, such as predicting molecular phenotypes based on raw DNA sequence as input and 

achieved better performance than traditional machine learning approach, as referred in an excellent 

review paper5. One classical model is DeepSEA6, pioneering to apply deep convolutional neural 

network (CNN) architecture to extract features of genome sequence given 1,000-bp context and 

train on chromatin profiles in a supervised multitask joint learning manner. DeepSEA is able to 

predict the binary presence or absence of 919 chromatin marks. 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.459087doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459087
http://creativecommons.org/licenses/by-nc-nd/4.0/


The inherent sequential nature of genome is analogous to documents composed of words，characters 

and phrases. The exciting advance of NLP field has shed light on using similar strategy to extract 

general and transferable information from biological sequence. Neural network model was 

introduced into NLP since 2013. Word2vec8 was proposed to learn distributional vector embeddings 

of each word to capture their similarities given the sentence context. Word2vec uses multilayer 

perceptron (MLP)7 to predict neighboring words given center word (called skip-gram) or predict 

center word given neighboring words (called ‘Continuous Bag of Words’, CBOW). The learned 

word vectors can then be directly queried for downstream text classification tasks. Word2vec 

essentially relies on modelling co-occurrence probabilities without considering word position 

information and static embeddings cannot handle words with multiple meanings, so-called 

polysemous words. Traditional CNN-based feature extractors rely on local parameter sharing and 

the pooling operation may lead to loss of global information. Recurrent Neural Network (RNN)9,10 

is an alternative architecture to process sequential data. RNN can capture position dependency 

information via passing the memory state from previous elements. RNN’s fundamental constraint 

of sequential operation leads to difficulty of parallelization and faces the risk of vanishing gradient 

when processing longer sequence. In 2017, Transformer11 has emerged as a powerful architecture 

that replies completely on attention mechanism to draw global dependencies in Seq2Seq modelling 

task. In the encoder part, self-attention mechanism relating different positions across a single 

sequence to compute a contextualized representation with better parallelization. Transformer can 

tackle long-range dependency without position bias, outperforming CNNs or RNNs in many global 

sequence classification tasks. On the other hand, CNN is better at capturing locality. 

 

Since 2018, a new wave of pre-trained language models using self-supervision techniques has 

emerged as a core trend in NLP, including RNN-based ELMo12, ULMFiT13, Transformer-based 

OpenAI-GPT14 and Google-BERT15. Instead of conventional left-to-right unidirectional modeling, 

BERT, which stands for Bidirectional Encoder Representations from Transformers, leveraged a 

multilayer bidirectional Transformer architecture to pre-train on large unlabeled corpora by jointly 

incorporating both left and right context. The pre-trained model learns contextualized token 

embeddings through two proxy training objectives: MLM (Masked Language Model), predicting 

randomly masked tokens and NSP (Next Sentence Prediction), predicting whether two sentences 

follow each other. The pre-trained BERT can then be easily fine-tuned to various downstream NLP 

tasks and obtained new state-of-the-art results competing with human performance. Thereafter, a 

series of pre-trained model spring up to further improve performance, such as XLNet16, UniLM17, 

MASS18, MT-DNN19, XLM20, ALBERT21, RoBERTa22 and ELECTRA23. A comprehensive review 

can be found in an integrative reference24. One representative model, ALBERT, a lite version of 

BERT, establishes better result with significantly reduced model size through factorized embeddings 

and cross-layer parameter sharing techniques. Unlike model trained on general domain corpora, 

SciBERT25 and BioBERT26 are proposed based on BERT backbone and trained on large amount of 

multidisciplinary scientific literatures and biomedical text corpus, respectively. The domain-specific 

BioBERT achieves dramatic improvement in biomedical text-mining tasks. Recently, Transformer 

was reported by Facebook to learn protein structure and function27. DNABERT28 is recently 

proposed to learn human genome and composed of 12 Transformer layers with 768 hidden units and 

12 attention heads in each layer, which is configured as a heavy version of BERT. However, features 

learned by Transformer are too general and not specific or sensitive to a single or few changes in 
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the sequence, unable to satisfy the needs of interpreting human genome at base-resolution. Recently, 

Facebook and Google both propose introducing convolutional layer into Transformer architecture 

to bring soft inductive bias with better locality, namely ConViT29 and CoAtNets30. 

 

Motivated by these observations, in this study we develop LOGO, a pre-trained language model 

with much lighter architecture than the pioneering DNABERT, which is composed of only 2 layers 

with 256 hidden units and 8 heads, to learn contextualized representations of reference genome hg19. 

LOGO with 3-mer tokenization contains around 1 million parameters while DNA-BERT contains 

100 million parameters. LOGO shows substantially more effective parameter efficiency than 

DNABERT. To demonstrate the versatility of LOGO, we implement fine-tuning for multiple 

downstream tasks and obtain excellent performance from aspects of accuracy, speed, scalability, 

and robustness. Sequence-level classification tasks include promoter prediction, promoter-enhancer 

interaction prediction and chromatin features prediction. Another key innovation of LOGO is that 

we introduce a novel encoding scheme for alternative alleles and leverage a hybrid architecture by 

mixing convolution and self-attention to alleviate the locality-insensitivity issue of Transformer and 

facilitate functional prioritization of noncoding variants. DNABERT only reports high-attention 

variants by Transformer while LOGO leverages convolution and forces the model to see the 

nucleotide change with allelic-effects. We also propose a framework to embed prior knowledge into 

LOGO and explore better performance over original settings. LOGO provides a unified framework 

not only for sequence labelling or motif identification task, but also for SNP or indel prioritization 

with the goal of interpreting non-coding regions at base-resolution. 

 

Results 

LOGO learns contextualized representation of k-mers of human reference genome and 

achieves state-of-the-art performance in promoter prediction task. 

 

The backbone of LOGO processing flow is motivated by recently emerged Transformer-based 

bidirectional encoder model15,21 (Fig. 1a). We conduct pre-training on human reference genome 

hg19 comprised of totally 3 billion base pairs. We segment both forward and complementary chain 

of whole genome sequence into 100-bp bins and get 60 million segments. For each bin, we extend 

forward to 1,000-bp along the genome to create training instances, which are analogous to input 

sentences in the field of natural language.  

 

Conventional one-hot encoded representation for each nucleotide has limited vocabulary size of 5 

characters (i.e., A, G, C, T, and Unknown/Undetected), which is considered as a semantically poor 

representation. K-mer encodes sequence into a certain length of successive nucleotides. For instance, 

a trinucleotide is a k-mer for which k=3. To increase the information content, we tokenize each 

sequence in the way of k-mer representation. The intuition is that each nucleotide is not independent 

such as codon rules in coding region and regulatory motifs in non-coding region. Recent phrase-

level or entity-level masking strategy used by NLP community proved better performance. BERT 

or ALBERT generally allows maximum sequence length of 512 tokens, thus k-mer setting can 

dramatically reduce the number of tokens required to incorporating 1,000-bp context. Token 

vocabulary size equals to 5k when using k-mer strategy. 7-mer or longer settings results in 
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unbearable computation burden and memory overflow due to explosive vocabulary size. To balance 

the computation consumption and representation capacity, we evaluate four types of k-mer 

(k=3,4,5,6) to tokenize the genome. For any given sequence, different sets of k-mer representations 

can be generated when choosing different split positions. To avoid biased segmentation and further 

augment training data, we slide 1-bp (k-mer-1-stride) for each 1,000-bp sequence to generate 

multiple sets (n=k) of k-mer tokens as input training instances. (Tokenization details see Methods)  

 

Before fed into the Transformer network, each token representation is created by summing its 

corresponding token and position embeddings. Token embeddings are learned through projecting 

the k-mer vectors into a distributional embedding space. To utilize the order of each sequence, we 

inject absolute position information of each input sequence and make the model learn position 

embeddings of the same size as token embeddings. During pre-training stage, we only adopt 

‘masked language model’(MLM) task to train a bidirectional representation for human genome. 15% 

of tokens are randomly masked in each input sequence and the pre-training objective is to predict 

the masked token by a softmax layer over the vocabulary. We denote the k-mer tokens embedding 

size as E, the number of encoder layers as L, and the hidden layer embedding size as H, the number 

of self-attention heads as A. Visualization of model architecture can be seen in Fig. 1b. We pre-train 

LOGO with k-mer tokenization (k=3, 4, 5, 6) on hg19 for maximum 50 epochs on four Nvidia Tesla 

V100 32G GPU. Model hyperparameters are determined by choosing a model size as minimal as 

possible without compromising the performance. Detailed hyperparameters and pre-training 

configuration can be seen in Supplementary Table 1.  

 

Bigger k leads to larger vocabulary size, therefore requiring increased model parameters, more 

memory usage and longer convergence time. We assess the pre-training performance based on the 

accuracy (ACC) of masked tokens prediction. 3-mer tokenization achieves the highest MLM 

accuracy with a minimum training time spent per epoch (Fig. 2a,2b). For all k-mer settings, LOGO 

can achieve inflection point of pre-training accuracy after 5 epochs, though already surpass 0.875 

when training less than one epoch, revealing recurring sequence patterns of human genome is 

effectively learned. One epoch training time for 3-mer tokenization setting is around 11.4 hours, and 

we reach accuracy plateau (ACC=0.893) after 15 epochs. One epoch training time for 6-mer 

tokenization setting is around 70.8 hours, and we reach accuracy plateau (ACC=0.887) after 25 

epochs. However, accuracy at pre-training stage is not directly correlated with utility of specific 

fine-tuning task. We assess all four k-mer settings for different downstream tasks and only report 

the best one. Other details of pre-training assessment can be found in Supplementary Table 2. 

