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Abstract  

In biomedical research, high-throughput screening is often applied as it comes with automatization, 

higher-efficiency, and more and faster results. High-throughput screening experiments encompass drug, 

drug combination, genetic perturbagen or a combination of genetic and chemical perturbagen screens. 

These experiments are conducted in real-time assays over time or in an endpoint assay. The data analysis 

consists of data cleaning and structuring, as well as further data processing and visualisation, which, due 

to the amount of data, can easily become laborious, time consuming and error-prone. Therefore, several 

tools have been developed to aid researchers in this process, but these typically focus on specific 

experimental set-ups and are unable to process data of several time points and genetic-chemical 

perturbagen screens. To meet these needs, we developed HTSplotter, available as web tool and Python 

module, which performs automatic data analysis and visualisation of either endpoint or real-time assays 

from different high-throughput screening experiments: drug, drug combination, genetic perturbagen and 

genetic-chemical perturbagen screens. HTSplotter implements an algorithm based on conditional 

statements in order to identify experiment type and controls. After appropriate data normalization, 
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including growth rate normalization, HTSplotter executes downstream analyses such as dose-response 

relationship and drug synergism assessment by the Bliss independence (BI), Zero Interaction Potency (ZIP) 

and Highest Single Agent (HAS) methods. All results are exported as a text file and plots are saved in a PDF 

file. The main advantage of HTSplotter over other available tools is the automatic analysis of genetic-

chemical perturbagen screens and real-time assays where growth rate and perturbagen effect results are 

plotted over time. In conclusion, HTSplotter allows for the automatic end-to-end data processing, analysis 

and visualisation of various high-throughput in vitro cell culture screens, offering major improvements in 

terms of versatility, efficiency and time over existing tools. 
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Introduction 

Identification of new and more effective drugs for treatment of diseases such as cancer, bacterial and viral 

infections, metabolic disorders, and neurodegenerative diseases is a high medical priority (1)(2)(3)(4). 

Therefore, biomedical researchers are focusing on the search for new druggable targets and combination 

treatments. In parallel, this presses researchers to pursuit reproducible, effective and efficient 

experiments leading to more and faster results. In order to address these needs, researchers are 

implementing experiment automatization, such as robotic cell seeding and liquid dispensing, and/or 

automatic readouts (2)(5).  

Such high-throughput screens typically encompass the evaluation of in vitro effects on growth or viability 

of drugs (single or in combination) and genetic perturbagen screens, such as siRNA and CRISPR  screens 

(6)(7)(8). Additionally, a genetic perturbagen (gene knockdown or overexpression) can be combined with 

a drug as to evaluate the response in a specific disease context, leading to the identification of certain 

genes that offer resistance to a set of drugs, or as to identify candidate genes that might work 

synergistically with drugs (9)(10). The assessment of drug, drug combination and genetic perturbagen 

screens can be conducted in endpoint or real-time assays. The latter monitors cell proliferation at regular 

time intervals over days or weeks (e.g. using Incucyte or CytoSPAR machines), while the endpoint assay 

allows for the assessment of cell viability at single time points (6)(11). Although both assessments can be 

applied to medium/high-throughput screens, the endpoint assay is the standard option for large HTS scale 

(6). Regardless of the assay, the cornerstone is to measure the impact of the perturbagen on the cellular 

response in a specific disease context. Before proceeding to the biological interpretation of the results, 

the raw data must be processed and analysed. However, the large number of conditions and/or time 

points generated, by either endpoint or real-time assays, may result in a laborious, time consuming and 

error-prone data processing and analysis, which may delay and hinder drug development programs 

(12)(13).  
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At the very minimum, downstream processing of HTS consists of comparing control and treatment 

conditions. However, this might not be sufficient to achieve biological interpretation of the data. When a 

drug is tested in a dosage range, the dose-response relationship is commonly evaluated at a specific time 

point. Amongst several models used model to fit the dose-response curve, the most common is the four-

parameter logistic. It allows the determination of the maximal effect at the highest dose tested (Emax), 

the dosage at which half of the maximum effect or inhibition is observed (relative IC50/EC50) and the 

dosage that provokes 50% of the effect or inhibition (absolute IC50/EC50). The relative IC50/EC50 

corresponds to the inflection point of the dose-response curve and the absolute IC50/EC50 to the 

concentration at which half of the response or effect is achieved. The area under the curve (AUC) is an 

additional metric used to evaluate the drug’s potency, where potency and AUC are inversely proportional 

(14)(15)(16).  

When combining different drugs, one typically aims to quantify the degree of synergism or antagonism. 

Highest Single Agent (HSA), Loewe additivity, Zero Interaction Potency (ZIP) and Bliss independence (BI) 

are commonly used models that assume a non-interaction between drugs and compare the observed and 

expected combination responses (12)(17). These are, however, based on different assumptions. The 

Loewe model compares the dose-response relationship of individual drugs. HSA compares the effect of 

drugs in combination to the highest inhibition effect of a single drug, while the BI model compares the 

combination effect to the expected effect of independent drugs. Lastly, the ZIP model assumes that two 

non-interacting drugs are expected to incur minimal changes in their dose-response curves upon 

combination (12)(17)(18)(19). Based on the requirements for each approach, we characterized the Loewe 

and ZIP as dose-effect models and the HSA and BI as effect-based models (18) (19). Dose-effect based 

models work if monotherapy dose-response curves are well characterized, which, depending on the 

response of a cell line to a drug dose range treatment, might not be achievable (19)(20). As for the effect-

based models, knowledge of the inhibition effect of its individual components is necessary to predict the 
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combined effect. Hence, effect-based models can be applied in case of combinations of genetic-chemical 

perturbagens (9). Additionally, the HSA method is less conservative, given that it focuses on the response 

of a single compound, disregarding effects of competing compounds, increasing the likelihood of detecting 

false synergism/antagonism.  

