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ABSTRACT 
It has been shown that the skin can provide highly resolvable, dynamic tactile information to the 

central nervous system. However, currently available skin models do not provide a matching level of 

dynamic complexity. Motivated by recent observations that everyday interactions create a diversity 

of widespread travelling waves of multiple overlaid frequencies in the skin, we here model the skin as 

a 3D-distributed mass-spring-damper model. Shear forces across each spring were reported back as 

separate sources of information, on which we performed information content analysis using principal 

component analysis. We found that a wide range of settings of spring constants, dampening 

coefficients and baseline tension resulted in highly resolvable dynamic information even for simple 

skin-object interactions. Optimization showed that there were some settings that were more 

beneficial for a higher temporal resolution, i.e. where multiple independent interactions could be 

more easily resolved temporally. Whereas even a single sensor reporting a skin shear force with 

infinite precision by itself can achieve infinite resolution, biological sensors are noisy. We therefore 

also analyzed the resolution of force direction in the dynamic skin model, when their simulated 

signal-to-noise ratio was varied. We conclude that biological skin due to its inherent dynamics can 

afford a low spatial resolution of sensors (subsampling) while still maintaining a very high resolution 

for detecting skin-object interaction dynamics, and that biological evolution moreover due to this 

construct likely has been free to ‘play’ around with a variety of mechanical skin parameters and 

sensor densities without significantly compromising this resolution. 
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INTRODUCTION 
The nature of dynamical skin-object interactions makes biological skin capable of rich, high-

dimensional sensing where each interaction is decomposable into a high number of dynamic, haptic 

input features [1]. These input features indeed appear to be represented within the central nervous 

system [2]. The key concept is that a rich diversity of relatively independent, temporal contact-state 

evolutions, i.e. input features, enables us to create high-dimensional, rich percepts of the outside 

world. Contact-state evolutions can be translated into spatiotemporal patterns of skin shear forces, 

which can be accessed by the brain if they are sampled and reported back to the central nervous 

system via the tactile skin sensors. The nature of such skin shear forces, and how they evolve over 

time, is to a large degree dependent on the internal dynamical properties of the skin. In order to 

better understand the richness of mechanical effects that can arise in biological skin, we wanted to 

create a skin model designed to capture central dynamic components of biological skin, without 

being too computationally costly.  

The mass-spring-damper model is one approach to model mechanical dynamics that can be said to 

have many traits in common with the skin. In particular the observation that everyday interactions 

generate widespread travelling waves of multiple overlaid frequencies [3] speaks in favor of that the 

mass-spring model is a reasonable approximation of skin dynamics. The skin is composed of 

distributed masses, i.e. tissue, that are connected with dampened springs (connective tissue, [10]), 

and which can have a varying degree of tension, for example depending on joint angles or muscle-

controlled pressure  between skin and object. The mass-spring-damper model can be constructed in 

a grid-like arrangement with varying degrees of resolution, but is computationally less expensive 

than finite element models (FEMs) of the skin. Mass-spring-damper models are less detailed than 

FEMs, but we argued that they can still be providing sufficiently complex dynamics to capture the 

essential features of skin properties in skin-object interactions. 
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METHODS 

Skin Structure 

The skin model was designed as a mass-spring-damper model, where the adjacent masses were 

connected using springs and dampers. The masses in this skin model were arranged in three layers, 

mimicking the structural properties of human skin (epidermis, dermis, and hypodermis). In each layer, 

the masses were homogeneously distributed in a mesh grid structure, and across the layers the 

masses were arranged in a pyramidal structure (Figure 1A). Such distribution of masses allowed the 

skin structure to have symmetrical geometries to implement the finite element method using 

stiffness matrix (see below). The skin model studied in this article has a mesh size of 6x6 masses in 

layer 1 (36 masses), 5x5 masses in layer 2 (25 masses) and 4x4 masses in layer 3 (16 masses). The 

masses on the edges of the skin model (in all layers) were fixed in all three axes. Additionally, all the 

masses in the third layer were fixed in all three axes.  

Mass-spring-damper model 

The equation of motion of a single degree of freedom mass-spring-damper system is given by, 

𝑚𝑥̈(𝑡) + 𝑐𝑥̇(𝑡) + 𝑘𝑥(𝑡) = 𝐹(𝑡) (1) 
 

Where 𝑘 is the stiffness of the spring, 𝑚 is the mass, 𝑐 is the dampening coefficient and 𝐹 is the 

driving force. 𝑥, 𝑥̇ 𝑎𝑛𝑑 𝑥̈ are the position, velocity, and acceleration of the mass respectively. The 

equation 1 can be re-written for a multiple degree-of-freedom system, where the scalar variables are 

replaced with matrices and vectors, 

𝑀𝑞̈ + 𝐶𝑞̇ + 𝐾𝑞 = 𝑓 (2) 
 

Where 𝑀, 𝐶 and 𝐾 are symmetric matrices denoting mass, stiffness and damping of the overall 

system. 𝑓 is the input force vector. 𝑞, 𝑞̇ and 𝑞̈ are the vectors indicating the position, velocity, and 

acceleration. 