 

We first evaluate the utility of pre-trained LOGO on human promoter prediction task via fine-tuning. 

Computational identification of promoters is analogous to sequence labeling or sentence 

classification task in NLP. Umarov et al. has developed CNN-based deep leaning models, DeeReCT-

PromID31, to predict human RNA pol II promoters, outperforming other previous prediction tools. 

For benchmark purpose, we generate datasets in the same way with DeeReCT-PromID and define 

positive promoter region from -200 bp to +400 bp window around all potential Transcription 

Starting Site (TSS) from EPDnew Database32. Promoters with TATA-box (TATA+) and without 

TATA-box (TATA-) are assessed separately and afterwards jointly (Both), which leads to 2,067, 

14,388 and 16,455 positive sequences, respectively. Negative ones are constructed by randomly 
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sampling outside the promoter region without containing a known TSS. Leveraging previously pre-

trained LOGO model weights as initialization, we simply plug in these 600-bp sequence inputs, 

tokenize them via different k-mer-1-stride settings (k=3, 4, 5, 6) and feed them into LOGO. When 

conducting sequence classification task, model input starts with a token [CLS] as in BERT and 

ALBERT. We use the final hidden vector of [CLS] token as the aggregated representation for 

classification tasks and fine-tune model parameters in an end-to-end manner, which only 

introducing few extra parameters in the final classification layer with sigmoid outputs. We use batch 

size of 128, set early-stop rules and fine-tune the model at most 20 epochs. The average training 

time per epoch is only around 45 seconds, which demonstrates excellent efficiency of ‘pre-training 

and fine-tuning’ paradigm. The best hyper-parameters are chosen based on the validation sets 

(Methods). We evaluate different k-mer settings of LOGO on promoter prediction tasks. LOGO 

significantly outperforms DeeReCT-PromID in all-settings as evaluated by Precision, Recall and 

F1-score metrics, as shown in Fig 2d and Supplementary Table 3. LOGO with 5-mer setting 

(LOGO-5-mer) achieves 15.0% point absolute improvement of mean F1-score than CNN-based 

DeeReCT-PromID (10-fold cross-validation) in case ‘Both’. LOGO has demonstrated its powerful 

representation utility, which suggests bidirectional attention-based architecture confers an 

advantage to capture complex semantics of promoter structure than CNN-based model.  

 

We further explore a framework to integrate prior knowledge into LOGO on promoter prediction 

task. GenBank33 contains rich functional annotations of human genome sequence, including CDS, 

exon, gene, promoter, enhancer, silencer, pseudogene, insulator, conserved region, protein binding 

site, DNAse I hypersensitive site, nucleotide cleavage site and so on. These annotations can be 

regarded as prior knowledge of sequence inputs. We download 11 annotations terms from GenBank, 

i.e., 'CDS', 'exon', 'enhancer', 'insulator', 'conserved_region', 'protein_binding_site', 'pseudogene', 

'DNAseI_hypersensitive_site', 'nucleotide_cleavage_site', 'silencer' and 'gene'. Annotations of 

‘promoter’ are abandoned to avoid direct label leakage. We generate annotation labels for each input 

sequence in a start-to-end spanning mode based on hg19 coordinate. We propose a knowledge-

enabled LOGO by adding input layers of one-hot encoded annotations and concatenate with k-mer 

input (Supplementary Figure 1). Knowledge embeddings, position embeddings and token 

embeddings are summed up and then fed into Transformer network for fine-tuning tasks in an end-

to-end manner (Fig. 1b). Knowledge embedded LOGO with 5-mer setting (LOGO-K-5-mer) 

achieves F1-score of 0.933, yielding extra 3.2% absolute improvement than LOGO-5-mer (Fig. 2d). 

We demonstrate the configurability and utility of knowledge-embedded framework for genome 

sequence labelling. We caution that this attempt is preliminary and might introduce position bias or 

indirect label leakage into the model. We envision that rationally incorporating experimentally 

validated human knowledge can assist in developing better sequence representation model for 

scientific discovery. 

 

LOGO can be used to predict regulatory interactions between enhancer-promoter sequence 

pairs. 

 

Predicting 3D chromatin contacts between promoters and enhancers is critical to understand 

transcriptional regulation in specific cell-lines or tissues. Computational approach is needed to 

improve the resolution of Hi-C data and detect genome-wide physical interactions at corresponding 
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regulatory elements. This task is analogous to general inter-sentence modelling in NLP, such as 

sentence pairs in paraphrasing, hypothesis-premise pairs in entailment, and question-passage pairs 

in question-answering task. We draw lessons from NLP field and consider 3D chromatin contacts 

prediction as a sequence pairing problem.  

 

Li et al. proposed DeepTACT34, a CNN and RNN mixed deep learning model with one attention 

layer to predict enhancer-promoter interactions (EPI). DeepTACT leverage both raw sequence and 

chromatin accessibility information, but we only benchmark LOGO against DeepTACT version 

without accessibility information input due to unavailability of processed chromatin features. We 

retrain DeepTACT and fine-tune LOGO (LOGO-EPI) on the same bootstrapped dataset provided 

by the author of DeepTACT, which contains three parts: 2000-bp window enhancer sequences35, 

1000-bp window promoter sequences36 and paired enhancer-promoter interaction (EPI) labels from 

promoter capture Hi-C (PCHi-C) experiments in six different cell types37, i.e., fetal thymus (FoeT), 

monocytes (Mon), naïve CD4+ T cell (nCD4), total B cells (tB), total CD4+ T cell (tCD4) and total 

CD8+ T cell (tCD8) (Supplementary Table 4). Similar data augmentation technique is applied to 

generate larger positive training examples. The performance of each model is evaluated by tenfold 

cross-validation. LOGO-EPI uses 6-mer setting to tokenize input sequences. We add one 1D 

convolution operation for each input promoter or enhancer sequence before feeding into 

Transformer network. The underlying intuition is to avoid large fluctuations of token embeddings 

during fine-tuning stage and ensure certain disparities among tokens (Supplementary Figure 2). The 

learned representations of paired promoter and enhancer sequence are concatenated and fed into the 

final binary classification layer. (Model architecture seen in Fig. S1). LOGO-EPI achieve 0.23-4.47% 

absolute improvement than DeepTACT on AUPRC for six cell lines (Fig. 2c). LOGO-EPI 

outperforms DeepTACT most significantly for tCD4 and LOGO-EPI yields more consistent 

performance while DeepTACT fluctuates across different cell lines (AUPRC details in 

Supplementary Table 5). 

 

LOGO achieves superior performance on chromatin features prediction with significantly 

reduced model size and much less training time than previous models. 

 

Next, we move on to compare LOGO against CNN-based DeepSEA6 to predict chromatin features 

from DNA sequence. Unlike fully supervised training manner as DeepSEA, we fine-tune the pre-

trained LOGO with chromatin features prediction task and demonstrate higher accuracy with 

significantly improved scalability. To make proper comparison as well as demonstrate model 

scalability, we use three sets of chromatin profiles with some overlaps; the first one is the same as 

original DeepSEA paper with 919 chromatin features, the second one is 2,002 chromatin features 

expanded by DeepSEA developer group reported in ExPecto38, and we construct the third one of 

3,357 chromatin features by integrating ExPecto’s 690 transcriptional factors (TF) binding features 

with recently released 2,850 EpiMap39 (for epigenome integration across multiple annotation 

projects) features after deduplication. (Data details in Methods) 

 

In the first task, we use the same training, validation, and test sets as in DeepSEA. LOGO-919 

obtains 0.70% 0.70% and 0.80% absolute improvement of median AUROC than downloaded 

DeepSEA for predicting 690 TF binding, 125 DNase hypersensitive sites (DHSs) and 104 histone 
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modification marks (HM), respectively (Fig. 3a). The maximum increase is for transcription 

repressor ZNF274 binding in HepG2 cell line (AUROC=0.703 by LOGO-919 versus AUROC 

=0.582 by DeepSEA). LOGO’s model architecture and training strategy confer huge advantage on 

computation efficiency and memory consumption over traditional deep CNN-based architecture 

completely trained in a multitask supervised manner. LOGO has much smaller parameter size 

compared to DeepSEA. LOGO-919 contains around 1.52 million parameters, which is 34x fewer 

than DeepSEA’s 52.8 million parameters (Fig. 3c). LOGO-919 obtains better performance than 

downloaded DeepSEA after 33 hours of pre-training and fine-tuning on 4 Nvidia Tesla V100 GPU 

(around 110 hours on 1 Nvidia TITAN Xp Pascal GPU). We also retrain DeepSEA from scratch on 

1 Nvidia Titan Pascal GPU and stop after 1 month (720 hours) and reproduce slightly poorer 

performance than the downloaded version, which indicates LOGO-919 takes at least 6x shorter 

training time than DeepSEA. (Fig. 3d). The improvement in parameter efficiency is the most critical 

advantage of LOGO framework, which gives LOGO superior advantage to extend to ever-growing 

chromatin maps. The learned semantic-rich representation for k-mer tokens in a self-supervised 

manner alleviate the excessive needs of cumbersome fitting for multiple supervised tasks from 

scratch. To demonstrate this concept, we conduct the second experiment using 2,002 chromatin 

features, including 690 TF binding, 334 DHSs and 978 HM features as reported in ExPecto model 

(Details in Supplementary Table 9). ExPecto also used CNN-based architecture and extend 

DeepSEA by doubling the number of convolution layers to increase model depth to satisfy doubled 

learning objectives, ending up with around 150 million parameters, nearly 3-fold of DeepSEA. We 

retrain the chromatin marks prediction part of ExPecto and stop after 1000 hours. The learning tasks 

double and the model parameters triple than DeepSEA, which shows severe lack of scalability. For 

fair comparison against ExPecto, we incorporate 2,000-bp context window while remaining other 

settings unchanged and fine-tune LOGO-2002 within 66 hours. We choose the time upper bound 

according to the intuition of doubled training time (66 hours vs 33 hours) for doubled tasks (2,002 

features vs 919 features) (Fig. 3d). The model size only marginally increases (1.87 million 

parameters) due to longer input context and additional parameters of final classification layer (Fig. 

