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Abstract

Online speech processing imposes significant computational demands on the listening brain.

Predictive coding provides an elegant account of the way this challenge is met through the

exploitation of prior knowledge. While such accounts have accrued considerable evidence at

the sublexical- and word-levels, relatively little is known about the predictive mechanisms

that support sentence-level processing. Here, we exploit the ‘pop-out’ phenomenon (i.e.

dramatic improvement in the intelligibility of degraded speech following prior information) to

investigate the psychophysiological correlates of sentence comprehension. We recorded

electroencephalography and pupillometry from 21 humans (10 females) while they rated the

clarity of full sentences that had been degraded via noise-vocoding or sine-wave synthesis.

Sentence pop-out was reliably elicited following visual presentation of the corresponding

written sentence, despite never hearing the undistorted speech. No such effect was

observed following incongruent or no written information. Pop-out was associated with

improved reconstruction of the acoustic stimulus envelope from low-frequency EEG activity,

implying that pop-out is mediated via top-down signals that enhance the precision of cortical

speech representations. Spectral analysis revealed that pop-out was accompanied by a

reduction in theta-band power, consistent with predictive coding accounts of acoustic

filling-in and incremental sentence processing. Moreover, delta- and alpha-band power, as

well as pupil diameter, were increased following the provision of any written information. We

interpret these findings as evidence of a transition to a state of active listening, whereby

participants selectively engage attentional and working memory processes to evaluate the

congruence between expected and actual sensory input.

Keywords: pop-out, speech comprehension, predictive processing, EEG, stimulus

reconstruction, pupillometry
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Significance Statement

Continuous speech processing depends on the integration of top-down expectations and

bottom-up sensory inputs, the neurophysiological substrates of which remain poorly

understood. Here, we investigate the neural correlates of auditory filling-in using full

sentences and two complementary forms of speech degradation (noise-vocoded and

sine-wave speech). The effect of prior expectation was assessed through the reconstruction

of noisy stimuli from the electroencephalogram (EEG) using a multivariate model trained on

a separate dataset in which participants listened to clear speech. Prior expectations were

delivered in a different modality (visual) to focus our investigation on top-down processes.

Our findings demonstrate how prior expectations from one modality can be flexibly

transferred to another to recover the meaning of continuous speech from degraded stimuli.
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Introduction

The ability to understand spoken language is a remarkable feat of human cognition. Fluent

speech recognition requires the parsing of a continuously changing acoustic signal into a

series of discrete units, and the mapping of these units onto abstract representations across

multiple scales (Halle and Stevens, 1962; Hickok and Poeppel, 2007). Such processing must

occur quickly enough to keep abreast of unfolding speech (Christiansen and Chater, 2016),

while remaining robust to signal variation and degradation (Mattys et al., 2012; Guediche et

al., 2014). There is growing consensus that the brain meets these demands by predicting

sensory input on the basis of prior knowledge (Kuperberg and Jaeger, 2016;

Bornkessel-Schlesewsky and Schlesewsky, 2019; Brodbeck and Simon, 2020). However,

the neurocomputational mechanisms supporting such processes remain poorly understood.

Prediction has long been accorded an important role in language comprehension (e.g., Miller

and Isard, 1963; Tulving and Gold, 1963). Contemporary predictive coding models of speech

processing formalise this notion in terms of (hierarchical) Bayesian inference, whereby

perceptual experience reflects the integration of ‘top-down’ prior expectations (derived, e.g.,

from lexical, speaker, or world-knowledge) and ‘bottom-up’ sensory evidence (see Friston

and Kiebel, 2009; Heilbron and Chait, 2018). On this view, resolved speech content

constitutes the brain’s ‘best guess’ about the causes of sensory input, given an internal

model of the way sensations are generated (cf. ‘analysis-by-synthesis’; Halle and Stevens,

1959; Poeppel et al., 2008).

Prior knowledge plays a decisive role in word recognition. In degraded speech, intelligibility

can be improved by the provision of lexical information (e.g., the undistorted/written version

of the word; Giraud et al., 2004; Dehaene-Lambertz et al., 2005). Such information typically

engenders a dramatic improvement in the subjective clarity of the degraded utterance -- a

striking change in perceptual experience referred to as ‘pop-out’ (Davis et al., 2005).
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Consistent with predictive coding, auditory cortical responses to degraded words tend to be

suppressed during the experience of pop-out (Sohoglu et al., 2012; Sohoglu and Davis,

2016; cf. Banellis et al., 2020). Similar findings have been observed during the ‘filling-in’ of

speech sounds at the sublexical level (Riecke et al., 2012; Shahin et al., 2012; Leonard et

al., 2016). Interestingly, auditory cortical responses to degraded words vary according to

stimulus quality and prior expectation: while less-degraded speech evokes more

suppression when expectations are realised, neural activity is enhanced when expectations

are violated (Blank and Davis, 2016; Sohoglu and Davis, 2020). This coheres with the view

that the discrepancy between expectations and sensory inputs (prediction errors) depends

on the quality (precision) of sensory input.

Few studies have investigated the predictive mechanisms underpinning degraded speech

processing at the sentence-level. Consistent with the studies mentioned above, sentence

pop-out is associated with increased low-level sensory processing relative to clear speech

(Tuennerhoff and Noppeney, 2016). Electrophysiological recordings have revealed that

auditory cortical ensembles rapidly tune to spectro-temporal speech features during

sentence pop-out (Holdgraf et al., 2016), while acoustic-phonemic encoding activity is

suppressed (Di Liberto et al., 2018), yet better-aligned (‘entrained’) to the stimulus (Baltzell

et al., 2017). However, as these studies induced pop-out by presenting clear speech prior to

degraded speech, it remains uncertain whether these findings were driven by top-down

expectations, or from previous exposure to the intact utterance.

This study investigates the psychophysiological correlates of speech comprehension in

sentences degraded via noise-vocoding or sine-wave synthesis. We used these two

complementary methods of speech degradation in order to remove specific auditory

features: spectral cues in noise-vocoding (Shannon et al., 1995), and fine-grained temporal

features in sine-wave synthesis (Remez et al., 1981). Pop-out was induced using visual
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(written) information, thereby ensuring that expectations were conveyed in a cross-modal,

top-down fashion (Wild et al., 2012; Sohoglu et al., 2014). Cortical responses during pop-out

were contrasted with those elicited in trials that were not preceded by correct information.