Furthermore, to compute the numerical integration (to perform mathematical simulations), the 

above equation of motion is written in state-space form as below [4], 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (3) 
 

Where 𝑥 is the state vector, 𝑢 is the applied input force, 𝐴 is the state matrix, and 𝐵 is the input 

matrix. Further coupling equation 2 to equation 3, we achieve 

𝑀𝑞̈(𝑡) = −𝐶𝑞̇(𝑡) − 𝐾𝑞(𝑡) + 𝑓(𝑡) (4) 
 

Which can be written as below [4], 

𝑞̈(𝑡) = [
0 𝐼

−𝑀−1𝐾 −𝑀−1𝐶
] 𝑥(𝑡) +  [

0
𝑀−1] 𝑓(𝑡) (5) 

The state matrix 𝐴 is, 
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𝐴 =  [
0 𝐼

−𝑀−1𝐾 −𝑀−1𝐶
] (6) 

The input matrix 𝐵 is, 

𝐵 =  [
0

𝑀−1] (7) 

and 

𝑥 =  [
𝑞
𝑞̇] (8) 

 

To compute the numerical solution of the above-described motion equation, an ode45 solver was 

used using MATLAB. The ode45 solver uses a fifth order Runge-Kutta method. Each mass within the 

skin model can move in the three-dimensional space (x, y and z axes), the matrices and vectors in 

above defined state equation were adapted accordingly. 

Stiffness matrix 

The stiffness matrix (𝐾) was constructed by grouping neighboring masses (connected with springs) 

into triangular configuration as in the finite element method (FEM). This grouping allows us to 

describe the structural relationship between all the springs within the skin. In each layer, a group of 

four neighboring masses were configured into two triangles using five springs as illustrated in Figure 

1B (springs between M5-M6-M11 and M6-M11-M12). Across the layers, two neighboring masses in 

layer 1 form a triangular configuration with the mass beneath in layer 2 (along z-axis), as illustrated in 

Figure 1C (springs between M5-M6-M41 and M11-M12-M41) and Figure 1A (with dotted lines). An 

example of stiffness matrix for the mass-spring-damper configuration shown in Figure 1B, is available 

in the Supplementary Material. The stiffness matrix for the entire skin model is presented in 

Supplementary Material code. 

Force vector (Initial force) 

To simulate the skin model dynamics, we defined the input force vector (𝑓) of equation 5 as an 

exponential decay function (Figure 1D). The input force vector was three dimensional (𝑓 =

 [𝑓𝑥 𝑓𝑦 𝑓𝑧]), and was varied depending on the type of input stimulus (Figure 3A-E) presented. We 

tested five different input stimuli (Figure 3 A-E) where each stimulus had different force conditions 

(direction of force indicated by red arrows in Figure 3) applied on specific masses in layer 1. In Figure 

1, 2 & S1, the results discussed were based on the input stimulus #1, where the input force along the 

z axis was applied to a single mass (M15) in layer 1. The phase (time period) at which an active force 

was applied to the masses was defined as the indentation phase, and rest of the simulation time was 

defined as the post-indentation phase (Figure 1D). 

Sensory responses / Spring forces 

The forces across each spring were considered as the sensory output signals of the skin model. The 

force across each spring (𝐹𝑠) was given by Hooke’s law (𝐹𝑠 = 𝑘𝑥). Where, 𝑘 is the stiffness constant 

of the spring and 𝑥 is the rate of change from its equilibrium position. For the configuration of the 

skin model presented in this article, we had a total of 338 springs resulting in 338 time-continuous 

sensory outputs. 
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Spiking neuron model 

The Izhikevich neuron model [5] was used to mimic mechanosensory like spiking responses (Figure 

4B) for given sensory input (spring forces, Figure 4A). For Izhikevich neuron model, the membrane 

potential (𝑣) and the adaptation variable (𝑢) were updated via the following nonlinear differential 

equations discretized using Euler’s method. 