Seeding density, medium compositions are some of the variables that influence a division rate of cells, 

which consequently also affect the dose-response curve metrics (IC50, EC50 and AUC) (21) . This variability 

introduce artificial correlations in data, unknown effects of drug action, and introduce unknown 

complications into biomarker discovery. As an alternative, Hafner et al. propose the growth rate (GR) 

inhibition metrics, as an alternative metrics to characterize a drug response in a real-time assay. The GR 

metrics have been shown to be robust and decouple any effect that genotype or microenvironment have 

on division rate from their effect on drug sensitivity. GR metrics are computed by comparing growth rates 

in the presence and absence of certain perturbations. The GR values between 1 and 0 reflect partial 

inhibition, 0 denotes cryostasis, and negative values denote cell death (21). In case of drug screens, 

complementary to the conventional dose-response metric, GR allows the determination of GR50 and GRmax 

captures the maximum drug effect on growth rate, which are computed analogouslly to IC50 and Emax, 

respectively (15)(21). Besides to drug screening, GR can be applied to different experiment types, such as 

drug combination, genetic and genetic-chemical perturbation assays (21). 

In order to facilitate data processing for HTS approaches, dedicated software has been developed to 

enable high-throughput data analysis, such as BREEZE for drug screens, CellHTS2 for siRNA, and 

SynergyFinder for drug combinations (12)(21)(22). Depending on the type of experiment, one must 

organize the data as to fulfil the tool required input structure. Since these tools are designed for endpoint 

assays, data resulting from real-time assays implies repetitive work from the user. Moreover, these tools 

are not suited to analyse combinations of chemical and genetic perturbagens, requiring researcher to 

conduct their own data analysis manually. To the best of our knowledge, there is currently no software 
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with the ability of implementing automatic end-to-end analyses irrespective of HTS experiment and 

irrespective of assay type, endpoint or real-time.  

To address these limitations, we developed HTSplotter as a freely available web tool and Python module. 

HTSplotter is tailored to analyse drug, drug combination, genetic perturbagen and combinations of 

genetic-chemical perturbagen screens, either in real-time or as endpoint. HTSplotter identifies the type of 

experimental setup through a conditional statement algorithm. It performs a normalization, growth rate 

profile and, in case of a drug screen, drug combination or genetic-chemical perturbagen experiment, 

identifies the dose-response relationship for each drug alone. Synergism/antagonism of drug or genetic-

chemical combination screens is determined through the BI, HAS or ZIP methods. For a real-time assay, 

regardless the experiment type of screens, HTSplotter determines the GR of each perturbation in relation 

to the control, showing the results in a GR plot over time. Finally, results are plotted and exported as PDF 

files, allowing a fast biological interpretation of the data and efficient end-to-end analyses, irrespectively 

of either experiment type and assay.  
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Results 

HTSplotter: an end-to-end tool for HTS 

HTSplotter is freely available as a web-application, https://htsplotter.cmgg.be/, and as a Python library, 

https://github.com/CBIGR/HTSplotter, together with an outlined documentation including step-by-step 

user instructions and examples. This tool is written in Python 3.9 using SciPy, h5py, NumPy, Matplotlib, 

math, os and sys libraries. It automatically identifies four experiment types: drug, drug combination, 

genetic perturbagen and genetic-chemical perturbagen screens. A genetic perturbagen screen can be a 

simple knockdown or overexpression of a gene, a CRISPR/Cas9 screen or a siRNA library, while the genetic-

chemical perturbagen screen consist of a genetic perturbagen in combination with a drug. These can be 

conducted either in endpoint or real-time assays.  

The evaluation of each experiment type consists of a normalization relative to the control. Additionally, in 

case of drug, drug combination and genetic-chemical perturbagen screens, the dose-response relationship 

is calculated for each drug. To determine the synergism/antagonism of a drug combination, the user can 

choose between the HSA, ZIP and BI method. For genetic-chemical perturbagen screens, the user can 

choose between the HAS and BI method. The combinations can be higher order or pairwise and therefore 

there is no limit on the number of combined drugs or the dosage tested. Combinations can be arranged in 

a matrix 𝐴 , with 𝑁 dimensions and  ∏ 𝑛𝑖
𝑁
𝑖=1  entries, where 𝑁 is the number of drugs, 𝑛𝑖 is the number of 

concentrations of drug 𝑖. Additionally, for all experiment types, HTSplotter has no limits regarding the 

number of cell lines tested on each experiment. Fig 1 summarizes the analyses and visualisations provided 

by HTSplotter. 
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Fig 1: Overview of HTSplotter steps for each type of HTS experiment. The input file, directly imported from HTS machines like 

Incucyte S3 as a TXT file, is automatically processed and analysed by HTSplotter. As output, TXT and PDF files are generated. The 

PDF file contains the plots from each type of analysis. In case of a real-time assay, a growth rate is plotted over time. In case of a 

drug screen a dose-response curve with the growth rate data across the concentrations tested for a time point is depicted. Genetic 

perturbagen screen: a heatmap and bar plots are provided with all the perturbagens tested, for specific time points. Additionally, 

a XY-plot and growth rate plots are created for each perturbagen. Drug screen: a dose-response curve of each drug alone is plotted 

with associated statistical parameters. XY-plots are also returned with all concentrations of each tested drug over time. 

Additionally, growth rate plots are provided over time as well as dose-response plots from the growth rate metrics, such as GR50. 

Drug combinations and genetic-chemical perturbagen screens: a dose-response curve of each drug alone is provided with their 

statistical parameters. In case of genetic-chemical perturbagen, as to allow for a direct comparison of drug response without and 

with the perturbagen, a dose-response curve for both situations is plotted. Also, for specific time points, a bar plot containing 

information about each condition is given. Moreover, XY-plots and growth rate plots, visualize all concentrations of each tested 

drug over time as well as each combination with respective drugs alone. A heatmap with synergism/antagonism phenotypes 

scores over time is created, for either drug combination or genetic-chemical combination screens. Additionally, in case of a drug 
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combination, resulting in a combination matrix of two drug (𝑚 × 𝑛,   𝑤ℎ𝑒𝑟𝑒 𝑚 ≥ 2),  a heatmap for each main time point (2D 

and 3D) is given, whilst in case of 𝑚 = 1 only a 2D heatmap is plotted. HDF5: hierarchical data format file; relative or absolute 

IC50: 50 % of inhibitory concentration; relative or absolute EC50: effective concentration; AUC: area under the curve; GR50: 50 % 

of growth rate; GRmax: maximum drug effect. 