We expected cortical speech tracking (i.e. quality of envelope reconstruction) to improve

during pop-out, indicating that prior knowledge of speech content facilitates the cortical

encoding of degraded sentences. The underlying mechanisms of sentence pop-out were

interrogated via spectral analysis and pupillometry.
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Materials and Methods

Participants

Twenty-one native English-speaking adults were recruited to participate in this study. Of

these, two were excluded due to faulty EEG recordings. The remaining sample comprised 8

females and 11 males aged 19 to 33 years (M = 25.8, SD = 4.5). All participants reported

normal (or corrected-to-normal) vision and audition.

All participants provided written, informed consent, and were remunerated AU$30 for their

time. This protocol was approved by the Monash University Human Research Ethics

Committee (Project ID: 10994).

Stimuli

A total of 80 pairs of English sentences were constructed. These pairs had similar

grammatical structures and lengths (11.6 words on average). They were divided into 5 lists

of 16 pairs (32 sentences per list). Each sentence was vocoded using Apple OS’s

noise-to-speech command ‘say’ (voice: ‘Alex’; gender: male; sampling rate: 44.1 kHz; rate:

200 words/minute). Each vocoded sentence was approximately 3.5 s long and was then

concatenated three times to obtain audio files of ~10.5 s. The sounds were saved in the

Audio Interchange File Format (AIFF) format and converted to the MPEG-1 Audio Layer III

(MP3) format using the “Swiss Army Knife of Sound” (SoX) command line utility.

We then used publicly available scripts written for PRAAT (Boersma and Weenink, 2011) to

turn clear speech into sine-wave speech (SWS) and noise-vocoded speech (NVS). These

files were saved in the Waveform Audio File Format (WAV) format. Clear audio files were

also converted to the WAV format. In SWS, phonemes’ formants are replaced by sinusoids

at the same frequency, stripping fine-grained temporal acoustic features from the original
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clear speech and thereby making SWS speech-like but unintelligible (Remez et al., 1981). In

NVS, the amplitude of clear speech in a set of fixed logarithmically-spaced frequency bands

(here, 6 bands) is used to modulate white-noise. This transformation preserves the temporal

cues of the original signal but erases the spectral cues (Shannon et al., 1995).

Consequently, SWS and NVS represent two complementary ways of degrading clear speech

by removing fine-grained temporal cues (SWS) or spectral information (NVS; see Figure 1A).

The amplitude of the degraded speech was equalised across all sentences and the duration

was adapted to a fixed 10.5 s interval using the VSOLA algorithm. In addition to these

sentences, in the training session, we also played to participants an audiobook (Cat-Skin

from Grimms’ Fairy Tales, LibriVox) for a duration of 11’ 38’’. The properties of the speech

(female voice, rate, etc.) were not modified except for the overall volume (same volume as

degraded sentences).  All auditory stimuli were delivered using the Psychtoolbox extension

(v3.0.14; Brainard, 1997) for Matlab (R2018b; The MathWorks, Natick, MA, USA) running on

Linux. The stimuli were played using speakers placed in front of the participant.

Experimental Design and Procedure

Participants performed the experimental task while sitting at a desk with their head stabilised

on a chinrest ~50 cm from the monitor. Following a 9-point eye-tracker calibration,

participants were instructed to actively attend to an audiobook (training) while maintaining

fixation on a cross at the centre of the computer screen. They subsequently performed 6

blocks of 16 experimental trials each (test trials) for a total of 96 trials (16 trials per

condition). Participants were instructed to maintain central fixation and refrain from

excessive blinking while listening to the sentence presentations, but were permitted to blink

and saccade outside these periods. Blocks were separated by self-paced breaks, with a

recalibration of the eye-tracker prior to block 4. In total, the experimental procedure lasted

approximately 75 min.
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Each test trial started with the presentation of one noisy stimulus (NVS or SWS; 10.5 s long).

Participants were then asked to rate the clarity (intelligibility) of the noisy stimulus on a

4-point scale (1 = “I did not understand anything”; 2 = “I understood some of the sentence”; 3

= “I understood most of the sentence”; 4 = “I clearly understood everything”). Following this

first clarity rating, participants were visually displayed either the corresponding written

sentence (P+), or another sentence (P-), or no sentence (P0) for a fixed duration of 4 s. In all

cases, the same noisy stimulus was presented a second time and participants were asked to

rate the clarity of the stimulus using the same 4-point scale. Following this, when a sentence

was visually displayed between the two presentations (P+ and P- conditions), participants

were asked to indicate whether the displayed sentence corresponded to the noisy stimulus

(Yes or No). A pause of 1.5 to 2 s (random jitter) was introduced before starting the next trial.

See Figure 1B for a schematic illustration of the trial procedure.

Participants heard a total of 96 stimuli. Four lists of 16 stimulus pairs were attributed to

experimental conditions (stimulus type: SWS or NVS; prior condition: P+, P-), while the

remaining list of 16 stimulus pairs was attributed to the condition P0. The attribution was

randomly assigned and counterbalanced across participants following a latin-square design.

For conditions P+ and P-, the participants were exposed to one sentence per pair from the

corresponding lists (see section above on Stimuli). This allowed us to present to participants,

in the case of the P- condition, a sentence close to (but different from) the one heard in the

trial, and never heard or seen earlier or later on in the experiment. For the P0 condition,

pairs of the remaining list were split across two conditions as no written sentence was shown

to the participant, resulting in 16 stimuli per condition (stimulus type: SWS or NVS, prior

condition: P0). Overall, every stimulus was novel when presented the first time and heard

exactly twice within one trial throughout the whole experiment and across all conditions.
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EEG acquisition and preprocessing

The electroencephalogram (EEG) was continuously recorded during both the training

(audiobook) and test trials (noisy speech) from 64 Ag/AgCl EasyCap mounted active

electrodes. The recording was acquired at a sampling rate of 500 Hz using a BrainAmp

system in conjunction with BrainVision Recorder (v1.21.0402; Brain Products GmbH,

Gilching, Germany). AFz served as the ground electrode and FCz as the online reference.