𝑣̇ = 𝐴𝑣2 + 𝐵𝑣 + 𝐶 − 𝑢 + (𝐼 ∗ 𝐾) 
 

(9) 

𝑢̇ = 𝑎(𝑏𝑣 − 𝑢) 
 
When the membrane potential (𝑣) reached the spike depolarization threshold of 30 𝑚𝑉, one spike 

was produced followed by a reset: 

𝑖𝑓 𝑣 > 30𝑚𝑉, 𝑡ℎ𝑒𝑛 {
𝑣 ← 𝑐

𝑢 ← 𝑢 + 𝑑
 

 

(10) 

The 𝐴, 𝐵, 𝑎𝑛𝑑 𝐶 parameters and the spiking threshold were the standard ones of the Izhikevich 

artificial neuron model, whereas the parameters 𝑎, 𝑏, 𝑐, 𝑎𝑛𝑑 𝑑 were selected (Table 1) to mimic a 

regular spiking behavior [5,6]. 𝐼 was the input current to the neuron model, that was skin sensory 

responses (spring forces) in this article and 𝐾 is the input gain factor. 

Stochasticity in spiking neuron models 

Izhikevich neuron model is a deterministic system that generates stiff responses for the same input. 

This neuron model behavior is unlike the stochastic behavior of tactile afferent spike responses 

observed in humans [7]. Therefore, to achieve the stochastic neuron model properties, we have 

added a noise to the neuron model variables (membrane potential (𝑣) and resting potential (𝑢)) [8]. 

This noise is generated as gaussian white noise, whose level can be adjusted by signal noise ratio 

(SNR) in dB. The stochasticity in the neuron model is given by, 

𝑣 = 𝐴𝑊𝐺𝑁(𝑣, 𝑆𝑁𝑅) 
 

(11) 

𝑢 = 𝐴𝑊𝐺𝑁(𝑢, 𝑆𝑁𝑅) 
 

 

We used the inbuilt MATLAB function “awgn” to generate this gaussian white noise. It adds this noise 

with the relative signal-to-noise ratio to a signal. 

Spike convolution 

The Izhikevich neuron model spike output was convoluted to resemble post-synaptic potential (time 

continuous activity) using the following kernel equation, 

𝑎 =  
𝜏𝑚

𝜏𝑑 − 𝜏𝑟
∗ [𝑒𝑥𝑝 (

−𝑡 − 𝜏𝑙 − 𝑡∗

𝜏𝑑
) − 𝑒𝑥𝑝 (

−𝑡 − 𝜏𝑙 − 𝑡∗

𝜏𝑟
)] 

(12) 

Where, 𝑡∗ is the input spike time, 𝜏𝑑 is the decay time (4 ms), 𝜏𝑟 is the rise time (12.5 ms) and 𝜏𝑚 is 

the constant to calculate ration between rise time and decay time (21.3 ms), and 𝜏𝑙  is the latency 

time which is zero in this case. These values were chosen based on the previous work [9]. 

Table 1: Izhikevich neuron model parameters used in the evaluation of this study. 

A B C a b c d K 

0.04 5 140 0.02 0.2 -65 9 500 
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Analysis methods 

Principal component analysis 

The principal component analysis (PCA) was used to determine the amount of unique information 

present in the sensory responses during different sensing phases (indentation / post-indentation) for 

a given skin property. We used the inbuilt MATLAB function “pca” to perform this analysis. In brief, 

the pca function projects the input data onto principal component space (new set of variables) that 

explain the high dimensional input data on fewer output dimensions that encompass the maximum 

preservation of information in the input data. The “pca” function additionally returns the “explained 

variance”, which express the percentage of information each principal component explains.  

In this article, we performed PCA analysis on all the sensory responses for indentation and post-

indentation phase. We utilized the variance explained for each principal component to assess the 

amount of information present in the sensory responses during indentation /post-indentation phases 

(Figure 1F, S1). The higher the number of principal components needed to explain a given level of 

variance in the information (99% for example), the richer the information content in the sensory 

responses. 

Area computation 

Supplementary figure 2 illustrates the definition of the area between the information curves for the 

indentation and the post-indentation phases, respectively, across the principal components (PCs). 

This analysis provided data on the discrepancy in information content in first PC(s) during the 

indentation and the post-indentation phases, respectively. If the area value was negative (Figure 2A) 

then the indentation phase had a lower variance explained by the first PC(s) compared to the post-

indentation phase. This would in turn imply that a higher number of PC(s) was required to explain the 

total variance in the indentation phase, which in turn would indicate that there was more 

information in the indentation phase than in the post-indentation phase.  