 

HTSplotter: from input file to analysis 

HTSplotter utilizes text files directly exported from real-time devices, such as Incucyte and xCELLigence, as 

inputs, where comment lines above the data to be processed are allowed. “Date Time” and “Elapsed” 

strings must be present at the first and second data columns respectively, so that the software detects the 

data headers row (Fig 2Error! Reference source not found.), holding the description of the experimental 

conditions. These columns have date and time points corresponding to each measurement, respectively, 

e.g. apoptosis, confluency or impedance. In case of more than one time point, defined in this paper as time 

point intervals, the measurements correspond to time increments from the start of the experiment e.g. 

2h, 12h, etc. The information regarding each experimental condition should contain drug name, gene 

knockdown or overexpression, concentration, units, cell line name and seeding density in one column 

separated by commas, thus “.” should be used as decimal separator. More detailed information regarding 

data and header structure are available at the HTSplotter website, as well as data examples for each type 

of experiment (https://htsplotter.cmgg.be/). 
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Fig 2: An example input file structure, experimental condition and data structure. A) Example of an Input file structure with a 

detailed view on the experiment condition description. Header and data consist of four sub-groups: “Date Time”, “Elapsed”, 

“Experiment”. On the left is the description of the MK-1775 drug at a dosage of 45.7 nM on the MCF-7 cell line with 10k cell 

seeding per well and on the right the control condition, DMSO at 0.34% on the MCF-7 cell line with 10K seeding per well. B) 

Example of an experimental condition description for a genetic-chemical perturbagen. C) Data storage structure in the HDF5 file. 

A branch is created when cell line, seeding, condition and drug are grouped in the same experimental set-up. 

  

HTSplotter implements an algorithm based on conditional statements that extracts information about the 

number of cell lines, seeding density, conditions, drugs and concentrations tested. In this way, information 

about similar experiments in a cell line with the same seeding density and conditions for multiple tested 

drugs, are grouped creating a branch. The conditions can also be gene knockdown or overexpression. The 

experiment is then categorized as drug, drug combination, genetic perturbagen or genetic-chemical 

perturbagen screen according to the number of branches, number of identified controls and number of 

concentrations tested per drug. Categorization is a crucial step for HTSplotter, as it leads to a proper 

evaluation of the perturbagen of each condition and to the implementation of downstream analyses 
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required for each experiment type, therefore requiring user confirmation about predicted categorization 

and identified control(s). In case of incorrect categorization, an error file with information regarding data 

headers and possible missing information is created. Otherwise, the experiment information is stored in a 

hierarchical data format file (HDF5), the structure of which is determined by the type of experiment. The 

HDF5 file includes all information from the independent experiments.  

Subsequently, for each time point HTSplotter normalizes the data to the proper control(s). The resulting 

phenotypic measurement (e.g. confluency or apoptosis) can be inhibition or enhancement, this option 

being given to the user before the analysis. If the standard deviation is present in the input file, the tool 

rescales it, by dividing the standard deviation of a condition by the standard deviation of the proper 

control.  

In case of repetitive conditions, being these technical or biological replicates in the same file or in 

independent files, HTSplotter computes averages, standard deviations and 95% confidence intervals. For 

genetic perturbagen screens with more than one control, HTSplotter calculates averages, standard 

deviations and 95% confidence intervals of all controls as to have a unique control, and only then the 

normalization takes place.  

Upon a minimum of two concentrations in a drug, drug combination or genetic-chemical perturbagen 

screen, a dose-response curve of each tested drug and synergism/antagonism using BI, HAS and ZIP 

methods are calculated (Materials and Methods). Upon drug response in a real-time assay, GR metrics are 

also calculated (Materials and Methods). 

HTSplotter: visualisation 

HTSplotter allows the analyses of endpoint and real-time assays, regardless of the experiment type. If the 

input file contains more than one time point, additional plots with time features are provided, as well as 
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plots at preselected time points (e.g. 24h, 48h, etc.). A feature of HTSplotter is the XY-plot, where the read-

out (e.g. confluency or apoptosis) and either inhibition or enhancement effects (Y) are plotted over time 

(X) leading to better biological interpretations of the chemical or genetic perturbation effect. Upon drug 

or genetic-chemical combinations, the predicted combination effect is plotted together with the observed 

combined and single effect. In this way, XY-plots and bar-plots allow a detailed observation of the 

synergism/antagonism scores. Additionally, for only real-time assays, regardless the experiment type, 

HTSplotter provides GR plots, where a growth rate over time for each condition can be visualized.  Another 

unique feature of HTSplotter is the visualisation of synergism scores over time in a heatmap, allowing to 

identify the onset of synergism/antagonism. In case of drug combinations, when the number of 

concentrations is higher or equal to two, 2D and 3D heatmaps are shown for main time points. Whilst in 

the case of a single concentration, only a 2D heatmap is shown. For all HTS drugging experiments, dose-

response curves are displayed for main time points, for the experiments where at least two concentrations 

of a drug were tested. 

HTSplotter analysis of a continuous in vitro cell based genetic-chemical perturbagen screen: a case 

study 

Genetic-chemical perturbagen experiments provide phenotypically information on the compound 

mechanism in combination with a genetic perturbation, resulting in insights on resistance or increased 

sensitivity phenotype, as well as a synergistic/antagonist combination. Additionally, this experiment type 

allows the identification of biomarkers for certain treatments and the discovery of novel targets that could 

work in combination in a certain disease.  