Offline preprocessing was performed in MATLAB R2019b (v9.7.0.1319299; The MathWorks,

Natick, MA, USA) using custom-build scripts incorporating functions from the FieldTrip

(v20200623; Oostenveld et al., 2011) and EEGLAB (v2019.1; Delorme and Makeig, 2004)

toolboxes. For the training data, the EEG was segmented in a single epoch from 5 s before

the start of the audiobook to 5 s after its end. For test trials, EEG data were segmented into

20 s epochs beginning 5 s before stimulus onset. All epochs were centred around 0 prior to

high- and low-pass filtering (1 Hz and 125 Hz, respectively; two-pass 4th-order Butterworth

filters). A notch (discrete Fourier transform) filter was also applied at 50 and 100 Hz to

mitigate line noise.

For test trials, epoch and channel data were manually screened for excessive artefact using

the ‘ft_rejectvisual’ function. A median 3 channels (range = [1, 5]) and 2 epochs (range = [0,

5]) were rejected per participant (note, an additional 5 trials were missing for one participant

due to technical error). For training data, we performed only the channel rejection. Rejected

channels were interpolated via the weighted neighbour approach as implemented in the

‘ft_channelrepair’ function (where channel neighbours were defined by triangulation).

Channels were re-referenced to the common average prior to independent component

analysis (‘runica’ implementation in FieldTrip of the logistic infomax ICA algorithm; Bell and

Sejnowski, 1995). ICA was performed on the test and training data separately. Components
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were visually inspected and those identified as ocular (median number of rejected

components = 2; range = [0, 3]), cardiac (median = 0, range = [0, 2]), or non-physiological

(median = 0, range = [0, 2]) in origin were subtracted prior to backprojection.

Pupillometry acquisition and preprocessing

Eye-movements and pupil size on both eyes were recorded with a Tobii Pro TX300 system

(Tobii Pro) with a sampling rate of 300 Hz. We recorded good-quality data in only 17

participants. One participant had incomplete data (43/96 trials). The eye-tracker was

calibrated at the start of each recording. Blinks were detected as interruption of the

eye-tracking signal on each eye independently (maximum duration = 5 s). For each of these

blinks, the pupil size was corrected by linearly interpolating the median signal preceding the

blink onset ([-0.1, 0]s) and following the blink offset ([0, 0.1]s). The corrected signal was then

low-pass filtered below 6 Hz (two-pass 4th order Butterworth filter) and the pupil size for

each eye averaged together. Continuous averaged pupil data was then epoched according

to the presentation onset ([-1, 11]s) and both the first and second presentation windows were

baseline corrected using the average pupil size before the first presentation ([-1, 0]s).

Event-related potentials were computed on these epochs (see Figure 4B).

Data analysis

Stimulus reconstruction.

We used a stimulus reconstruction approach to estimate the quality of auditory processing

from the EEG. In particular, we focused on the reconstruction of the auditory envelope of the

noisy speech from EEG recordings. Our rationale was that participants’ ability to extract

relevant cues from the noisy speech should be reflected in a better entrainment of EEG

activity by the noisy speech and, therefore, as a better ability to reconstruct this envelope

from EEG recordings. A similar approach was successfully applied to decode attention when
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participants are exposed to clear speech in a multitalker environment (O’Sullivan et al.,

2015; Legendre et al., 2019) or to reconstruct the envelope of NVS (Di Liberto et al., 2018).

We first extracted the acoustic envelope of the training and test stimuli in the 2-8 Hz band.

This band was chosen for its correspondence with speech’s syllabic rhythms and the robust

entrainment of EEG oscillations with speech envelope observed in this frequency band

(Giraud and Poeppel, 2012; Peelle and Davis, 2012; O’Sullivan et al., 2015). To do so, we

ran the 10.5 s degraded speech as well as the training stimulus through a peripheral auditory

model using the standard Spectro-Temporal Excitation Pattern approach (STEP; Leaver and

Rauschecker, 2010). The stimuli were first resampled at 22.05 kHz and passed through a

bandpass filter simulating outer and middle-ear pre-processing. Cochlear frequency analysis

was then simulated by a bank of linear gammatone filters (N=128 filters). Temporal

integration was applied on each filter output by applying half-wave rectification and a 100 Hz

low-pass 2nd-order Butterworth filter. Next, square-root compression was applied to the

smoothed signals and the power in each frequency band was log-transformed. Finally, the

auditory envelope was computed by summing the envelope of the 128 gammatone filters

and downsampled to 100 Hz.

For each presentation of the (training or test) stimuli, we processed the EEG recordings as

follows. ICA-corrected, epoched data were re-referenced to the average of all EEG

electrodes, bandpass-filtered between 2 and 8 Hz using a two-pass Finite Impulse

Response (FIR) filter, and then resampled at 100 Hz. We trimmed the EEG epochs so that

the start and end corresponded to the start and end of the stimulus presentation.

We then used the Multivariate Temporal Response Function (mTRF) Toolbox (v2.0; Crosse

et al., 2016) for Matlab to build a linear model between auditory and EEG signals from the

training session (clear speech). By using an independent part of the experiment compared to

test trials, and by using clear speech, we ensured that the model was not affected by our
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experimental design and represented normal speech processing. EEG data were shifted

relative to the auditory envelope from 0 ms to 300 ms in steps of 10 ms (31 time lags),

allowing the integration of a broad range of EEG data to reconstruct each stimulus time

point. The linear model was optimized to map the EEG signal from each electrode and time

lag to the sound envelope. The obtained filter (matrix of weights: sensor x time lags) was

then used in the test trials to reconstruct the stimuli.

In the test trials, we used the model trained on clear speech (training set) to reconstruct the

envelope of the noisy stimuli. This was done independently for each of the two presentations

of the stimuli in each trial. Finally, the reconstructed envelope was compared to the envelope

of the degraded stimulus played for this trial (NVS or SWS) by computing the Pearson’s

correlation coefficient between the real and reconstructed envelope of the degraded speech.