PC ratio 

The number of PCs (Figure 2B) needed to explain 99% of the variance in the information, expressed 

as the ratio between the indentation and the post-indentation phases (equation 9), was used as 

another measure of the richness of information in the indentation phase. A high value of this “PC 

ratio” indicated that a higher number of PCs were needed to explain the information during the 

indentation phase compared to the post-indentation phase. 

𝑃𝐶 𝑟𝑎𝑡𝑖𝑜 =  (∑ 𝑃𝐶)
𝐼𝑛𝑑𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(∑ 𝑃𝐶)
𝑃𝑜𝑠𝑡−𝑖𝑛𝑑𝑒𝑛𝑡𝑎𝑖𝑜𝑡𝑛

⁄  (9) 

 

Signal information ratio 

The signal information for first 3 PCs, expressed as the ratio between the indentation and the post-

indentation phases (equation 10), was used as another measure of the richness of information in the 

indentation phase. A high value of this “Signal information ratio” indicated that a higher variance was 

needed to explain the information during the indentation phase compared to the post-indentation 

phase. 
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𝑆𝑖𝑔𝑛𝑎𝑙 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜
=  𝜇(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒%)/𝜎(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒%)

𝐼𝑛𝑑𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
𝜇(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒%)/𝜎(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒%)𝑃𝑜𝑠𝑡−𝑖𝑛𝑑𝑒𝑛𝑡𝑎𝑖𝑜𝑡𝑛⁄  

(10) 

 

Cross correlation measure 

The correlation index measure was used to compute the similarity of the sensory responses (Figures 

3F). The correlation between two signals was computed with an inbuilt MATLAB function “xcorr” 

(with zero lag), which produces values from 0 (uncorrelated) to 1 (identical). 

Classification algorithm 

For classification we chose a linear support vector machine (SVM) method trained with supervised 

learning. The classifier was trained and tested using a 5-fold cross-validation, which was repeated for 

100 iterations to ensure the robustness of the classifier and training procedure. We used the inbuilt 

MATLAB toolbox “Classification Learner” to perform this computation. The convoluted time-

continuous responses of Izhikevich neuron model output (for 50 repetitions across 9 different 

indentation conditions, Figure 4D-F) were chosen as input to the above-mentioned classification 

algorithm. The input vector data was binned into 9 classes, representing all the 9 different 

indentation force conditions to be identified by the SVM classifier. 
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Results 

Outline of the skin model 

Figure 1 illustrates the general properties of the skin model. Nodes are representing the masses. All 

masses are connected to their nearest neighboring masses with springs and dampeners, which would 

correspond to the mechanical effects of skin connective tissue [10]. Gravity was not simulated, as we 

argued that the intrinsic tension of the skin must be greater than the impact of gravity on the skin 

masses - otherwise, the skin would report differently on the same interaction depending on the 

orientation of the skin. The skin model was composed of three layers (which can be thought of as the 

epidermis, dermis, and hypodermis), where the deepest layer consisted of fixed nodes (a 

simplification of the connective tissue underlying the skin). The lateral edges of the simulated skin 

were also composed of fixed nodes. Nodes within a layer were connected in triangles (Figure 1B), 

and also the connections between nodes across adjacent layers were triangular hence forming 

pyramids of interconnections (Figure 1C). Skin object interactions were simulated by simply pushing 

or pulling on a subset of the masses in the superficial layer. This is a simplification compared to 

reality, where the sensors are not immediately accessible from the surface of the skin, so the only 

skin components immediately affected by external forces are the outermost layer of the epidermis. 

The frictional forces that arise in the skin-object interactions in this surface layer cause the skin tissue 

displacement and the skin shear forces internally in the skin where the sensors are located. In our 

experimental setting, stimulations consisted of abrupt initial force followed by a gradual tapering of 

that force (Figure 1D).  