3c). The model backbone remains unchanged, and the results show LOGO-2002 can achieve 

comparable median AUROC with retrained ExPecto on held-out chromosome within 66 hours. The 

median AUROC for TF, DHSs and HM is 0.954, 0.913, 0.883 respectively (Fig. 3b). We 

demonstrate that LOGO can scale easily via pre-training and fine-tuning paradigm with benefits of 

computational speed and reduced parameterization. It is noted that DNABERT contains more than 

100 million parameters while LOGO only contains 1 million parameter, which demonstrating 

LOGO’s superior efficiency of parameter sharing among attention layers. In addition, LOGO 

predicts chromatin features in a jointly multi-task manner while DNABERT only supports TF-

binding site prediction one TF by one TF, which is considered as a much simpler task and cannot 

effectively transfer the knowledge among different chromatin annotations. 

 

Incorporating more comprehensive chromatin profiles or using task-specific features have both been 

reported useful for functional analysis of noncoding variants62,63. Abundant experimental mappings 

of human epigenomes are continuously accumulating chromatin profiles for more cell types and 

tissues. Further expanded chromatin features require larger CNN-based models with explosive 

parameters, while LOGO can be easily extended to more chromatin features with marginally 

increased parameters. LOGO demonstrates its powerful scalability and easy deployment, which is 
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of critical importance to tackle even larger-scale functional map. To further prove this concept, in 

the third experiment, we utilize the most comprehensive chromatin profiles from EpiMap and 

integrate with all TF features from ExPecto. We construct datasets of 2,000-bp context window 

paired with a label vector for 3357 chromatin features using Selene40. We fine-tune LOGO-3357 

using the same model architecture as LOGO-2002, achieving median AUROC of 0.926, 0.928, 

0.883 for 826 TF, 668 DHSs and 1,863 HM features respectively (Fig. 3b). The slightly lower 

performance than LOGO-919 and LOGO-2002 is mainly due to less stringent dataset construction 

and less precise position calibration for EpiMap related features. LOGO-3357 has nearly 2.22 

million parameters, which is still significantly fewer than DeepSEA and ExPecto (Fig. 3c), again 

demonstrating its scalability to triple chromatin features without the need of increasing model size 

substantially or extending disproportionate training time. All training details can be found in 

Supplementary Table 6.  

 

LOGO can be used to predict functional effects of noncoding variant at base-resolution and 

provides mechanistic insights for investigating complex disease. 

 

The associated loci identified by GWAS provide abundant information regarding the genetic basis 

of human complex diseases and traits. Nevertheless, owing to Linkage Disequilibrium (LD), it 

remains challenging to identify high-resolution causal variants in an interpretable manner41. Variants 

from GWAS catalog predominantly consists of marginally associated variants that have not been 

fine-mapped. We attempt to extend LOGO to prioritize noncoding functional variants for complex 

disease based on the predicted signals of the above three sets of chromatin features. We anticipate 

that, if a complex disease-related variant exerts its effect via disruption of TF binding motif or via 

alteration of DNA accessibility or histone modification, this SNP can be identified de novo from 

sequence by LOGO. We choose type-2 diabetes (T2D) as an example to test this hypothesis and 

construct evaluation datasets from the latest published literatures and GWAS resources. (Data 

Details see in Methods). We employ the same DeepSEA E-value metric to estimate the regulatory 

potential of a SNP by comparing the allele-specific probabilities per SNP to one million random 

SNPs from the 1,000 Genome Project (Phase 3). 

 

First, we demonstrate LOGO can be used to prioritize putative causal regulatory variants from 

GWAS reported T2D-associated loci. We hypothesize that if LOGO is fine-tuned on more 

comprehensive chromatin profiles, it can identify more functional variants within LD blocks. We 

download all T2D-associated SNPs from GWAS Catalog42 (2020-05-14 version, p-value ranging 

from 9×10-6 to 6×10-447) and corresponding LD SNPs (r2>0.2) from LDlink43, resulting in 156,175 

SNPs after deduplication. A variant is considered as functional significant if at least one chromatin 

feature’s E-value is equal or less than 1×10-5 6,44. LOGO-3357 can identify more functional SNPs 

(n=14,764) than LOGO-2002 (n=729) and LOGO-919 (n=374) (Supplementary Table 7). Within 

the 71 GWAS Catalog lead SNPs identified by LOGO-3357, 30 of them reach genome-wide 

significant (p-value<5× 10-8) in at least one GWAS. We divide all functional significant SNPs 

identified by LOGO-2002 and LOGO-3357 into two groups (r2 ≥0.5 and r2<0.5), we compare mean 

activated chromatin features (E-value<1×10-5) of each group and discover that SNPs with higher 

LD activate more chromatin marks (p-value=0.00093 for LOGO 3357, p-value=0.02 for LOGO 

2002, by Mann Whitney U-Test, Supplementary Figure 3). We demonstrate that LOGO has the 
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potential of fine-mapping causal variants within LD block in an explainable manner and the model 

fine-tuned on more chromatin features provides more functional attributions. We further conduct 

tissue-enrichment analysis for all putative functional variants identified by LOGO-2002. 

Hypergeometric test is used to evaluate whether activated chromatin features are enriched in certain 

categories. We find that these SNPs are functionally enriched in 18 categories out of total 27 with 

activation signals, including smooth muscle(n=51), lymphoblastoid(n=45), adipose(n=20), 

muscle(n=63), spleen(n=10), and liver(n=48), (-log(p-value) = 11.1, 5.3, 5.0, 3.2, 3.1, and 1.3 

respectively), which is consistent with years of pathogenesis research that insulin mainly acts on 

liver, muscle and adipose as T2D-relevant tissues (Fig. 4a, Supplementary Figure 8). Recent 

integrative epigenomics study39 (EpiMap) leverages enhancer sharing tree to investigate tissue 

enrichment of T2D-related SNPs and indicates that T2D is polyfactorial traits enriched in up to 18 

tissue categories out of 33 tested. Sequence-based LOGO-2002 shows similar diversity of 

enrichment with significant tissue overlaps. Islets only constitute ~1% of the pancreas and specific 

annotations of islet epigenome are absent in ENCODE and Roadmap Epigenomes Project45. Thus, 

analyzing pancreas organ alone fails to provide reliable information of islet epigenomes. Thurner45 

and Varshney46 have specifically annotated promoter/enhancer state of islets, which are regarded as 

typical T2D relevant cell types. Specifically, 10 functional SNPs identified by LOGO-3357 are 

overlapping with islets-specific promoter/enhancer state with at least 5 activated chromatin features 

(E-value<1×10-5) (Table 1). The disruption of regulatory function is consistent with previous report 

that parts of T2D-related risk variants are considered to act through primary effects on beta-cell 

function. For instance, T2D-risk allele at rs9693089 (FAM167A locus) locates at the active enhancer 

state of islet sample identified by Varshney46 and has been reported to be associated with very low-

density lipoprotein (VLDL) synthesis by Kraja47. The corresponding activated chromatin features 

include H3K4me3, H3K4me1, H3K27ac. Even though LOGO-3357 is not specifically trained on 

islet chromatin marks, this experiment demonstrates that deep learning based methods have the 

potential of providing extra informativeness using sequence alone as input48. 

 

Second, we demonstrate that LOGO can be a sequence-based tool to help interpret those GWAS 

signals with possible population bias or sample size limitations. The statistic power of GWAS relies 

heavily on sample size, allele frequency and effect size of candidate SNPs49. GWAS with inadequate 

sample size can result in a multitude of nominally significant loci (p-value < 0.05). This problem is 

mainly mitigated by expanding sample size or conducting meta-analysis across cohorts or ethnic 

groups. Sequence based LOGO model is expected not to be affected by allele frequency or 

population bias and can evaluate both common and rare variants ab initio. We illustrate this potential 

using following examples. In study GCST00541450, rs340874 (PROX1 locus) reaches nominally 

significant (p-value=1 × 10-7). However, this SNP achieves genome-wide significant in study 

GCST00937951/GCST00686752 (p-value=2× 10-22 and 8× 10-18, respectively) with larger sample 

size. PROX1 has been reported to be associated with after-meal metabolism53, non-esterified fatty 

acids, and glucose metabolism54, which is also validated in both Japanese and Chinese 

populations55,56 (MAF=0.376). LOGO-3357 can directly identify rs340874 as a functional 

significant SNP (1 activated feature with E-value≤1×10-5, transcription factor POLR2A). PROX1 

is reported to be a target gene of the POLR2A transcription factor from the ENCODE Transcription 

Factor Targets dataset. Rs896854 (TP53INP1 locus) is perceived to be associated with lipid levels 

of Chinese population with nominal significant signal (p-value=2×10-6) in study GCST00489457 
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and genome-wide significant signal (p-value=1×10-9) in study GCST00071258. Rs516946 (ANK1 

locus) is reported in several independent studies to be correlated with decrease of insulin level and 

dysfunction of pancreatic islet cells at nearby site59. Again, LOGO-3357 can identify both rs896854 

(1 activated feature with E-value≤1×10-5, Blood & T-cell, H3K9me3) and rs516946 (1 activated 

feature with E-value≤1×10-5, Other, DNase-seq) to be functional. Furthermore, we evaluate another 

43 regulatory variants with posterior probability of association (PPA) >80% in a recent fine-

mapping study60. 2 SNPs are identified functional significant by LOGO-3357 (rs340874 at PROX1 

locus and rs76549217 at ANKH locus). Another largest-scale T2D meta-analysis study accumulates 

1.4 million samples and discovered 318 new loci61, out of which LOGO-3357 can identify 14 SNPs 

to be functional. It is worth mentioning that all these 14 SNPs do not reach genome-wide 

significance in other populations except European ancestry. This result further indicates the 

unbiased predictive power of LOGO. 16 reported SNPs validated by LOGO-3357 with 

corresponding activated features are listed in Supplementary Table 8. We demonstrate that LOGO 

fine-tuned on chromatin features can help interpret GWAS non-coding SNPs and provide hints 

regarding underlying tissue-specific regulatory mechanism. 