In order to illustrate the advantage of HTSplotter on genetic-chemical perturbagen assessed in real-time, 

we applied our tool to an in-house assessment of exogenous overexpression of the SOX11 gene in the SH-

EP neuroblastoma cell line (23), in combination with the MYB inhibitor celastrol (24). MYB protein levels 
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were previously shown to be strongly induced upon SOX11 overexpression (SOX11 OE) (23), while celastrol 

has been reported to inhibit MYB activity in cancer cells (acute myeloid leukemia) (24)(25)(26). We 

evaluated the effect of a celastrol dose-range over time in the SH-EP cell line with SOX11 OE versus 

parental cells. The data used in HTSplotter was directly exported from Incucyte S3, and consisted of 18 

different conditions and 36 time points, resulting in 450 data points. The cell line response upon SOX11 

OE was assessed by a dose-response, which provided the conventional metrics (abs. IC50, rel. IC50) as well 

as metrics based on the normalized growth rate inhibition (GRabs. 50, GRrel 50). The latter are computed by 

comparing growth rates in the presence and absence of drugs and normalized by the cells doubling time. 

From both dose-response curves, at 72h, the tested dose-range of celastrol in the induced SOX11 OE (Fig 

3Error! Reference source not found.), showed lower absolute IC50 and GRIC50 values (387.45 nM  and 

322.12 nM, respectively), when compared to the parental cell line (659.69 nM, 592.58 nM, respectively), 

indicating increased sensitivity followingSOX11 OE. Additionally, comparing the conventional and GR 

metrics from 24h, 48h and 72h (S Fig 2), we observed a stabilization on the GR metrics from the 48h, while 

the conventional ones show more variability. The GR metrics characterizes the drug regardless of time 

point, conferring a more robust metric when compared with the conventional ones, as these have a higher 

variability regardless the time point of the analysis, as shown by Hafner et al.(21). 
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Fig 3: Dose-response curve provided by HTSplotter for induced overexpression of SOX11 in comparison to the parental cell line. 

A) Upon SOX11 OE, the absolute (abs.) and relative (rel.) IC50 shifted to a lower dose (387.45 nM, 378.98 nM, respectively), when 

compared to the parental cell line (659.69 nM, 615.95 nM, respectively). B) GR dose-response curve, upon SOX11 OE, the GR 

absolute and relative IC50 shifted to a lower dose (322.12 nM, 397 nM, respectively), when compared to the parental cell line 

(592.58 nM, 599.24 nM, respectively). SOX11 OE: SOX11 overexpression. 

 

In order to identify synergistic phenotypic responses between the gene and drug combinations, HTSplotter 

applied the BI method, which is more conservative than HAS method. The BI scores are shown over time 

in the heatmap (Fig 4), where an increasing synergistic effect can be observed between SOX11 OE and 

celastrol at 576.0 nM, starting at 10h of treatment.  

 

Fig 4: BI score heatmap of effect upon SOX11 overexpression and celastrol dose-range over time. The blue gradient indicates 

synergism and the red gradient indicates the antagonism between SOX11 overexpression (OE) and celastrol. 

 

Assessing in detail the highest BI score of the genetic-chemical combination (Fig 5, A), celastrol only treated 

cells showed a higher inhibitory effect than SOX11 OE condition alone. However, after 50h of treatment 
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the inhibitory effect decreased. In contrast, the combination of both genetic-chemical perturbation 

resulted in an increasing inhibition over time until 50h after treatment, becoming constant until 72h.  

HTSplotter also allows to plot in terms of growth rate for each condition related to the control (Fig 5, B). 

Each condition alone (respectively SOX11 OE and celastrol) had a lower but still positive growth rate, while 

the combined nearly complete growth arrest was noted when compared with the control.   

Together, the growing inhibition effect and the growth rate results, observed for the combined condition, 

suggest an impediment of cell proliferation, while in single conditions the cells are still able to proliferate, 

although with lower growth rates. Here we show that in a high-throughput manner HTSplotter provides 

an efficient analysis of the data for genetic-chemical perturbagen experiment, allowing the researcher to 

focus on the interpretation of the results and answer biological questions.  

 

 

 

Fig 5: XY- plot and growth rate plot from the genetic-chemical perturbation, SOX11 overexpression (OE) and celastrol. A) 

Relative confluence is the confluence relative to the control. The dash line indicates the predicted combination effect, computed 

according to the BI method, equation (4). Relative confluence inhibition over time of celastrol at 576.0 nM combined with SOX11 

OE. The BI scores at 24h, 48h and 72h are 0.16, 0.16 and 0.35, respectively. B) The growth is computed according to equation (7). 

Growth halt is indicated by the grey dash line. The SOX11 OE and celastrol conditions alone have growth rates lower than the 

control. The combination of both however, resulted in a almost halted growth rate. SOX11 OE growth rates at 24h, 48h and 72h 
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are 0.65, 0.86, 0.79, respectively, the celastrol (576.0 nM) growth rates at 24h, 48h and 72h are 0.37, 0.55, 0.63, respectively, and 

the combination growth rates at 24h, 48h and 72h are 0.06, 0.06, 0.1, respectively.  

 

HTSplotter analysis of a continuous assessment of in vitro cell based drug combinations: a case 

study 

Drug combinations require multiple conditions which, when monitored over time, rapidly multiplies the 

number of data points thus increasing the number of needed computations. HTSplotter organizes the data 

according to the experimental set-up to easily implement further data processing, analysis and 

visualisation. Data processing consists of a normalization of all conditions to the proper control. Analyses 

include the determination of the dose-response relationship (Fig 6) and synergism/antagonism (Fig 7 and 

Fig 8). 

To illustrate the advantage of HTSplotter on drug combination evaluation assessed in real-time, we applied 

our tool to an in-house assessment of the human breast cancer cell line MCF-7 in response to single and 

combination exposure to three inhibitors targeting WEE1, CHK1 and ATR (MK-1775, prexasertib and 

BAY1895344, respectively). The combination of these inhibitors has been shown to be synergistic in 

different cancer entities, such as breast cancer (27)(28).. The drug combination experiment consisted of 

136 conditions and 37 time points, resulting in 5032 data points. The data used in HTSplotter was directly 

exported from Incucyte S3.  