We computed this coefficient for the three repetitions of the same sentence in each stimulus

presentation.This coefficient (bounded between -1 and 1) was used as an index of the

quality of the stimulus reconstruction. In our analyses, we focused on the first presentation of

the sentence within a given trial and the first following the presentation of the correct (P+),

incorrect (P-), or no (P0) visual sentence information (first 3.5 s of each presentation). This

decision mitigated potential fluctuations in task engagement over the course of the 2nd

presentation depending on whether stimuli elicited pop-out.

Time-frequency decomposition.

EEG data from test trials were subjected to spectral (time-frequency) analysis. Preprocessed

datasets were re-referenced to the average of linked mastoids. Spectral power estimates

were then computed for epochs spanning -2 to 12 s relative to stimulus onset over a

frequency range of 1 to 30 Hz (1 Hz increments) using the ‘ft_freqanalysis’ function (Hanning

taper length = 1 s; 100 ms increments). As in the stimulus reconstruction analysis,

time-frequency analysis was limited to the first iteration of each sentence presentation period
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(timepoints spanning [0.5, 3] s; first and last 0.5 s omitted to avoid spurious/confounding

effects pertaining to stimulus onset/offset and spectral leakage).

Channel-level spectral power estimates were averaged across time for each trial, and

averaged across trials for each factorial combination of sentence type, prior condition, and

presentation order. Averaged power estimates were then log10 transformed and subjected to

a nonparametric cluster-based permutation analysis (Maris and Oostenveld, 2007) as

implemented in FieldTrip. Briefly, this procedure involves computing dependent-samples

t-tests across pairwise power estimates for each corresponding channel x frequency bin,

identifying t-values that exceed a specified alpha threshold (0.025, two-tailed test), and

clustering these samples into spatio-spectrally contiguous sets (minimum 2 neighbouring

channels located within a 40 mm radius; average 3.9 neighbours per channel). T-values

within each resolved cluster were then summed and the maximum value assessed against a

Monte Carlo simulation-based reference (null) distribution generated over 1000 random

permutations. We derived a Monte-Carlo p-value from this comparison, which we used to

determine the significance of the identified clusters.

To test the interaction of interest, the difference between 1st and 2nd presentation power

estimates was contrasted across pairwise combinations of prior conditions for each sentence

type. Clusters with a Monte Carlo p-value <.05 were deemed indicative of a significant

difference between contrasts. Importantly, this procedure only licences inferences about the

existence of a statistically significant difference between contrasts; it does not permit the

topographic or spectral localisation of such effects (see Maris and Oostenveld, 2007; Maris,

2012; Sassenhagen and Draschkow, 2019). This caveat notwithstanding, the frequency

bounds of the resolved clusters were used to inform the selection of frequency band limits in

the subsequent linear mixed-effects analysis (see Statistical modelling section below).

Time-resolved oscillatory activity.
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To examine the temporal evolution of electrophysiological dynamics during sentence

processing, we complemented our analysis of time-averaged changes in spectral power with

time-resolved profiles of induced (i.e. non-phase-locked) oscillatory activity. These profiles

were derived using an intertrial variance method of estimating event-related

(de)synchronisation (Kalcher and Pfurtscheller, 1995; Pfurtscheller and Lopes da Silva,

1999). ICA-corrected, mastoid-referenced EEG data were high- and low-pass filtered

(one-pass zero-phase FIR filters) into the same frequency bands derived following the

time-frequency cluster-based permutation analysis. For each frequency band, filtered signals

were divided into factorial combinations of stimulus type, prior condition, and presentation

order, and the evoked response subtracted from each set. Waveforms were then squared,

log10 transformed, and averaged within each set. The resulting spectral profiles were

smoothed using a moving average filter (‘movmean’, 500 ms sliding window) and

downsampled to 10 Hz.

Spectral profiles of induced activity were compared across conditions using a similar

cluster-based permutation approach to that described above (Time-frequency

decomposition), with the exception that channel-wise power estimates were clustered over

the temporal (rather than frequency) dimension. Permutation tests evaluating the temporal

evolution of induced power dynamics were performed on the entire 2nd presentation window

([-1, 11]s). This analysis was conducted separately for SWS and NVS sentences, in order to

explore qualitative differences in the temporal patterning of neural responses under these

two stimulus types. The temporal dynamics of pupil size were examined using the same

statistical procedure in the temporal domain, but without the spatial (electrode) dimension.

Statistical modelling

Statistical analysis of trial-level subjective clarity ratings, frequency band power, and stimulus

reconstruction scores was performed in R (v3.6.2; R Core Team, 2019). Our general strategy
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for each analysis was to fit the appropriate mixed-effects model to the dependent variable of

interest from the 2nd presentation, and regress these estimates onto the corresponding

estimate from the 1st presentation (including the 1st presentation estimate as a covariate

essentially functions as a form of baseline correction; see Alday, 2019). Additional

independent variables were stimulus type (SWS, NVS), prior condition (P+, P-, P0), and the

interaction between these factors, which were introduced into the model in that order. Model

comparisons (see below) were performed using the ‘anova’ function to assess whether the

additional complexity introduced by each new fixed (and accompanying random) effect term

was merited by a sufficient improvement in model fit. Categorical variables (stimulus type,

prior condition) were sum-to-zero contrast-coded (reference level coded -1).

All mixed-effects models were fitted with by-participant random intercepts. We fitted maximal

random effects structures for all fixed effects of interest (i.e. stimulus type, prior condition) on

this intercept (Barr et al., 2013). Random intercepts were also specified for sentence items in

all models; EEG electrode channel locations were included as random intercepts in the

spectral power models only (see Liebherr et al., 2021, for a similar approach).

Subjective clarity ratings following the 2nd presentation were modelled as ordinal data using

a (logit-linked) cumulative link mixed-effects model (i.e. proportional odds mixed model). This

model was fit via the Laplace approximation using the ‘clmm’ function from the ordinal

package (Christensen, 2019) in R. No assumptions about the distance between cut-point

thresholds were specified.

Linear mixed-effects models for spectral power (averaged over time and frequency bins; first

sentence iteration only) and stimulus reconstruction scores (first sentence iteration only)

were fitted using the ‘lmer’ function from the lme4 package (v1.1-23; Bates et al., 2015). In

addition to the fixed effects described above (which were again introduced in a sequential

fashion to enable model comparison), an ordered factor encoding the clarity rating on the 1st
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presentation was included as a covariate. Model diagnostics were assessed with the aid of

the performance package (v0.5.0; Lüdecke et al., 2021).