 

Introducing locality-sensitive encoding scheme and convolution facilitates prioritizing 

functional variants for both inherited disease and complex trait or disease. 

 

Next, we move on evaluate whether fine-tuning LOGO can be used to develop functional predictor 

of pathogenic regulatory single-nucleotide variants (SNV) or common GWAS phenotype-associated 

SNPs. We define two schemes of fine-tuning: end-to-end training on binary label of deleteriousness 

(LOGO-E2E) and two-stage training of chromatin features prediction followed by variant 

prioritization (LOGO-C2P)6,62. Perturbation of molecular phenotypes can serve as an indicator of 

potential deleteriousness inspired by DeepSEA. We compare LOGO against 6 common predictors, 

including evolution-based method (GERP)64, sequence-based predictor based on chromatin effect 

signals with 4 evolutionary conservation features (DeepSEA)6, functional genome-based method 

(Funseq2)65, evolutionary method incorporating functional genome features (LINSIGHT)66, 

machine learning based classifier (CADD)67 and genome diversity metric (CDTS)68. It is noted that 

DeepSEA and CADD can provide allele-specific evaluations, whereas others assign identical scores 

to all alternative variants. Our predictors, LOGO-E2E and LOGO-C2P, are designed to capture 

allelic effect. 

 

For variants associated with inherited human diseases, we extract a dataset from Human Gene 

Mutation Database (version 2019-03)69 to define positive examples of stringent regulatory 

mutations. We construct negative controls from 1000 Genomes Project70 SNPs by stringent 

frequency and population control, resulting in 3,498 pathogenic regulatory mutations and 3,690 

negatives (total 7,188 variants, Supplementary Figure 6). We use 10-fold cross-validation to make 

robust comparison. For each fold, test variants are ensured to be scorable across methods. To 

increase stringency, we consider two schemes of negative sets selection: random sampling 

(unrestricted), and negative samples matched to positive ones within 1 kb (restricted, total 6,532 

variants). Dataset construction details are illustrated in Methods.  

 

For LOGO-E2E, we use three layers to encode variant presence and allelic information at specific 
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position, including Ref layer, Alt layer and Variant Type layer. Ref layer is used to encode 1,000-bp 

context with 6-mer-1-stride setting. (Model architecture in Supplementary Figure 4) Alt layer is 

used to encode alternative allele at certain position to enforce the model to see directional alteration. 

Another Variant Type layer is set as default for SNV. By this means, we explicitly encode the 

alternative allele, ensure the ALT allele is always the effect allele. Each variant with surrounding 

context of certain length will be encoded as a matrix input containing ‘Ref’, ‘Alt’ and ‘Type’ 

information. 1-dimension convolutional layer is added before feeding token embeddings into LOGO 

to learn the binary deleteriousness effect of target variant. Fine-tuning LOGO in this way is expected 

to learn allelic pathogenicity. For LOGO-C2P, we follow similar pipelines in DeepSEA’s functional 

SNP prioritization part and firstly use previously trained LOGO-919/LOGO-2002 to generate 

chromatin effect features for both reference and alternative allele. We then conduct the same 

absolute difference and relative log fold change transformation as DeepSEA and feed these features 

into boosted logistic regression model to train the classifier at the second stage. It is worth 

mentioning that we discard z-score transformation used in DeepSEA-C2P classifier. We also assess 

the difference between preserving or removing evolutionary conservation features. The original 

scores of LINSIGHT, CADD, FunSeq2, GERP, CDTS and DeepSEA functional significant score 

are used to obtain the binary classification result with full range of thresholds.  

 

In end-to-end setting, LOGO-E2E outperforms all other methods in restricted negative control 

scenario (AUROC=0.722) (Fig. 4b) and performs the second in the scenario of unrestricted negative 

control (AUROC=0.823). It is consistent with previous finding that restricted scenario poses more 

difficulties for distinguishing functional sites from surroundings than separating functional regions 

from genome background. Nonetheless, LOGO-E2E leverages an Alt token layer to enforce the 

model to explicitly encode allele position and directional mutation event to be distinguished from 

nearby unchanged context, which equips the model with allelic specificity under 1,000-bp context. 

For the less challenging unrestricted task, LOGO-E2E perform slightly worse than 

LINSIGHT(AUROC=0.847), one possible reason might be that LOGO has not been trained on 

population genomic data with conservation information to witness enough genome diversity from 

human and other related outgroup species. To overcome this shortcomings, LOGO-2002-C2P 

incorporates four evolutionary conservation features as in DeepSEA (PhastCons scores71, PhyloP 

scores72, and GERP++ neutral evolution73 and rejected substitution scores64) and achieves the 

highest performance (AUROC=0.883) (Fig. 4c) in the scenario of unrestricted negative control.  

 

It is noted that all compared methods except DeepSEA-C2P are not specifically trained on HGMD 

dataset. To avoid potential over-fitting controversy and assess the generalizability of LOGO-C2P, 

we extract from ClinVar database74 to define an independent test set with 177 highly confident non-

coding pathogenic SNVs (Data details in Method and Supplementary Figure 5, all splicing variants 

removed). LOGO-2002-C2P ranks the third (AUROC=0.927) and significantly outperforms CDTS 

(AUROC=0.734) but slightly worse than LINSIGHT (AUROC=0.946) and 

CADD(AUROC=0.966). (Fig. 4d) CDTS solely relies on 11,257 whole-genome sequences to obtain 

7-mer constraint under 550-bp context of human species, whose lack of interspecies conservation 

leads to poorer performance to evaluate fitness consequence of inherited disease related variants. 

LOGO-E2E (AUROC=0.769) is only trained on 3,498 HGMD variants yet performs better than 

genome diversity based CDTS, which again proves end-to-end fine-tuning architecture captures 
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some intrinsic features of non-coding genome by only using a few annotated examples. LOGO-C2P 

is only trained on HGMD dataset and proved to be well generalizable on ClinVar dataset. 

LINSIGHT is trained on human polymorphism data from 54 unrelated individuals and 3 outgroup 

species divergence data from aligned primates genomes conditioned on 48 genomic features, 

revealing the utility of incorporating genome diversity information to interpret non-coding genome. 

CADD is trained with more than 60 genome annotations on a much larger dataset (n=30 million) 

containing fixed or nearly fixed variants in human populations but is absent in human-ape ancestor 

as proxy-neutral variants and matched proxy-deleterious variants, which is essentially designed for 

binary classification of fitness consequence. The superior performance of LOGO-C2P, LINSIGHT 

and CADD shows that evolutionary information is likely to be powerful to identify regulatory 

pathogenic variants that tend to be under strong purifying selection.  

 

We conduct another benchmark experiment to prioritize complex trait or disease associated variants. 

GWAS variants underlie complex diseases are generally of weaker functional impact than HGMD 

mutations. We construct positive test set by extracting all genome-wide significant variants (p-

value<5× 10-8) replicated in at least 2 independent studies from GWAS Catalog followed by 

retaining SNPs overlapped with ENCODE candidate cis-Regulatory Elements (ccREs)2 and fixation 

index (FST) lower than 0.01 to ensure little genetic differentiation75,76. We ensure that all test variants 

have never been used in previous HGMD experiment, resulting in 2,731 positive GWAS SNPs and 

704 negative controls. We bootstrap 10 times to obtain balanced held-out test set of 1,408 variants 

(Data details in Method and Supplementary Figure 6). All predictors show reduced performance. 

Compared with more deleterious HGMD mutations under significant purifying selection, common 

GWAS-associated variants have smaller effect size with lower evolutionary conservation, thereby 

plausibly more difficult to predict. LOGO-C2P-2002 is the top performer (AUROC=0.841) (Fig. 