Each drug alone was assessed by a dose-response, which provided the conventional metrics (abs. IC50, rel. 

IC50) as well as metrics based on the normalized growth rate inhibition (GRabs 50, GRrel 50 and GREmax) (Fig 

6). At 72h, the tested dose-range of MK-1775 allowed to determine the absolute IC50 and  GRabs 50 (1276.21 

nM, 1336.03 nM, respectively), as opposed to other drugs. Accordingly, the Emax and GREmax of both drugs, 
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BAY1895334 and prexasertib, was above 50% of confluency and 0.5 of growth rate, confirming that either 

absolute IC50 and GRabs 50 were not achieved by the tested dose-range. Prexasertib showed the lowest 

relative IC50 and GRrel 50, while MK-1775 showed the highest relative IC50 and GRrel 50. Thus, prexasertib 

revealed to be the most potent drug, followed by BAY1895344 and MK-1775. As mentioned above, from 

the genetic-chemical perturbagen experiment analysis, the drug combination analysis also shows a more 

stable values from the GR metrics between the 24h, 48h and 72h, than the conventional ones (S Fig 5).  

 

Fig 6: Dose-response curve provided by HTSplotter for BAY1895334, prexasertib and MK-1775 at 72h. A) Dose-response curve 

of BAY1895334, in which the Emax is 70.37% of confluency, the relative (rel.) IC50 is 101.15 nM and the absolute (abs.) IC50 could 

not be determined. B) Dose-response curve of prexasertib, in which the Emax is 56.53% of confluency, the rel. IC50 is 8.45 nM 

and the abs. IC50 could not be determined. C) Dose-response curve of MK-1775, in which the Emax is 17.80% of confluency, the 

rel. IC50 is 1072.60 nM and the abs. IC50 is 1276.81 nM. D) GR dose-response curve of BAY1895334, in which the GREmax is 0.74, 

the GRrel. 50 is 86.32 nM and the GRabso. 50 could not be determined. E) GR dose-response curve of prexasertib, in which the GREmax 

is 0.61, the GRrel. 50 is 8.20 nM and the GRabs. 50 could not be determined. F) GR dose-response curve of MK-1775, in which the 

GREmax is 0.02, the GRrel. 50 is 1221.05 nM and the GRabs. 50 is 1336.03 nM. 
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The drug combination setup encompassed a dose-response combination matrix of MK-1775 with 

BAY1895344 or prexasertib, referred as dose-effect combinations. The ZIP (S Fig 7) and BI (Fig 7) method 

were applied in order to evaluate synergism/antagonism.  

HTSplotter revealed that prexasertib showed stronger synergism than BAY1895344 over time. For both 

combinations the BI heatmaps (Fig 7) show that the synergistic effects emerged at 20h of treatment for all 

combinations, while the ZIP heatmaps display that the synergistic effect started after 36h of treatment (S 

Fig 7). Moreover, for some synergistic combinations evaluated by both methods, the scores increased over 

time indicating an increasing synergistic effect in this cell line, unlike the other synergistic combinations. 

Increased BI and ZIP scores were less pronounced. Assessing in detail the highest BI score of each dose-

effect combination (Fig 8, A and DError! Reference source not found.), BAY1895344 alone had a higher 

and increasing inhibitory effect when compared to MK-1775 and prexasertib, which both had almost no 

impact on the growth inhibition over time. Consequently, the predicted combination effect of MK-1775 

with BAY1895344 increased over time, while the MK-1775 with prexasertib had a small and constant 

inhibition effect. Looking at the growth rate of each condition in relation to the control results (Fig 8, B 

and C), provided by HTSplotter, BAY1895344 and MK-1775 had a higher, but declining, growth rate, until 

20h and 30h after treatment, respectively. After 40h of treatment, MK-1775 growth rate started to 

increase in relation to the control. Initially, the prexasertib condition alone had a lower but increasing 

growth rate, achieving the same level as the control over time. As for the combined condition, BAY1895344 

with MK-1775, had an immediate decrease on the growth rate until 30h of treatment, stabilizing it over 

time. For the combined condition, prexasertib with MK-1775, the growth rate increased until 10h after 

treatment, and afterwards started to decrease until 60h after treatment. However, after the 60h time 

point the growth rate increases. Interestingly, this effect was not observed by the inhibition and BI results. 

Notably, assessing both analyses together, while the inhibition effect showed a stable synergistic effect, 

the complementary growth rate analysis suggests that these cells were still able to proliferate at a constant 
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rate. Moreover, from the combination of MK-1775 with prexasertib, the increasing growth rate at the 

latest time point may raise the question if the identified turnover point from the growth rate is an 

indication  of recovery phenotype from this combination. The recovery phenotype leads to the question if 

this is a resistance phenotype or perhaps a depletion of the drug, by intracellular mechanisms in the cell, 

which allowed these cells to increase proliferation rate again. In order to clarify these questions more 

biological replicates, as well as a more in depth analysis including transcriptomics and/or proteomics 

profiles are required. In case of a drug combination experiment, we showed that HTSplotter is efficient in 

processing and analysing data, providing the researcher important visualizations to facilitate data 

interpretation. 
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Fig 7: BI score heatmap of dose-effect combination overtime, in which the blue gradient indicates synergism and the red 

gradient indicates the antagonism. A) Dose-effect combination heatmap over time of a combination range of MK-1775 with a 

range of prexasertib (7 X 7 matrix). B) Dose-effect combination heatmap over time of a combination range of MK-1775 with range 

of BAY1895344 (7 X 7 matrix). 
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Fig 8: XY- plot and growth rate plot of the best dose-effect combination of MK-1775 with BAY1895344 (A, B) or MK-1775 with 