The significance of main effect and interaction terms for each winning model was assessed

using likelihood-ratio chi-square tests from Type-II analysis-of-deviance tables obtained via

the RVAideMemoire package (v0.9-79; Hervé, 2021) for the cumulative link mixed-effects

models; equivalent tables were obtained from the car package (v3.0-10; Fox and Weisberg,

2019) for the linear mixed-effects models. Significant effects were disambiguated using

post-hoc contrasts (Tukey corrected for multiple comparisons) obtained from the emmeans

package (v1.5.1; Lenth, 2020), which was also used to estimate marginal mean predictions

for model visualisation. Model predictions and individual-level estimates were visualised with

the aid of the tidyverse package (v1.3.0; Wickham et al., 2019).

Data and code accessibility

This study was not pre-registered. De-identified raw data used to perform these analyses are

openly shared on the Open Science Framework platform.

Data: https://osf.io/5qxds

All code used to perform these analyses are made available to reviewers and will be openly

shared upon acceptance and publication of the manuscript.

Code: https://github.com/corcorana/SWS_NVS_code
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Results

Correct prior information evokes perceptual pop-out

We first examined participant- and group-level average clarity ratings to determine if our

protocol was successful in eliciting perceptual pop-out (Figure 1C). We found that prior

condition had a significant effect on clarity ratings following the 2nd stimulus presentation:

including prior condition within the cumulative link mixed-effects model yielded a significant

improvement in fit (𝜒2(9)=1393, p<.001). This model revealed a significant main effect of prior

condition (𝜒2(2)=54.76, p<.001). There was also a main effect of stimulus type (𝜒2(1)=11.71,

p<.001), indicating that clarity ratings tended to be higher following SWS than NVS

sentences. However, we did not find evidence for an interaction between prior condition and

stimulus type, as the model was not significantly improved by allowing these two predictors

to interact (𝜒2(13)=12.17, p=.514).

Next, we performed post-hoc contrasts to compare differences in clarity ratings between

each prior condition. Clarity was significantly higher for P+ than both the P0 (z-ratio=14.75,

p<.001) and P- (z-ratio=15.99, p<.001) conditions, consistent with the experience of

perceptual pop-out. Conversely, clarity levels did not significantly differ between P0 and P-

(z-ratio=1.05, p=.547), confirming that participants needed to be provided with the correct

information for pop-out to occur.

Finally, all participants performed at or near ceiling level when asked to determine if the

visually displayed sentence (P+ or P- condition) corresponded to the auditory stimulus

(mean performance: 95.8% +/- 1.3 and 95.0% +/- 1.4 for SWS and NVS, respectively). This

indicates that participants were almost always able to distinguish whether correct information

had been supplied, even when the perceived clarity of the degraded sentence remained low.
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Figure 1: Experimental design and behavioural results

A: Cochlear representations (see Methods for details) of 3.5 s of clear speech (left), Sine

Wave Speech (SWS; middle) and Noise Vocoded Speech (NVS; right). B: In each trial,

participants listened to two repetitions of the same noisy speech. The two presentations of

the stimuli were interleaved with either (i) the corresponding written sentence (correct prior,
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condition P+), (ii) a different sentence (incorrect prior, condition P-), or (iii) no sentence at all

(no prior, condition P0). Following each presentation of the stimulus, participants were asked

to indicate the subjective clarity of the stimulus they heard. EEG was recorded throughout

the task. C: Clarity ratings for the SWS (left, circles) and NVS (right, diamonds) stimuli.

Participants were asked to rate the stimuli after the 1st (unfilled circles and diamonds) and

2nd (filled circles and diamonds) presentations. Clarity ratings are averaged for each

stimulus type and prior condition (P+: green, P-: orange, and P0: purple). Individual

data-points are shown with small circles (SWS) and diamonds (NVS). The two average

ratings of each participant and each category are connected with a continuous line if it

increases from the 1st to 2nd presentation and a dashed line if it decreases. Large circles

and diamonds show the average across the sample (N=19 participants) and error bars show

the standard error of the mean (SEM) across participants. Stars indicate the significance

levels of post-hoc contrasts across condition levels (marginalised over stimulus type; ***:

p<.001, **: p<.01, *: p<.05).

Correct prior information enhances stimulus reconstruction

Having established the efficacy of our prior condition manipulation, we next explored the

neurophysiological substrates of the pop-out effect by examining participant- and group-level

average reconstruction coefficients (Figure 2A). The mixed-effects model for reconstruction

scores revealed a significant main effect of stimulus type (𝜒2(1)=23.49, p<.001), indicating

that reconstruction scores, just as clarity ratings, were higher following SWS than NVS

stimuli. Importantly, a significant main effect was also observed for prior condition

(𝜒2(2)=15.98, p<.001). In fact, model comparisons indicated that models not including the

prior condition effect fitted the data significantly worse (𝜒2(2)=15.92, p<.001), but including

interaction terms (two-way interaction between prior condition and stimulus type; three-way
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interaction between prior condition, stimulus type, and baseline reconstruction score) did not

fit the data significantly better (all p>.10).

Again, we interrogated the main effect of prior condition with post-hoc pairwise comparisons.

These contrasts revealed that reconstruction scores for the 2nd presentation were higher in

the P+ compared to P0 (t-ratio=3.66, p<.001) and P- (t-ratio=3.22, p=.004) conditions,

respectively. Reconstruction scores did not significantly differ between P- and P0

(t-ratio=0.44, p=0.90). In sum, the effect of prior condition on reconstruction scores matched

the pattern of effects found on clarity ratings, suggesting a link between the perceptual

pop-out and auditory cortical encoding.

We subsequently examined whether the stimulus reconstruction scores could predict the

clarity of stimuli on the 2nd presentation above and beyond the prior condition. To do so, we

re-fitted the cumulative link mixed-effects model reported above with additional terms

encoding the main-effect of reconstruction score, and its interaction with stimulus type and

prior condition. This model revealed a significant three-way interaction between stimulus

type, condition, and reconstruction scores on clarity ratings (𝜒2(2)=8.58, p=.014).