4d) across all methods We show that LOGO-C2P-2002 has the advantages of considering both 

chromatin effects and evolutionary constraint at base-resolution. Though LOGO-C2P is solely fine-

tuned on HGMD mutations, the result proves its domain transferability from inherited diseases to 

common phenotypes. The second-best predictor is LOGO-919-C2P (AUROC=0.832), indicating 

the benefit of broad collection of chromatin features. LOGO-919-C2P outperforms DeepSEA-C2P 

(AUROC=0.804), which again demonstrates the edge of attention-based Transformer over CNN-

based architecture. For these two independent evaluations, LOGO-C2P performs relatively better 

than CADD and LINSIGHT in GWAS domain than ClinVar domain, which suggests that chromatin 

features are more informative for complex traits while evolutionary information is more important 

for inherited diseases. This is consistent with the hypothesis that highly deleterious mutations of 

genetic diseases subject to stronger selection than complex disease loci77. Recent EpiMap results 

also emphasizes the central role of dense, rich, high-resolution epigenomic annotations to 

investigate regulatory circuitry of complex disease. LOGO-C2P exhibits its capability of integrating 

sequence context, regulatory annotation, and evolutionary constraint either explicitly or implicitly 

at different levels. It is noted that CDTS, which solely relies on human genetic diversity, shows 

poorer performance in both rare and common disease scenarios. We argue that the statistical test of 

7-mer regional tolerance is not powerful enough to capture complex semantics underlying human 

genome sequence, even though information of more than 10,000 human genomes are incorporated68. 

 

Furthermore, we explore LOGO performance on prioritizing pathogenicity of small insertion or 
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deletion variants (Indels). We fine-tune LOGO in a similar way with LOGO-E2E using 3-mer 

tokenization with 1000-bp context (LOGO-E2E-Indel) on a much larger dataset from CADD 

Developmental release: v1.4 with 3,675,207 indels, including similar number of human-derived 

variants and simulations67. We evaluate model performance of LOGO-E2E-Indel against 

LINSIGHT, CADD and DeepSEA-w/o Evo (excluding evolutionary features) on independent test 

set, consisting of 5,869 non-coding Indels (<48bp) from ClinVar recent release (clinvar_20201003), 

including 5,556 positive samples (defined as pathogenic and likely pathogenic in ClinVar) and 313 

negative samples (defined as benign and likely benign in ClinVar). LOGO-E2E-Indel achieves the 

best performance (AUROC=0.743) across all compared methods (Supplementary Figure 7). These 

results indicate that LOGO-E2E can effectively utilize the learned semantic representations from 

pre-training and shows stronger generalizability for downstream classification task than CADD, 

which is trained in a fully supervised manner.  

 

Discussion 

 

Genome sequence contains tremendous biological information regarding the species to which it 

belongs. Even though a multitude of high-throughput biochemical assays have been used to 

characterize the sequences, the complexity nature of genome poses tremendous challenge to well 

interpret it. It is impractical to exhaustively perform functional annotations at every position in all 

conditions, and current assay design is believed to only cover the tip of the iceberg due to the 

limitations of existing hypothesis. A substantial gap remains between the outcomes of these 

experiments and a comprehensive understanding of whole genome, especially those regulatory 

regions. New computational approaches are in pressing needs to help interpret the underlying code. 

Motivated by recent huge progress in the field of NLP and CV, we propose a light language model 

called LOGO, utilizing ALBERT-version Transformer architecture for sequence labelling, and 

integrating convolution with a novel input encoding scheme for base-resolution interpretation.  

 

Learning from raw reference genome successfully equip the model with strong adaptability across 

various downstream tasks by fine-tuning. No explicit annotation label is given during pre-training 

stage, and we have shown that the intrinsic bidirectional representations learned by the model can 

easily extend to sequence labeling task. In chromatin features prediction task, LOGO achieves 

higher accuracy than DeepSEA with significantly reduced parameters in much shorter computing 

time. Facing the needs of continuously growing number of functional annotations, we demonstrate 

supervised multitask learning faces problem of parameter explosion and tedious architecture tuning, 

while LOGO can efficiently extend to more abundant features with marginally increased parameters 

and trivial modification. Sequence-based chromatin effects prediction is informative to characterize 

GWAS SNPs via identifying certain regulatory function disruption. These results offer a strong 

justification that developing pre-trained language model can enable accurate, fast, scalable, and 

robust genome modelling. The community can benefit from simply and economically fine-tuning 

the pre-trained LOGO for specific chromatin profiles of intertest with trivial effort. By initializing 

model with pre-trained weights, only one additional output layer needs to be modified instead of 

extensive architecture tuning. We also show that fine-tuning LOGO with an explicit ref/alt token 

encoding strategy and convolutional operation proves powerful to prioritize functional non-coding 
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variants associated with human disease at base-resolution.  

 

It is noted that LOGO is only trained on human reference genome hg19. We envision that 

introducing genome diversity in pre-training stage can further boost representation power. This can 

be done by feeding LOGO with all currently identified variants across human populations and from 

other related outgroup species, which is expected to automatically learn evolutionary conservation 

and context-dependent constraint across the genome. The learned representation will in turn 

facilitate variant function prediction and evolutionary landscape discovery. We make an analogy 

between biological sequence and human language that genome possesses diversified combinations 

of words or phrases without compromising intrinsic grammar constraints. Overall, LOGO offers a 

versatile strategy to represent global and local pattern of human genome and sheds light on 

unearthing more value of ever-growing WGS data in the boom of national genome project. 

 

We hypothesize that there exist many dimensions not yet captured by LOGO. There could be 

alternative ways to construct underlying vocabulary and define pre-training objectives with further 

optimized masking strategy. We already show that injecting knowledge post hoc into the model can 

help boost performance. On the other hand, we anticipate that large amount of existing somewhat 

noisy knowledgebase can be utilized to further boost the effectiveness of deep learning model. For 

example, sequence annotation databases78,79 and biological networks80 can be introduced 

systematically and structurally to guide self-supervised representation learning of genome sequence 

or inspire novel knowledge-guided masking strategy design. This will in turn help constructing 

better downstream prediction model in a more interpretable manner. In addition, LOGO can be 

reconfigured into a generative version, potentially be used to improve in silico mutagenesis 

efficiency and assess artificially designed sequences in the field of genome editing and synthetic 

biology. Integrating adversarial feedback loop of functional constraint into language model can 

potentially aid perturbation experiment and rational de novo design of new regulatory circuit81,82.  
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Methods 

 

Data generation and tokenization. Coordinates in the paper refer to human genome build UCSC 

hg19/GRCh37. We download it from NCBI Homo sapiens reference genome with a file named 

GCF_000001405.25_GRCh37.p13_genomic.fna. There are five types of nucleotide, i.e., A, T, C, G 

and Unknown. The complementary sequence is generated using Bio.Seq (Biopython version 1.76 

https://biopython.org/wiki/Seq). We divide both the forward and complementary sequence into 100-

bp non-overlapping bins and obtain 60 million samples. K-mer encodes sequence into a certain 

length of nucleotides. For instance, a trinucleotide is a k-mer for which k=3. We define a token 

vocabulary to cover all possible k-mers. Token vocabulary size (V) equals to 5k when using k-mer 

strategy. To make full use of the sequence information for rich representation, stride is designed as 

step-size when using k-mer to slide across a sequence. For example, for a sequence 

TGAATGATTTG, using 3-mer-1-stride to represent it resulting in three sets of instances, i.e., TGA 

ATG ATT, GAA TGA TTT and AAT GAT TTG. Then each 3-mer from each set corresponds to a 

token extracted from a 3-mer token vocabulary. Specifically, for a given 1,000-bp sequence, 3-mer 

setting results in 3 sets of input, each with length of 333 tokens; 4-mer setting results in 4 sets of 

input, each with length of 250 tokens; 5-mer setting results in 5 sets of input, each with length of 

200 tokens; 6-mer setting results in 6 sets of input, each with length of 166 tokens. If 1,000-bp is 

not long enough to retrieve the last few k-mer tokens, we make up the remainder via padding 

forward along the reference genome. 

 

Architecture of the pre-training model. The pre-training model leverages the encoder part of 

Transformer architecture and learns representations of input sequences via multi-head self-attention 

mechanism. We follow the BERT notation conventions and denote the vocabulary embedding size 

as E, the number of encoder layers as L, and the hidden size as H. Each training instance is started 

with a 100-bp bin as described above and extended forward along the reference genome until 

reaching 1000-bp length. The model processes the genome in sequential segment of k-mer token as 

input, and a non-linear transformation is applied to each input token that maps input vocabulary size 

to a token embedding vector of length E=128. Unlike projecting the input vectors directly into the 

hidden space as of BERT, we leverage the optimized strategy of ALBERT, first project them into a 

lower dimensional embedding space of size E, and then project it to the hidden space. Token 

embeddings of size E are summed with position embeddings and fed into Transformer encoder 

network. The encoder is composed of a stack of L = 2 identical layers. Each layer has two sub-layers. 