Prexasertib (C, D). Relative confluence is the confluence relative to the control. The dash line indicates the predicted combination 

effect, computed according to the BI method, equation (4). The growth rate is computed according to equation (7). The grey dash 

line on the growth rate plot indicates the stop on the growth rate . A) Relative confluence inhibition over time of BAY1895344 at 

166.8 nM combined with MK-1775 at 137.2 nM. The BI scores at 24h, 48h and 72h are 0.28, 0.39 and 0.42, respectively. B) Growth 

rate of each condition in relation to the control. BAY1895344 growth rates at 24h, 48h and 72h, are 0.86, 0.74 and 0.74 

respectively. MK-1775 growth rates at 24h, 48h and 72h, are 1.10, 1.02 and 1.01 respectively. The combined condition growth 

rates at 24h, 48h and 72h are 0.28, 0.18 and 0.14. C) Relative confluence inhibition plot over time of prexasertib at 4.7 nM 

combined with MK-1775 at 137.2 nM. The BI scores at 24h, 48h and 72h are 0.25, 0.47 and 0.56, respectively. D) In relation to the 

control. Prexasertib growth rates at 24h, 48h and 72h, are 1.00, 0.96 and 0.96 respectively. MK-1775 growth rates at 24h, 48h and 

72h, are 1.10, 1.02 and 1.01 respectively. The combined condition growth rates at 24h, 48h and 72h are 0.37, 0.26, 0.29.  
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Comparison to related software 

Over the years, several tools were developed for the analysis of different types of HTS, such as drug 

combination and genetic-chemical perturbagen screens. Some of those, such as RNAither, IncucyteDRC 

and DRC, require programming knowledge (14)(29)(30) while others are more user friendly tools (Table 1) 

(13)(15)(22)(31)(32).  
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Table 1. Open source software for HTS data analysis and their characteristics.  

 BREEZE GRCalculator Combenefit SynergyFinder2.0 CellHTS2 HTSplotter 

Web tool 
✓ ✓ * ✓ ✓ ✓ 

Endpoint assay 
✓ ✓ ✓ ✓ ✓ ✓ 

Real-time assay  ✓    ✓ 

Drug screen 
✓ ✓    ✓ 

Drug combination#   ✓ ✓  ✓ 

Genetic perturbagen     ✓ ✓ 

Genetic-chemical perturbagen      ✓ 

Replicates  ✓ ✓ ✓  ✓ 

Dose-response matrix 
✓ ✓ ✓   ✓ 

Plate quality 
✓  ✓  ✓  

> 1 cell line/file 
✓ ✓    ✓ 

Quality Control  
✓      

Growth rate  ✓    ✓ 

* Available as a standalone application for Windows. # The Combenefit only allows pairwise drug combination, while 

SynergyFinder and HTSplotter allow multiple drug combination. 

The available web tools and software are designed for specific experiment types, mostly endpoint assays. 

Often, one has to organize, structure and clean the data specifically to the tool. Depending on the selected 

tool, the user may have to normalize the data. Once the tool has been selected, this procedure has to be 

repeated for each selected time point. Therefore, for real-time assays at least the last step must be 

repeated as many times as selected time points. Additionally, in case of drug combination, some tools only 
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provide a heatmap with synergism/antagonism scores, missing important information regarding the 

perturbation effect. For the genetic-chemical perturbagen screens, either an endpoint assay or an time 

course assay, there is no tool able to perform data analysis, necessitating researchers to conduct their data 

analysis manually.  

To compare HTSplotter on drug combination with the available tools, we resorted to SynergyFinder, a tool 

widely used for synergism/antagonism evaluation. SynergyFinder was applied to the dose-effect 

combination at 72h using the BI method. The tailoring of the data to the specific input format of 

SynergyFinder was performed by HTSplotter. The dose-response curve profile matched the one provided 

by HTSplotter, however, the statistical metrics, such as χ2 (Chi-square) and R2 (R-squared), of the dose-

response relationship of the single agent were not provided by SynergyFinder.  

SynergyFinder identified the same synergistic dose range as the HTSplotter using the BI and ZIP methods 

(Fig 9, and S Fig 7), with minor differences in scores due to different approaches. SynergyFinder computes 

the average over the full dose-response matrix, while HTSplotter computes synergism between tested 

concentrations. Moreover, HTSplotter comes with many other features. When multiple time points are 

assessed, from a single analysis, HTSplotter provides a complete overview from the experiment results to 

the user by showing the synergism score heatmap over time, indicating if and when synergism starts and 

ends. Complementary to the heatmaps are the XY-plots and growth rate plots, which provide a more 

detailed analysis. These plots allow a comparison, in terms of growth rate and inhibition effect, between 

combination and each condition alone. Based on the growth rate profile over time upon a certain 

perturbation, these analyses allow the researcher to identify possible phenotypes such as drug resistance, 

senescence or cell death induction. In case of a unique time point experiment assessed by HTSplotter, a 

bar plot with the inhibition effect is also provided (S Fig 6Error! Reference source not found.). In case of 

combinations, either genetic-chemical or drug combinations, the researcher observes the effect of each 
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drug alone, as well as the predicted and the observed effects upon combination, which may aid the 

optimization of further experiments in addition to the identification of the best concentrations for 

combination experiments. In contrast to other tools, if any experiment type consists of a time course assay, 

HTSplotter analysis the growth rate which may lead the user to the identification of different cellular 

phenotypes, such as cell death or senescence. 

 

 

Fig 9: SynergyFinder 2.0 and HTSplotter heatmap at 72h. A) HTSplotter heatmap over time and at final time point (72h) of dose-

effect combination of prexasertib with MK-1775, maximum BI score of 0.56 at 72h. B) SynergyFinder heatmap of dose-effect 

combination of prexasertib with MK-1775, with BI score of 20.759. C) SynergyFinder heatmap of dose-effect combination of 

BAY1895344 with MK-1775, with BI score of 4.348. D) HTSplotter heatmap over time and at final time point (72h) of dose-effect 

combination of BAY1895344 with MK-1775, maximum BI score of 0.42 at 72h. HTSplotter has a fixed legend scale from -1 to 1. 