Nonetheless, model comparisons did not reveal a significant improvement in model fit when

stimulus reconstruction score was included as either an additive or interactive effect (all

p>.10). Thus, the ability to predict clarity from reconstruction scores above and beyond prior

condition seems limited.
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Figure 2: Correct priors improve stimulus reconstruction

A: The envelope of noisy speech was reconstructed from EEG recordings (N=19

participants, see Methods) and a stimulus reconstruction score was computed for the first

3.5 s (1st iteration of the sentence) of each stimulus presentation (1st: unfilled markers; 2nd:

filled markers) and for the SWS (left, circles) and NVS (right, diamonds) stimuli separately.

Reconstruction scores are averaged for each stimulus type and prior condition (P+: green,

P-: orange, and P0: purple). Individual data-points are shown with small circles (SWS) and

diamonds (NVS). The two average ratings of each participant and each category are

connected with a continuous line if it increases from the 1st to 2nd presentation and a

dashed line if it decreases. Large circles and diamonds show the average across the sample

(N=19 participants) and error bars show the standard error of the mean (SEM) across

participants. Stars indicate the significance levels of post-hoc contrasts across condition
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levels (***: p<.001, **: p<.01, *: p<.05). B: Correlation between clarity ratings and

reconstruction scores on the 2nd presentation for SWS (left, circles) and NVS (right,

diamonds). Individual data-points are shown with small circles (SWS) and diamonds (NVS).

Large circles and diamonds show the average across the sample (N=19 participants) and

error bars show the standard error of the mean (SEM) across participants. The Pearson’s

correlation coefficient computed across conditions for the SWS and NVS is shown on each

graph along with the associated p-value.

Prior information exerts frequency-specific effects on sentence processing

We next examined how the provision of correct or incorrect prior information impacted brain

responses to degraded speech. Grand-average time-frequency representations from the 2nd

presentation period are displayed for each prior condition in Figure 3A. Cluster-based

permutation tests revealed significant differences in the average power across prior

conditions for each stimulus type. Relative to the absence of prior information (P0), receiving

correct sentence information (P+) resulted in significant positive clusters (indicative of

increased mean power) spanning 12 to 17 Hz in the SWS condition (p=.006), and 11 to 15

Hz in the NVS condition (p=.005). Similarly, receipt of incorrect sentence information (P-)

resulted in a significant positive cluster spanning 10 to 15 Hz in the SWS condition (p=.002).

No significant clusters were identified for the corresponding NVS contrast. Topographies

visualising the distribution of these clusters are presented in Figure 3B.

On the basis of these results, a (high) alpha frequency band spanning 10 to 15 Hz was

defined for mixed-effects modelling. Additional bands were also specified for the delta (1-3

Hz), theta (4-9 Hz) and beta (16-30 Hz) frequencies. It is worth noting that all these bands

have been associated with speech processing in previous studies (see Discussion). All

electrode channels were included in the random effects structure for each model. In each set
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of nested model comparisons across the four frequency bands, the full model (i.e. including

the fixed effect and by-participant random slope interactions between stimulus type and prior

condition) demonstrated significantly better fits than the reduced models.

The main effect of stimulus type was significant in the delta (𝜒2(1)=4.73, p=.030) and theta

(𝜒2(1)=8.17, p=.004) models, indicating that NVS stimuli tended to elicit higher mean power

than SWS stimuli. This effect was non-significant in the alpha (𝜒2(1)=2.88, p=.090) and beta

(𝜒2(1)=3.82, p=.051) models. The main effect of prior condition was significant for all

frequency bands except beta (Delta: 𝜒2(2)=16.51, p<.001; Theta: 𝜒2(2)=16.47, p<.001; Alpha:

𝜒2(2)=32.03, p<.001; Beta: 𝜒2(2)=0.19, p=.908). The interaction between stimulus type and

prior condition was non-significant across all models.

The estimated effects of prior condition on mean spectral power in the delta-, theta-, and

alpha-bands are visualised in Figure 3C. Post-hoc comparisons revealed that delta power

was significantly increased following P+ compared to P0 (z-ratio=2.36, p=.047), and P-

compared to P0 (z-ratio=3.89, p<.001); the difference between P+ and P- was

non-significant (z-ratio=1.46, p=.312). Alpha power showed a similar pattern, where power

was increased following P+ compared to P0 (z-ratio=3.65, p<.001), and P- compared to P0

(z-ratio=5.65, p<.001). Again, there was no significant difference in alpha power between P+

and P- (z-ratio=0.98, p=.589). By contrast, the theta model revealed a significant decrease in

power following P+ compared to P0 (z-ratio=2.58, p=.027), and P- (z-ratio=4.26, p<.001); the

difference between P- and P0 was non-significant (z-ratio=1.99, p=.115).
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Figure 3: Time frequency analysis and mixed-effects modelling

A: Time-frequency representation depicting grand-average power over the course of the 2nd

sentence presentation following the provision of correct (P+), incorrect (P-), or no (P0) visual
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information across stimulus types. Each presentation comprised 3 iterations of the same

noisy stimulus (~3.5 s each). Spectral power estimates from each frequency bin were

baseline-corrected using the mean power estimate from the corresponding frequency bin

averaged over all time bins spanning the 1st presentation period. B: Topographic distribution

of significant clusters identified via cluster-based permutation analysis. Scale indicates

probability of electrode inclusion within the 10-15 Hz range used to define the alpha-band

(i.e. the proportion of times an electrode was included within the cluster). These plots

indicate that significant clusters were predominantly composed of electrodes over posterior

scalp regions for P+ vs. P0 contrasts, and more broadly distributed for the SWS P- vs. P0

contrast. C: Visualisation of linear mixed-effects model predictions for delta (1-3 Hz), theta

(4-9 Hz), and alpha (10-15 Hz) power during sentence processing for each prior condition

(P+: green, P-: orange, and P0: purple). Individual data-points are shown with small circles.

Large circles show the estimated marginal means for the prior condition across the sample

(N=19 participants); error bars show the standard error of the mean (SEM) across

participants. Stars indicate the significance levels of post-hoc contrasts across condition

levels (***: p<.001, **: p<.01, *: p<.05). Note, estimates have been mean-centred for the

purposes of visualisation.