The first is a multi-head self-attention layer, and the second is a position-wise fully connected feed-

forward layer. A residual connection is added to each sub-layer, followed by layer normalization, 

leading to output of each sub-layer is LayerNorm (x + Sublayer(x)), where Sublayer(x) is the 

function implemented by the sub-layer itself. Each hidden sub-layer produces vector outputs with 

dimension of H=256. An attention function can be described as mapping a query and a set of key-

value pairs to an output, where the queries (𝑄), keys (𝐾), values (𝑉), and output are all vectors. The 

output is computed as a weighted sum of the values, where the weight assigned to each value is 

computed by a compatibility function of the query with the corresponding key. For each self-

attention layer, the input consists of queries and keys of dimension 𝑑 , and values of dimension 

𝑑 . The dot products of the query with all keys, divide each by 𝑑 , are fed into a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 layer 
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to obtain the weights on the values. The attention functions on a set of queries are computed 

simultaneously, packed together into a matrix 𝑄. The keys and values are also packed together into 

matrices 𝐾 and matrices 𝑉. The matrix of outputs is computed as:  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾

𝑑
𝑉 

To increase the capacity of the model, the input of each hidden layer is processed by multiple 

attention heads, which means on each of projected versions of queries, keys and values, the attention 

function is performed 𝐴 (number of heads) times in parallel. The outputs of each head are 

concatenated and once again projected, resulting in the final values, as depicted: 

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑 , ⋯ , ℎ𝑒𝑎𝑑 )𝑊 ,

𝑤ℎ𝑒𝑟𝑒 ℎ𝑒𝑎𝑑 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊 , 𝐾𝑊 , 𝑉𝑊 ) 

 

𝑊 ∈ ℝ × , 𝑊 ∈ ℝ × , 𝑊 ∈ ℝ × , 𝑊 ∈ ℝ ×  

 

We employ 𝐴 =  8  heads. For each of these, we use 𝑑 = 𝑑 = 𝐻 = 32 . Due to the 

reduced dimension of each head, the total computational cost is close to that of single-head attention 

with full dimensionality. Following each attention layer, the fully connected feed-forward network 

is applied to each position separately and identically, which consists of two linear transformations 

with a 𝑅𝑒𝐿𝑈 activation in between.  

 

𝐹𝐹𝑁(𝑥) = max (0, 𝑥𝑊 + 𝑏 )𝑊 + 𝑏  

 

After a forward pass through L=2 layers, a final classification layer is used to project the hidden 

state (𝑑 ) to output classes of dimension equal to k-mer vocabulary size. 

 

Motivated by ALBERT architecture, we use a factorization of token embedding parameters. By 

using this decomposition, the embedding parameters are reduced from 𝑂(𝑉 × 𝐻) to 𝑂(𝑉 × 𝐸 +

𝐸 × 𝐻). We also enforce sharing all parameters across 2 layers motivated by improved parameter 

efficiency of ALBERT. In original BERT model, for a given token, its input representation is 

constructed by summing the corresponding token, segment, and position embeddings. Position 

embeddings are used to capture internal relative position of each input sequence. Since we discard 

NSP task, we do not use segment embeddings in pre-training stage. One contribution of this work 

is that we demonstrate a method to incorporate prior knowledge into the language model. 

Knowledge layer is introduced and encoded in one-hot format. For example, if we have 𝑀 

knowledge items to label the input sequence, then a M-dimension one-hot knowledge vector is 

introduced and concatenated with input sequence vectors. For example, if a sequence is labelled by 

an annotation knowledge, all k-mers spanning from annotation start position to end position will be 

recorded as ‘1’ for this type of knowledge, and k-mers of other positions will be recorded as ‘0’. 

Knowledge embeddings are learned by the model and the dimensions are set as the same as token 

embeddings size. In this study, knowledge embeddings are only used in the fine-tuning stage in 

promoter prediction task. 
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Pre-training. We define similar self-supervised loss for Masked Language Model [MLM] pre-

training task as in BERT and discard Next Sentence Prediction (NSP) task. In the pre-training stage, 

to balance the computation burden and representation utility, we evaluate four types of k-mer 

(k=3,4,5,6) with 1-stride settings to tokenize the genome. For each k-mer setting of 1,000-bp 

sequence, k sets of input will be all used as training instances. For each set, we use similar masking 

strategy as in BERT. The masked token will be represented as [MASK]. We randomly masked 15% 

of k-mer tokens for prediction, 80% of which are replaced with [MASK], 10% is replaced by a 

random token from the vocabulary and another 10% remains unchanged. The original token at 

masked position will be predicted with cross entropy loss. The pre-training loss is the sum of the 

mean masked LM likelihood. We follow the BERT notation conventions and denote the vocabulary 

embedding size as E, the number of encoder layers as L, and the hidden size as H. In LOGO model, 

each k-mer of input sequence will be represented as 128-dimesion vocabulary token embedding 

vectors. Hidden layer embedding size (H=256) are set to be larger than input token embedding size 

as in ALBERT, since hidden layers are meant to learn context-dependent representations. All 

embeddings and model weights are expected to be learned by the model from MLM task. We use 

four Nvidia Tesla V100 SXM3 32G GPU to train the model. Because the number of training records 

exceed 180 million (3-mer: 60 million×3, 4-mer: 60 million×4, 5-mer: 60 million×5, 6-mer: 60 

million×6), in order to speed up training, we convert all data to Tensorflow tfrecord and adopt 

Tensorflow's ‘Multi Worker Mirrored Strategy’ strategy to support multi-machine and multi-GPU 

training. Parallel training technique is used on four GPUs to support large batch size. 

Hyperparameters are summarized as below: Layers(L)=2; Token embedding size(E)=128; Hidden 

dimension size(H)=256; Attention Heads(A)=8; Batch size (BSZ)=512 for each GPU, 

512×4=2,048 for 4 GPUs; Steps-per-epoch=4,000; Maximum epochs=100; Sequence length=333, 

250, 200, 166 tokens for 3-mer, 4-mer, 5-mer, 6-mer setting, respectively to encode 1,000-bp input 

sequence. We use an Adam optimizer with learning rate=0.00001. Other hyperparameters are set as 

default of ALBERT.  

 

Data for promoter prediction and fine-tuning. We use the same promoter sets from EPDnew 

database as of DeeReCT-PromID, which is an experimentally annotated high-quality database. We 

download Hs_EPDnew_006_hg19.sga from EPDnew database to construct 16,455 sequences 

containing human promoters and corresponding Transcription Starting Site (TSS). Promoters with 

(TATA+) and without TATA-box (TATA-) are also assessed independently. We make up each 

sequence to 10,001-bp (where +1 is a TSS position) according to hg19 reference genome as a pool 

of training samples. Positive sets are defined as 600-bp promoter region (from -200bp to +400bp, 

where +1 is a TSS position) around the known TSS. A negative control is a successive 600-bp 

sequence randomly sampled from all promoters’ flanking regions without overlapping (-5,000-bp 

to -200-bp or +400-bp to +5,000bp, where +1 is a TSS position). Since we cannot obtain original 

held-out test set, to make fair comparison, we use 10-fold cross-validation in fine-tuning stage and 

split training, validation, and test set in a ratio of 8:1:1 in each fold. The best hyper-parameters for 

each fold are chosen based on validation sets. We download all model weights from pre-trained 

LOGO to initialize the fine-tuning procedure. For each input 600-bp sequence, we tokenize them 

via different k-mer-1-stride settings (k=3,4,5,6) and feed them into LOGO for fine-tuning. The final 

hidden vector C with dimension of H corresponding to the first input token [CLS] is regarded as the 

aggregate representation of promoter prediction task, followed by a classification layer with sigmoid 
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activation to obtain a score from 0 to 1 that represents the likelihood of sequence to be a promoter 

region. We compute a standard classification loss with C and W, i.e., log (sigmoid (CWT)). We use 

batch size of 128, set early-stop rules and train the model at most 20 epochs for each fold. We fine-

tune all parameters in end-to-end manner using 1 Nvidia GeForce RTX 2060 GPU. Early stopping 

is used when accuracy does not improve within 3 consecutive iterations. True positive (TP), true 

negative (TN), false positive (FP) and false negative (FN) are defined to evaluate test set of each 

fold using a threshold of 0.5. We calculate three metrics to evaluate model performance, i.e., 

Precision, Recall and F1 score:  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

To make head-to-head evaluation, we retrain DeepReCT-PromID. We also evaluate knowledge 

guided fine-tuning in promoter prediction task. We download 11 annotations terms from GenBank, 

i.e., 'CDS', 'exon', 'enhancer', 'insulator', 'conserved region', 'protein binding site', 'pseudogene', 

'DNAseI hypersensitive site', 'nucleotide cleavage site', 'silencer' and 'gene'. Annotations of 

‘promoter’ are abandoned to avoid direct label leakage. Annotation labels are constructed for each 

input sequence in a start-to-end spanning mode based on genome coordinate and concatenated with 

k-mer input. Knowledge embeddings, position embeddings and token embeddings are summed up 

and then fed into LOGO for end-to-end fine-tuning.10-fold cross validation is used to evaluate 

metric average against knowledge-naïve LOGO and DeepReCT-PromID.  

 

Data for promoter-enhancer interaction and fine-tuning. We use the same enhancer-promoter 

interaction datasets as of DeepTACT. We download all data from 

https://github.com/liwenran/DeepTACT, containing 65,432 permissive enhancers collected from 

FANTOM5 with length of 2 kb, promoter sequences defined by TSS locations from Ensembl release 

v75 (22) with 1kb regions surrounding each TSS, and paired enhancer-promoter interaction (EPI) 

labels from promoter capture Hi-C (PCHi-C) experiments in six different cell types, i.e., total B 

cells (tB), monocytes (Mon), fetal thymus (FoeT), total CD4+ T cells (tCD4), naive CD4+ T cells 

(nCD4) and total CD8+ T cells (tCD8). We use 10-fold cross validation for LOGO and DeepTACT. 

Due to inaccessibility of held-out test set of original DeepTACT paper, we use 10-fold cross-

validation. For each fold, data augmentation technique similar with DeepTACT is applied to 

generate more positive training examples. We scan a certain region (say, 2 kb) surrounding the center 

with a 1 kb sliding window at a step size of 50 bp to obtain 20 substitutions and thus 400 pairs of 

positive sets. For training sets, the number of negative samples and positive samples are kept the 

same. For test set of each fold, we construct negative samples five times of positive ones. The 

detailed number of positive and negative pairs for 6 cell lines are listed in Supplementary Table 4. 