 

Conclusion 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2021.09.06.459128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459128
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

Academic research is moving towards HTS, from dozens to thousands screenings per day, in order to be 

more efficient, to have more results and to answer faster biological questions. Additionally, the research 

in question might request not only a drug screen experiment but also genetic or genetic-chemical 

perturbagen screens. This implies that one researcher or a research group, have different types of data to 

be analysed in the shortest time possible. These results determine not only the next research steps but 

also experiment and research conclusions. Aiming to accelerate the research, several tools have been 

developed for the HTS data analysis. However, these lack analytical flexibility on the processing and 

downstream analyses for several time points and for genetic-chemical perturbagen screens. Although 

these tools already reduce the research time, the lack of standardization significantly augments the time 

preparing different input files and the data processing, overall delaying scientific progress. Of note, to the 

best of our knowledge, there is currently no tool available to perform the analysis of different types of 

experiments. 

In order to address these research needs and to bring standardization across different experiment types, 

we developed HTSplotter which serves as a unique tool to analyse either drug, drug combination, genetic 

perturbagen and genetic-chemical perturbagen screens, both in endpoint and in real-time assays. Here, 

we demonstrated that HTSplotter enables a tailored end-to-end analysis, including processing, dose-

response, synergism/antagonism and growth rate analyses, as well as high quality visualisations, requiring 

minimum user intervention. We also demonstrated that HTSplotter is fit for genetic-chemical combination 

screens, thus amenable for chemical-genetics (e.g. CRISPR/drug) experiments. Additionally, this tool also 

analyses higher-order drug combinations, combinations with more than two drugs. HTSplotter provides a 

unique, detailed visualisation of the drug combination effect and growth rate over time, going beyond the 

state-of-the-art, for a better biological interpretation. Hence, we believe that HTSplotter is a major 

contribution to biomedical research with efficient and effective data analysis providing results in a 

throughput manner for different type screenings. Future HTSplotter updates will focus on adding quality 
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control process to the data analysis, incorporation of other dose-response curve models, such as bi-modal, 

and the integration of other synergistic/antagonistic models, such as HAND and BRAID. 

Materials and methods 

Dose-response curve and drug combination analysis 

HTSplotter implemented a four-parameter logistic function, testing the curve fitness using the Levenberg-

Marquardt algorithm for nonlinear least squares curve-fitting (SciPy 1.6.0). The curve fitting statistical 

parameters, such as Chi-square, residuals and R-squared were calculated. For the calculation of the AUC, 

the trapezoidal rule was applied (NumPy 1.19.5). To compute the different ICs, HTSplotter determined the 

four-parameter logistic function coefficients.  

HTSplotter applies the BI, HAS and ZIP methods to calculate synergism/antagonism scores for pairwise or 

higher order combinations. Before computing the BI, HAS score for each time point, HTSplotter verified 

for each condition if the cell viability effect was higher than the control. If so, the effect was corrected to 

the maximum of the control, to avoid false BI and HSA scores.  

In the case of a drug combination or genetic-chemical perturbagen screen, the method chosen by the user 

is applied by the HTSplotter in order to determine synergism/antagonism, from a combination of 𝑁 drugs, 

in which the drugs 𝐵1, 𝐵2, …, 𝐵𝑁 at doses 𝛿1, 𝛿2, … 𝛿𝑁, being 𝐷1, 𝐷2, …, 𝐷𝑁, the inhibition effects of drugs 

𝐵1, 𝐵2, …, 𝐵𝑁 at doses 𝛿1, 𝛿2, … 𝛿𝑁, respectively. In order to compute the HSA score, first the highest 

inhibition effect is identified, equation (1) (18), and then the HSA score is obtained through the difference 

between the observed inhibition effect, 𝑂𝐷1𝐷2 … 𝐷𝑁
of the combination and HSA value, equation (2). As for 

the BI method, first HTSplotter determines the predicted combination effect by the BI method (20), 

equation (3), where 𝐻(𝐹) is the predicted inhibition effect from the combination. Next, the BI score is 

determined by the difference between 𝑂𝐷1𝐷2 … 𝐷𝑁
 and 𝐻(𝐹), equation (4). Finally, and only for drug 
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combination, HTSplotter determines the ZIP score, by the following the method described in (17), 

extended to higher orders according to equation (5). 

If the synergism score is higher than zero, the combination is synergistic, if below zero then it is 

antagonistic. Following these analyses, data is exported as text and results are plotted in a PDF file.  

𝐻𝑆𝐴 𝐷1 𝐷2… 𝐷𝑁
= max (𝐷1, 𝐷2, … , 𝐷𝑁) (1) 

𝐻𝑆𝐴 𝑠𝑐𝑜𝑟𝑒 = 𝑂𝐷1𝐷2 … 𝐷𝑁
−  𝐻𝑆𝐴 𝐷1 𝐷2… 𝐷𝑁

 (2) 

𝐻(𝐹)  = ∑ ∑(−1)𝑁 𝐹𝑛

𝛼

𝑛=0

∏ 𝐹𝑖

𝑁𝑇−𝑁

𝑖=𝑛+1

𝑁𝑇

𝑁=0

, 𝛼 =  
𝑁𝑇!

𝑁! (𝑁𝑇 − 𝑁)!
 

(3) 

𝐵𝐼 𝑠𝑐𝑜𝑟𝑒 = 𝑂𝐷1𝐷2 … 𝐷𝑁
 −  𝐻(𝐹), 𝐹 = 𝐷1, 𝐷2, . . . , 𝐷𝑁   (4) 

(
1

𝑁
 ∑ 𝐺𝑖,𝐴

𝑁

𝑖=0

)  −  𝐻(𝐹), 𝐹 =  
𝐸𝑚𝑖𝑛  +  𝐸𝑚𝑎𝑥 (

𝑥𝑖

𝑚𝑖
)

𝜆𝑖
 

1 +  (
𝑥𝑖

𝑚𝑖
)

𝜆𝑖
, 𝐺𝑖,𝐴  =  

𝐺𝑗,𝐵 +  𝐸𝑚𝑎𝑥 𝐴∪{𝑖}  (
𝑥𝑖

𝑚𝐴→𝑖
)

𝜆𝐴→𝑖

1 + (
𝑥𝑖

𝑚𝐴→𝑖
)

𝜆𝐴→𝑖
 

(5) 

 

For the comparison study, SynergyFinder 2.0 was applied  following their guidelines(32).  