Prior information induces increased alpha power and pupil size during

sentence processing

Finally, we focused more specifically on the effect of prior information (P+ or P- vs. P0) on

participants’ neurophysiological activity, regardless of the correctness of this information.

Consistent with our analysis of time-averaged spectral power, the time-course of induced

alpha-band activity during the 2nd presentation period was modulated by the provision of

prior information. Cluster-based permutation analysis across all electrodes confirmed that P+

and P- both induced significant increases in alpha power compared to P0 (Figure 4A). These
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positive clusters were broadly distributed over the scalp, with posterior electrode sites

revealing effects that spanned the largest number of time bins (SWS: P+ vs. P0 = [0.8, 3.6]s,

P- vs. P0 = [0.8, 3.3]s; NVS: P+ vs. P0 = [1.1, 3.7]s, P- vs. P0 = [0.9, 3.7]s). Note that these

effects were preceded by significant negative clusters spanning the pre-stimulus period,

indicating that prior information promoted increased alpha desynchronisation prior to

sentence onset (SWS: P+ vs. P0 = [-1, 0.4]s, P- vs. P0 = [-1, 0.3]s; NVS: P+ vs. P0 = [-1,

0.6]s, P- vs. P0 = n.s.). Induced activity did not significantly differ between P+ and P-

conditions.

We complemented our analysis of alpha power dynamics with a cluster-based permutation

on the pupillometry data recorded during sentence processing. Similar to the alpha-band

findings above, P+ and P- conditions both evoked increased pupil size compared to P0

(Figure 4B). When examining SWS and NVS stimuli separately, we observed a significant

cluster for both P+ vs P0 and P- vs P0 contrasts (SWS: [0.7, 6.4]s, [3.8, 11]s; NVS: [0.6,

11]s, [0.6, 11]s, for P+ vs P0 and P- vs P0 respectively).
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Figure 4: Expectations modulates alpha power and pupil size

Temporal dynamics of induced alpha power (A) and pupil size (B) over the course of the 2nd

presentation period for each stimulus type (top: SWS; bottom: NVS) and prior condition (P+:

green, P-: orange, and P0: purple). Alpha power is averaged over parieto-occipital

electrodes (see black dots on the inset) and expressed as log10 units. Pupil size is averaged

across the two eyes and expressed in arbitrary units. Error shades show the standard error

of the mean (SEM) across participants (N=19 participants for alpha power and N=17 for

pupil, see Methods). Horizontal bars show the clusters of times showing significant

differences (cluster-permutation, p<.05, see Methods) between the P+ and P0 conditions

(green), and P- and P0 conditions (orange).
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Discussion

This study leveraged the pop-out phenomenon to investigate the predictive mechanisms

underpinning sentence-level speech comprehension. To our knowledge, this is the first EEG

study of degraded speech processing to use written information to induce sentence pop-out,

thereby eliminating potential confounds stemming from previous auditory exposure to the

clear version of the sentence. Specifically, our paradigm enabled us to examine the influence

of different kinds of prior expectation on both subjective and neurophysiological measures of

sentence comprehension, while holding the quantity and quality of acoustic stimulation

constant. Our analysis of complementary EEG features (speech envelope reconstruction,

spectral power) revealed distinctive patterns of electrophysiological activity that differentiated

the generic processing of prior expectations from the specific experience of sentence

pop-out. We interpret these results in light of previous studies of degraded speech

perception, and the spectral architecture of predictive coding (Arnal and Giraud, 2012;

Bastos et al., 2012, 2020; Fontolan et al., 2014; Sedley et al., 2016; Auksztulewicz et al.,

2017).

Sentence pop-out is accompanied by enhanced stimulus reconstruction

In line with previous studies using written text to elicit degraded word pop-out (e.g., Sohoglu

et al., 2012; Sohoglu and Davis, 2016), sentence intelligibility was markedly improved by the

provision of correct prior information only. Incongruent prior information did not significantly

affect clarity ratings compared to no information (cf. Sohoglu et al., 2014). Although

noise-vocoded speech (NVS) was rated less clear on average than sine-wave speech

(SWS; note however the large degree of inter-individual variability apparent in Figure 1C),

sentence pop-out was reliably obtained across both stimulus conditions.
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This pop-out effect was accompanied by two main electrophysiological correlates: (1)

improved stimulus reconstruction (an index of cortical speech envelope tracking), and (2)

theta-band (4-9 Hz) power suppression. The stimulus reconstruction finding suggests that

information extracted from the written sentence promotes the modulation of low-frequency

EEG activity while listening to the corresponding sentence, such that the phase dynamics of

the EEG signal better approximate the temporal fluctuations of the speech envelope. This

finding is striking for at least two reasons: First, the participant never hears the undistorted

version of the sentence at any point in the experiment; hence, the effect is likely mediated by

top-down mechanisms rather than low-level adaptations induced by prior sensory

experience (cf. Holdgraf et al., 2016). Second, the decoding model used to reconstruct the

original speech envelope was trained on brain responses to natural, continuous speech (i.e.

the audiobook). As such, the model was never exposed to the particular acoustic features of

degraded stimuli, suggesting that improvements in stimulus reconstruction could be detected

on the basis of generalisation from clear speech.

The enhancement of stimulus reconstruction quality in the P+ condition supports the notion

that reconstruction quality is a reliable indicator of subjective speech clarity. This observation

is consistent with previous reports that the quality of speech tracking (or entrainment)

covaries with speech intelligibility (Ahissar et al., 2001; Luo and Poeppel, 2007; Gross et al.,

2013; Peelle et al., 2013; Ding and Simon, 2014; Doelling et al., 2014). Given that clarity and

reconstruction scores were both improved by correct sentence information in the absence of

any physical alteration of the auditory stimulus, our findings suggest that a top-down

mechanism mediates the pop-out effect by enhancing the precision of cortical speech

representations. These results complement those of previous studies manipulating speech

tracking and intelligibility through top-down attentional modulation (Rimmele et al., 2015) and

bottom-up transcranial stimulation (Riecke et al., 2018).
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Theta-band suppression indexes sentence comprehension

Improved sentence comprehension and stimulus reconstruction in the P+ condition were

accompanied by a relative reduction in theta-band activity. Mean theta power was also more

reduced while listening to SWS, which tended to elicit higher clarity ratings than NVS

(suggesting NVS constituted a more acoustically (or cognitively) challenging stimulus than

SWS; see Peelle, 2018). These findings are consistent with previous reports linking

perceptual filling-in and speech intelligibility with the attenuation of sensory cortical

responses (e.g., Sohoglu et al., 2012; Sohoglu and Davis, 2016), including evidence directly

implicating theta-band suppression (e.g., Riecke et al., 2009, 2012; Strauß et al., 2014a).