LOGO-EPI uses 6-mer-1-stride setting to tokenize input sequences. We add one 1D convolution 

operation (3 different kernel sizes) for each input sequence before fed into Transformer network. 

Different kernel sizes (2,3,5) of convolution layer are evaluated. Transformer output of pairing 

sequence are concentrated and fed into the final classification layer to obtain binary interaction label. 
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We retrain DeepTACT to make fair comparison and use area under Precision-Recall curve (AUPRC) 

as performance metric. We use batch size of 128, set early-stop rules and train the model at most 40 

epochs for each fold. We fine-tune all parameters in end-to-end manner using 6 Nvidia Tesla V100 

SXM3 GPU for each cell-type. Early stopping is used when accuracy does not improve within 3 

consecutive iterations.  

 

Data for chromatin feature prediction and fine-tuning. For chromatin feature prediction task, 

we use the same datasets as in DeepSEA and ExPecto, respectively. The genome is split into 200-

bp bins as core region for each sample. To compare against DeepSEA, we pad 400-bp flanking 

regions on both sides to generate 1,000-bp context sequence. To compare against ExPecto with 

broader genomic context, we pad 900-bp on both sides to generate 2,000-bp context sequence. The 

400-bp/900-bp flanking regions at the two sides provide extra contextual information to the model. 

Chromatin features are obtained from ENCODE and Roadmap Epigenomics projects. For each core 

200-bp bin, the chromatin feature is labeled 1 if more than half of the 200-bp bin is in the peak 

region and 0 otherwise. Only 200-bp bins with at least one TF-binding event will be used. Forward 

and complementary sequence pairs share the same chromatin feature. DeepSEA contains 919 

chromatin features (125 DNase I-hypersensitive sites (DHSs), 690 TF binding features for 160 

different TFs and 104 histone modification mark features (HM)) and ExPecto contains 2,002 

chromatin features (334 DNase I-hypersensitive sites (DHSs), 690 TF binding features and 978 

histone modification mark features (HM)). We use trained DeepSEA model and ExPecto model 

from https://github.com/gifford-lab/deepsea-docker and https://github.com/FunctionLab/ExPecto, 

respectively. 919 DeepSEA chromatin features are downloaded from 

http://deepsea.princeton.edu/media/code/deepsea_train_bundle.v0.9.tar.gz  and 2,002 ExPecto 

chromatin features are obtained from ExPecto author via email. Chromosome 8 and 9 are used as 

test chromosome. Chromosome 7 spanning the genomic coordinates 30,508,751-35,296,850 are 

used as validation set and not used for training. Thus, the training, validation and test sets contain 

4,400,000, 8,000 and 455,024 samples, respectively. The predicted probability for each input 

sequence is computed as the average probability of forward and complementary sequence pairs. 

Performance is evaluated on test set using area under receiver operating curve (AUROC) as metric. 

To fine-tune on chromatin feature prediction task, we use LOGO architecture with parameter 

settings: L=2, E=128, H=256, A=8. The final hidden state corresponding to the first input token 

[CLS] is used as the aggregate sequence representation. We add a sigmoid layer after the final hidden 

layer of LOGO in a similar way with promoter prediction task as described above. We download 

model weights from pre-training stage to initialize LOGO-919 and LOGO-2002. We use 5-mer-1-

stride to tokenize each input 1,000-bp or 2,000-bp sequence. Model output gives a score from 0 to 

1 that represents the likelihood of sequence corresponds to each chromatin feature. Binary cross 

entropy loss is used to calculate loss function. We use Adam optimizer with initial learning rate of 

0.0002, warmup steps=2,500, and other parameters are set as default. We use batch size of 512 with 

steps per epoch=4,000. We use early stopping strategy and stop training when validation loss does 

not further decrease within 20 epochs. We use 4 Nvidia Tesla V100 SXM3 GPU with parallelization 

to fine-tune LOGO-919 and LOGO-2002. We also repeat LOGO-919 fine-tuning experiment and 

retrain DeepSEA and ExPecto on 1 Nvidia TITAN Xp Pascal GPU to make fair comparison. 

 

Data processing for expanded epigenomic maps. We further expand chromatin features to more 
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tissues and cell-lines from the latest published EpiMap results consisting of 833 high-quality 

epigenomes. BigWig files are downloadd from https://epigenome.wustl.edu/epimap/data/observed/. 

To obtain peak files, we use bigWigToBedGraph tool with default parameter settings to convert 

bigWig file and use MACS tool to conduct peak calling. We set parameters for MACS as Cutoff –

c=2, Maxgap –g=36, Minlen –l=100. We obtain 2,850 ready-to-use peak files and merge with 

ExPecto featuresto generate 3,357 peak files after deduplicate TF-binding features. Then we use 

Selene library to generate training examples. At least one TF-binding event is required to extract 

200-bp core regions from peak files. We randomly extract 200-bp bins from either forward or 

complementary chain and annotate extracted bins with 3,357 marks. We then pad 900-bp on both 

sides to generate 2,000-bp context sequence. Other fine-tuning settings are kept the same way as 

described above.  

 

Analysis of T2D-related GWAS variants. We download all T2D-associated SNPs from GWAS 

Catalog (2020-05-14 version) and obtain corresponding LD SNPs from LDlink, resulting in 156,175 

SNPs (p-value ranging from 9×10-6 to 6×10-447). To make fair comparison with DeepSEA, we use 

the same approach to compute chromatin effects of variants. For each SNP, we extract the 1,000-bp 

or 2,000-bp context sequence centered on that variant based on hg19 reference genome (SNPs 

locates at the 500th position). A pair of 1,000-bp sequence centered on both reference allele and 

alternative allele at the variant position are used to calculate the probabilities for each chromatin 

feature. Absolute differences between probability values and relative log fold changes of odds are 

calculated following DeepSEA pipelines. Both forward and complementary sequences are 

computed and averaged to obtain the predicted chromatin effects. The magnitude of the predicted 

chromatin effect on a chromatin feature for a SNP is computed as the product of the absolute 

difference between probability values and the relative log fold change of odds. We use the same 

protocol as in DeepSEA to obtain negative non-functional SNPs which contains 1,000,000 negative 

SNPs randomly chosen from 1000 Genomes Project. We calculate chromatin effects for these 

negative SNPs to generate the empirical background distribution and use the same E-value 

definition to evaluate significance of variant effects. For each chromatin feature, E-value is 

computed as the proportion of negative SNPs with higher predicted chromatin effect magnitude on 

the same chromatin feature. We use fine-tuned LOGO-919, LOGO-2000 and LOGO-3357 to 

calculate E-values for 919, 2,002 and 3,357 chromatin features, respectively. A variant is considered 

as putative functional significant if at least one chromatin feature’s E-value is equal or less than a 

certain threshold, i.e., 1× 10-5, which might be used to infer underlying regulator disruption 

mechanism. Profile of Thurner islet chromatin states is downloaded from 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828664/bin/elife-31977-fig3-data5.zip. Profile of 

Varshney islet chromatin states is downloaded from 

https://theparkerlab.med.umich.edu/data/papers/doi/10.1073/pnas.1621192114/ after consultation 

with Dr. Narisu Narisu from Francis Collins Lab via email. 

 

Data processing for variant prioritization. For variants associated with inherited human 

diseases, we extract a dataset from Human Gene Mutation Database (version 2019-03) labelled as 

‘DM’ and ‘Regulatory’ to define positive examples of regulatory variants. Within HGMD format 

dataset, there are some non-pathogenic alleles on complementary chain, we flip it over to forward 

chain to make consistent evaluation. We delete all mutations from sex chromosomes, resulting in 
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3,498 stringent regulatory variants. Negative variants are selected from 1000 Genomes Project SNPs. 

We randomly select 1 million SNPs from 1000 Genomes Project (Phase 3) and use following criteria 

to construct negative variants, 1) We only retain variants with allele frequency equal or greater than 

0.05, 2) We delete all variants overlapped with GWAS Catalog (release 2020_05_14) reported SNPs. 

3) We delete variants in RefSeq exon region and obtain 75,369 SNPs. To control allele frequency 

bias due to different ethnic groups, we further calculate fixation index for 75,369 SNPs. Fixation 

index (FST) stands for a measure of population differentiation due to genetic structure and is a 

concrete example of Wright’s unbiased F-statistics. FST is calculated based on population size and 

allele frequency. According to the criteria75,76 that FST lower than 0.05 means little genetic 

differentiation and FST larger than 0.25 means high genetic differentiation. We use vcftools to 

calculate FST values for all 75,369 SNPs based on allele frequencies and sample sizes of the five 

super populations (AFR, EAS, EUR, SAS, and AMR) available from 1000 Genomes Project. We 

retain variants of FST value equal or less than 0.01 and obtain 3,690 stringent negative regulatory 

variants with very little population difference. We extract held-out test set of non-coding regulatory 

variants from ClinVar (version: ClinVarFullRelease_2020-10-03) and retain single nucleotide 

variants consistently annotated with ≥ two stars. We delete overlapped variants with HGMD 

datasets. Variants from sex chromosome and mitochondria are filtered out, which finally leads to 

177 highly confident positive variants. Corresponding 177 controls are randomly chosen from above 

1000G negative variants and made sure that none is used in HGMD model training. To reduce 

stochasticity, subsampling is performed 10 times to balance the numbers of positive and negative 

examples, and average performance are reported. We use GWAS SNPs associated with common 

human diseases or traits to construct another independent test set for variant prioritization task. We 

construct positive set by extracting all genome-wide significant variants (p-value<5 × 10-8) 

replicated in at least 2 independent studies from GWAS Catalog (2020-05-14 version), resulting in 

7,805 SNPs. We perform further filtering via retaining SNPs overlapped with ENCODE candidate 

cis-Regulatory Elements (ccREs) from https://screen-

v10.wenglab.org/search/?q=&uuid=0&assembly=hg19, resulting in 2,731 positive SNPs. In 

addition, we ensure that all sampled variants in negative control set have never been used in previous 

HGMD task.  