In order to determine the growth rate over time, HTSplotter first rescales each condition to the first time 

point and then derives the confluency. Then, HTSplotter implemented splines with minimum squares and 

differentiated using central finite differences, making use of two methods (based on fixed intervals and 

time dependent), relating them in order to construct smoother growth rate evolutions (21). 

Considering three instances in time, 𝑡1 < 𝑡 < 𝑡2, (S Fig 1) we can obtain the fixed intervals GR from 𝑡 = 0 

up to any of the time points, 〈𝐺𝑅〉(𝑐, 𝑡), which can be seen as a mean GR in a set interval of time with 

condition 𝑐. So that 〈𝐺𝑅〉(𝑐, 𝑡) is in fact the mean of GR over time, 𝐺𝑅(𝑐, 𝑡), in the interval [0, 𝑡], then 

definition (6) must be verified. 
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〈𝐺𝑅〉(𝑐, 𝑡) =
1

𝑡
∫ 𝐺𝑅(𝑐, 𝑡)

𝑡

0

𝑑𝑡 
(6) 

 

Using a Taylor series expansion, 〈𝐺𝑅〉(𝑐, 𝑡) at time points 𝑡1and 𝑡2, centered at 𝑡, ignoring higher order 

terms, considering the definition (6) and making 𝑡2, 𝑡1 → 𝑡, then 𝐺𝑅(𝑐, 𝑡) can be written as in equation (7). 

𝐺𝑅(𝑐, 𝑡) =  
〈𝐺𝑅〉(𝑐, 𝑡2) + 〈𝐺𝑅〉(𝑐, 𝑡1)  

2
+

𝜕〈𝐺𝑅〉
𝜕𝑡 |

𝑡2

+
𝜕〈𝐺𝑅〉

𝜕𝑡 |
𝑡1

2
𝑡  

(7) 

 

Case study 

For the case study, MCF-7 and SOX11 overexpression SH-EP cell line were grown in RPMI medium 

supplemented with 10% FCS and 2mM L-Glutamine and 100 IU/mL penicillin/streptomycin. The generation 

of SOX11 overexpression is described in (23). To evaluate synergism and the dose-response relationship, 

cells were seeded in a 384-well plate (Corning COS3764), at a density of 3x103 cells per well. Cells were 

allowed to adhere overnight, after which these were exposed to the respective treatment.. The drugs used 

were: AZD2281 (Selleckchem, S1060), MK-1775 (Selleckchem, S1525), prexasertib (MedChem Express, HY-

18174A) and BAY 1895344 (Selleckchem, S8666). The treatment was performed by the D300 TECAN. Cell 

proliferation was monitored for 72h, in which pictures were taken through IncuCyte S3 Live Cell Imaging 

System each 2h.Each image was analysed through the IncuCyte S3 Software. Cell proliferation was 

monitored by analysing the occupied area (% confluence) over time.  
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Supporting information 

 

S Fig 1: Time dependent value based on confluency over time. 

 

 

S Fig 2: Fig. XY- plot normalized to the 0 time point provided by HTSplotter for the SOX11 OE and Celastrol. Confluency of each 

condition normalized to the confluence at the 0 time point. In contrast to the combined condition, each condition alone has an 

increase confluency over time. 
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S Fig 3: Celastrol dose-response curve analysis, where conventional and GR metrics are shown over time. 

 

S Fig 4: XY-plot normalized to 0 time point provided by HTSplotter, where the confluency of each condition is normalized to the 

confluence at the 0 time point. A) An increasing confluency is observed on the BAY1895344 and MK-1775 conditions alone. Over 

time MK-1775 have a higher confluency, when compared to the control. As the BAY1895344 condition the confluency is lower 

over time. As for the combined after 10h of treatment the confluency stabilized. B) An increasing confluency is observed for the 

prexasertib and MK-1775 conditions alone, being the MK-1775 slightly above from the control. The combined condition after 10h 

of treatment has a constant confluence. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2021.09.06.459128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459128
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2021.09.06.459128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459128
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

S Fig 5: MK-1775, prexasertib and BAY1895344 dose-response curve analyses, where conventional and GR metrics are shown 

over time. 

 

S Fig 6: Bar plot, at 72h, of the best dose-effect combination of MK-1775 with BAY1895344 (A) or MK-1775 with Prexasertib (B). 

The dash line indicates the predicted combination effect, computed according to the BI method, equation (3). A) Relative 

confluence inhibition of BAY1895344 at 166.8 nM combined with MK-1775 at 137.2 nM, with a BI score of 0.42. B) Relative 

confluence inhibition of prexasertib at 4.7 nM combined with MK-1775 at 137.2 nM, with BI a score of 0.56. 

 

S Fig 7: SynergyFinder 2.0 and HTSplotter heatmap at 72h. A) HTSplotter heatmap over time and B) at final time point (72h) of 

dose-effect combination of prexasertib with MK-1775, maximum ZIP score of 0.46 at 72h. C) SynergyFinder heatmap of dose-

effect combination of prexasertib with MK-1775, with ZIP score of 20.828. D) HTSplotter heatmap over time and E) at final time 
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point (72h) of dose-effect combination of BAY1895344 with MK-1775, maximum ZIP score of 0.41 at 72h. F) SynergyFinder 

heatmap of dose-effect combination of BAY1895344 with MK-1775, with ZIP score of 5.176. HTSplotter has a fixed legend scale 

from -1 to 1. 
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