The inverse relation between theta-band power and speech intelligibility might be explained

by the involvement of theta dynamics in the retrieval and integration of linguistic

representations during online sentence processing (Bastiaansen et al., 2010; Halgren et al.,

2015; Lam et al., 2016; Piai et al., 2016; Cross et al., 2018). From a predictive coding

perspective, the provision of correct prior information furnishes the listener with an accurate

hypothesis (model) of the auditory input they are about to encounter. Such information

activates lexical representations in working memory, engendering top-down messages that

propagate through descending neuronal pathways to sensory cortices. In this way, correct

priors may facilitate the recognition and integration of linguistic structures, characterised by a

reduction in theta-band activity (cf. Keitel et al., 2017; Rommers et al., 2017; Donhauser and

Baillet, 2020).

Delta-, alpha-band power, and pupil dilation as correlates of  active listening

Listening to degraded speech following the provision of written information (P+, P-) resulted

in elevated delta-band power compared to the absence of such information (P0; Figure 3C).

Delta oscillations have been implicated in the synthesis of higher-level linguistic structure

(Keitel et al., 2018; Meyer and Gumbert, 2018; Molinaro and Lizarazu, 2018; Etard and
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Reichenbach, 2019; Kaufeld et al., 2020), although much of this literature concerns phase

dynamics. Elevated delta-band power might derive from attempts to parse continuous

speech according to the segmentation prescribed by the written prior (cf. Ding et al., 2016;

Bonhage et al., 2017; Meyer et al., 2017). Alternatively, it might reflect increased

phase-synchrony driven by precise expectations about the timing of salient auditory input

(Lakatos et al., 2008; Schroeder and Lakatos, 2009; Calderone et al., 2014; Arnal et al.,

2015; Kayser et al., 2015; Boucher et al., 2019).

Increased alpha-band power and pupil dilation have received comparatively more

widespread attention in the speech comprehension literature, most notably in association

with effortful, ‘active’ listening under adverse conditions (Zekveld et al., 2010; Wöstmann et

al., 2015; Dimitrijevic et al., 2017, 2019). Parametric increases in alpha-band power (e.g.,

Obleser and Weisz, 2012; cf. Hauswald et al., 2020) and pupil size (e.g., Winn et al., 2015;

cf. Zekveld et al., 2018) have been reported as the severity of speech degradation

intensifies. However, the differences we observed in these variables between the prior and

no-prior conditions cannot be ascribed to stimulus properties, since the degree of acoustic

degradation was held constant across conditions. Likewise, such differences cannot be

explained by sentence (un)intelligibility (cf. Becker et al., 2013) or prior (in)congruence, given

the similarity of the responses induced by P+ and P- conditions.

Following previous work implicating alpha oscillations in the top-down inhibition of

task-irrelevant cortical networks (Klimesch et al., 2007; Jensen and Mazaheri, 2010) or

stimuli (Kerlin et al., 2010; Strauß et al., 2014b; Wöstmann et al., 2016, 2017), alpha

synchronisation following written information might represent the re-allocation of attention

from visual pathways to the auditory domain; i.e. a covert switch from visual sampling to

active listening (cf. Foxe et al., 1998; Fu et al., 2001; Henry et al., 2017). This switch is

evidenced in our data by the transition from a reduction in alpha power to an increase

around the onset of the second presentation in the P+ and P- conditions (Figure 4A).
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Additionally, such activity might index working memory processes involved in mapping online

auditory input to linguistic predictions induced by the written text (cf. Obleser et al., 2012;

Meyer et al., 2013; Sedley et al., 2016; Wilsch and Obleser, 2016). This explanation is

appealing given the close correspondence between the time-course of alpha-band

synchronisation and the first sentence iteration. Given the immediacy of the pop-out effect,

attempts to match the prior with incoming information are unlikely to persist beyond the first

sentence iteration -- either the hypothesis instantiated by the prior is confirmed and the

sentence correctly parsed (cf. Friston et al., 2021), or it is disconfirmed and abandoned. This

hypothetical process would seem concordant with the temporal evolution of the induced

response, which peaks ~2 s following sentence onset, declining thereafter.

While the increase in pupil diameter is similarly marked at the beginning of the sentence

presentation following prior information, this response decayed at a much slower rate than

that of the alpha synchronisation. This suggests pupil dynamics tap into cognitive processes

that are dissociable from those relating to alpha-band dynamics (cf. McMahon et al., 2016;

Miles et al., 2017; Alhanbali et al., 2019). Pupil size may reflect more generic aspects of task

engagement (Kahneman and Beatty, 1966; Beatty, 1982; Zekveld and Kramer, 2014;

Hjortkjær et al., 2020). Increased pupil diameter in both the P+ and P- conditions is

consistent with a greater allocation of cognitive resources to the auditory stream when prior

information is available, as compared to an absence of prior information in the P0 condition.

Conclusion

This study provides the first compelling electrophysiological evidence that sentence pop-out

is mediated by top-down predictive mechanisms. By manipulating top-down prior information

while holding bottom-up sensory information and prior stimulus exposure constant, we

demonstrated that correct sentence information and improved clarity are associated with
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improved cortical speech tracking (i.e. enhanced stimulus reconstruction). This finding is

consistent with a predictive coding interpretation of envelope representation. Our

neurophysiological measures revealed distinctive functional profiles: theta activity was

relatively reduced following correct information; delta and alpha, as well as pupil size, were

increased following any information. These findings indicate that theta-band activity indexes

the efficiency of incremental sentence processing and is sensitive to intelligibility, whereas

delta- and alpha-bands, along with pupil size, track attentional regulation and model

evaluation during active listening.
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