 

Model architecture for LOGO-E2E. To fine-tune on variant prioritization task in an end-to-end 

manner, we modify LOGO architecture to accommodate signed allelic information. We stack 3 

layers to encode input sequence. The first layer is called ‘Ref layer’. We tokenize each 1,000-bp 

context sequence extracted from hg19 reference genome using 6-mer-1-stride and feed it into ‘Ref 

layer’ via concatenating 6 sets of 6-mer [Ref] tokens in an interlaced manner. This novel operation 

is introduced to encode input sequence at base-resolution without compromising representation 

capacity of k-mer strategy. The second layer is called ‘Alt’ layer, we use this layer to encode allelic 

information at certain position. Only changed position compared to ‘Ref layer’ will have input value 

with corresponding 6-mer [Alt] token, other positions corresponding to the context sequence are set 

to [Zero]. In this way, we explicitly encode the alternative allele to enforce the model to see 

directional alteration. The third layer is called ‘Type’ layer to encode variant type. In this paper, we 

do not evaluate SNVs and indels simultaneously, so we set [Type] token at corresponding position 

equal to 1 and other positions are set to [Zero]. Each variant with surrounding context of certain 

length will be encoded as a matrix input containing ‘Ref’, ‘Alt’ and ‘Type’ information, which is 
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formatted as a 'npz' compressed file. 1-dimension convolutional layer is added after token 

embeddings and then fed into Transformer architecture. Three kernels with different sizes (2,3,5) 

are introduced to capture multi-scale features. Through experiments, it is found that this method 

reduces the weight updating frequency and makes the fluctuation range more stable during the fine-

tuning process of the model. The final hidden state corresponding to learned [CLS] token 

embeddings is followed by a classification layer with sigmoid output of deleteriousness effect of 

target variant. Binary cross entropy loss is used to calculate loss function. We download LOGO-919 

model weights and perform LOGO-E2E fine-tuning on HGMD training sets using 1 Nvidia TITAN 

Xp Pascal GPU. We use batch size of 64 and L=2, E=128, H=256, A=8. We use Adam optimizer 

with initial learning rate of 0.00001, and other parameters are set as default, and use early stopping 

strategy and stop training when validation loss no longer decreases for 3 consecutive epochs. 

 

Model architecture for LOGO-C2P. For LOGO-C2P, we follow similar pipelines in DeepSEA’s 

functional SNP prioritization architecture and firstly use previously trained LOGO-919/LOGO-

2002 to generate chromatin effect features for both reference and alternative allele. We then conduct 

the same absolute difference and relative log fold change transformation as DeepSEA and feed these 

features into boosted model to train the classifier at the second stage. We assess different model 

performance of whether or not preserving four base-level evolutionary feature used by DeepSEA, 

including PhastCons scores for primates (excluding human), PhyloP scores for primates (excluding 

human), and GERP++ neutral evolution and rejected substitution scores. We use well-trained 

LOGO-919, LOGO-2002 and DeepSEA to generate chromatin features for each target variant, 

convert these features into DMatrix format, and train a regularized logistic regression model, using 

the XGBoost v0.9 implementation (https://github.com/tqchen/xgboost). It is worth mentioning that 

we discard z-score transformation as used in DeepSEA classifier. We argue that the tree-based 

approach does not require normalization as stated by original XGBoost author. The model is trained 

with L1 regularization parameter(alpha) =20 and L2 regularization parameter (lambda) =2,000 for 

iterations=1,000. Other hyperparameters are set as: Step-size shrinkage parameter(eta)：0.1booster：

'gbtree', objective：'binary:logistic', loss：'error'. We set early stopping rules when validation error 

no longer decreases for 200 epochs and preserve the best model weight. 1 Nvidia TITAN Xp Pascal 

GPU is used. 

 

Benchmarking of classifier performance on HGMD, ClinVar and GWAS variants. For 

HGMD regulatory variants, the performance of each model was estimated by tenfold cross-

validation. For filtered 3,498 regulatory variants, we construct negative controls from 1000 

Genomes Project SNPs using two schemes: random sampling (unrestricted, 3,690 negatives), and 

matched to positive ones within 1 kb (restricted, 3,034 negatives). We fine-tune LOGO-E2E and 

LOGO-C2P on HGMD dataset. We also retrain DeepSEA based classifier on HGMD dataset with 

or without incorporating 4 evolutionary features. CADD-precomputed scores are downloaded from 

http://krishna.gs.washington.edu/download/CADD/v1.3/whole_genome_SNVs.tsv.gz, FunSeq2 

precomputed scores are downloaded from http://org.gersteinlab.funseq.s3-website-us-east-

1.amazonaws.com/funseq2.1.2/hg19_NCscore_funseq216.tsv.bgz, GERP precomputed scores are 

downloaded from http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_scores.tar.gz, 

LINSIGHT precomputed scores are downloaded from http://genome-mirror.cshl.edu/, CDTS 

metrics are downloaded from http://www.hli-opendata.com/noncoding. DeepSEA functional scores 
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are computed locally based on 919 chromatin effect predictions and 4 evolutionary information–

derived scores. DeepSEA functional significance score for a variant is defined as the product of the 

geometric mean E-value for predicted chromatin effects and the geometric mean E-value for 

evolutionary conservation features. We also assess DeepSEA functional score without 4 

evolutionary features. The direction of different scores for all metrics is modified to ensure lower 

rank represents higher probability of pathogenicity. For held-out ClinVar test set, negative controls 

are subsampled by bootstrapping 10 times. For held-out GWAS variants, positive samples are 

subsampled by bootstrapping 10 times. To compare all methods, we compute false-positive versus 

true-positive rates for the complete range of score thresholds. Area under the receiver operating 

characteristic (AUROC) is used for benchmarking. 

 

Benchmarking of classifier performance on CADD indels. We download the dataset from 

CADD Developmental release: v1.4, resulting in 3,675,207 indels. This dataset is less biased and 

contains much larger examples than manually curated ClinVar or HGMD. CADD is partially trained 

on this dataset, containing 1,837,708 proxy-neutral variants and 1,837,499 simulated de novo proxy-

deleterious variants. The former sets emerge since the last human-ape ancestor and fixed in human 

populations, which are considered neutral (or, at most, weakly deleterious). The latter are considered 

free of selective pressure including both neutral and deleterious indels. We fine-tune LOGO-E2E 

on these CADD Indels and use human-curated dataset as held-out test set. We download known 

indels from NCBI/NIH ClinVar database (2020-10-03 release), which leads to 5,556 pathogenic 

(defined as pathogenic and likely pathogenic in ClinVar) and 313 benign indels (defined as benign 

and likely benign in ClinVar), respectively. Due to class imbalance, we subsample positive indels 

five times to construct balanced test sets and benchmark against CADD, LINSIGHT, and DeepSEA. 

Area under the receiver operating characteristic (AUROC) is used to benchmark different methods. 
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Data availability 

All datasets in this study are derived from published resources and can be generated following 

protocols described in Methods. Demo data is available on Github at 

https://github.com/melobio/LOGO.  

 

Code availability 

LOGO is written in Python. The source code is available on Github at 

https://github.com/melobio/LOGO. 
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Table 1. Significant SNPs identified by LOGO-3357 overlapped with islet promoter/enhancer regionsa 

RS ID Locus Significant Marksb min E-valuec GWAS P-valued GWAS Oddsd 1000G AF Paper (PMID) 

rs9693089 

chr8:11298385 A-G 

FAM167A H3K4me3 

H3K4me1 

H3K27ac 

0.000001 - - 0.68111 23192668 

rs4735337 

chr8:95973465 T-C 

TP53INP1 H3K4me3 

H3K4me1 

DNase-seq 

0.000001 - - 0.552516 25393876 

rs1126899 

chr7:130021488 G-C 

CPA1 H3K4me1 0.000001 - - 0.582268 - 

rs11774700 

chr8:118220270 T-C 

LOC105375716 HNF4G 0.000001 - - 0.271965  21188353 

rs163800 

chr20:57578508 T-C 

CTSZ H3K27ac 0.000001 - - 0.000399361 29795304 

rs4383259 

chr19:53661337 A-G 

ZNF347 H3K4me1 

H3K27ac 

0.000001 - - 0.752196 24306210 

rs3176447 

chr1:51433687 T-A 

CDKN2C DNase-seq 0.000001 - - 0.0740815 21145615 

rs11671664 

chr19:46172278 G-A 

GIPR H3K27me3 0.000001 3E-12 4.22[2.73-5.71] 0.155152 27480816 

rs998451 

chr2:135429288 G-A 

TMEM163 CEBPB 0.000001 - - 0.10643 24843659 

rs1776897 

chr6:34195011 G-T 

- EP300 0.000004 - - 0.776757 27104953 

aIslet promoter and enhancer regions are annotated by Thurner45 and Varshney46. bSignificant Marks means all chromatin marks with E-value<1×10-5. cMin E-value means the minimum E-value of corresponding chromatin 

mark activated by LOGO-3357. dGWAS P-value and GWAS odds are only shown for lead SNP reported from GWAS Catalog.
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