Figure 1. Skin model and example sensor responses. (A) Schematic of the three-layer skin model. The skin model was 
designed as a mass-spring-damper model, where the masses within each layer were homogeneously distributed in a mesh 
grid structure and interconnected by springs and dampers. Across layers (along the z-axis), the masses were arranged in a 
pyramidal structure (layer 1:  36 masses (6x6 mesh), layer 2: 25 masses (5x5 mesh) and layer 3: 16 masses (4x4 mesh)). The 
masses between layers were also interconnected using springs and dampers (as illustrated with dotted lines). The masses on 
the edge of the skin (in all layers) were fixed in all three axes. Additionally, all the masses in the third layer were fixed in all 
three axes. (B) The spring-damper arrangement between masses within the same layer. In this and all subsequent figures, 
each spring was also a sensor and the force across the spring was the sensor signal. (C) The spring-damper arrangement 
between the masses across different layers. (D) The force profile used to displace the given mass (M15, see arrow in A) to 
elicit the skin dynamic effects. The set of different spatial force patterns used later in this study (Fig. 3) were all provided 
with this time profile. The shaded zone indicates the time range in which the forces (arbitrary units) were applied to the skin 
sensors (Indentation Phase). (E) The sensor responses (spring forces, see Methods) for an indentation (with the force profile 
given in D) applied to a single mass in layer 1 (M15, indicated with a black arrow in A). In this illustration, we show only the 
responses of sensors that were connected to Mass #15. (F) PCA analysis across all of the 338 sensors shows the amount of 
information present across the skin sensor population during the indentation phase (grey zone) and the post-indentation 
phase (white zone). These curves show the amount of variance in the sensory information that was explained by each 
principal component. For example, six PCs were needed to explain 99% of sensory information during indentation phase, 
compared to four PCs that were needed to explain 99% information post-indentation phase. 
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Since skin sensors sense shear forces, we used the load across each spring as the unitary tactile 

sensor data. On stimulation, due to the intrinsic dynamics of the skin model, the spring forces were 

strongest during the stimulation but also remained present long after the termination of the force 

application (Figure 1E). Moreover, each sensor reported dynamic information that was to some 

extent unique (Figure 1E; only a subset of the nearest neighboring sensors is shown). In order to 

analyze the information content, we used principal component analysis of the activity distribution 

across the entire population of sensors (Figure 1F). The PCA was performed across all sensing 

conditions for fixed time windows, so that we could track the variance explained by each PC across 

each unit of time and thereby compare the depth of the PCs engaged across conditions and time. In 

general, if a higher number of PCs were required to explain the variance of a sensor population 

activity for a given time window, this was taken as an indication that the time window contained a 

richer information. 

Parameter optimization 

The mass-spring-damper model inevitably results in that there will be dynamic after-effects after 

cessation of an active skin-object interaction (i.e. with resulting forces). Such dynamic after-effects 

are potentially containing information about the nature of the interaction that just took place, but 

will gradually be superseded by main features of the skin dynamics that will be common to the after-

effects of all types of interactions, hence containing less specific information. To avoid mixing up 

interaction-specific dynamic features with pervasive intrinsic skin dynamic features, and to increase 

the temporal resolution of reporting sequentially different types of interactions, we first argued that 

for the skin, nature must have found a trade-off between richness of information and temporal 

resolution. Therefore, we did a parameter optimization to find out the combination of spring 

constants, dampening coefficients and skin tension that provided the most information during active 

contact in relation to the information present in the after-effects of such active interactions (blue 

and red curves, respectively, in Fig. 1F). 

As a rule, during active indentation the sensor population generated variance across a higher number 

of PCs than in the post-indentation phase. The post-indentation phase instead provided its 

information preferably in the lower order PCs, i.e. it contained more of the main features/responsive 

modes of the skin. We first used this discrepancy to quantify the higher richness of information in the 

Figure 2. Optimization of skin dynamics parameters. These plots illustrate the effects of mechanical properties of the skin 
(spring stiffness (K) and dampening coefficient (D)) on the sensory information as evaluated by the PCA (Fig. 1E) of skin 
sensor information during the indentation and the post-indentation phases. (A) Computed area between the PC curves (for 
indentation and post-indentation phases) as illustrated in Suppl. Figure 2. The sensory responses were generated by input 
stimulus #1, where input force was applied to a single mass (M15) along the z-axis in layer 1 (as in Figure 1).  (B) Ratio of the 
number of PCs needed to explain 99% of information between indentation and post-indentation phase, where a high value 
indicates a proportionally lower information content in the post-indentation phase. (C) Ratio of the signal information (see 
Methods) for the first 3 PCs between indentation and the post-indentation phase. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.459180doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459180


11 
 

active indentation, by simply measuring the area between the curves for the two phases (Suppl Fig 

2). In Figure 2A it is shown that for most of the parameter settings for dampening and spring 

constants, this area did not vary greatly except when the dampening was extremely low or the spring 

was highly stiff. As another measure, we simply used the number of PCs (nPC) required to explain 

99% of the variance in the indentation phases and in the post-indentation phase, respectively, to 

obtain a nPC-ratio between the two (Figure 2B). In this case, we found that a high nPC-ratio was 

obtained for intermediate dampening and high spring compliance. In contrast, for the ratio of signal 

information (Figure 2C) we found a low spring compliance to be beneficial, while intermediate 

dampening was beneficial also in this scape. 

Overall, this analysis showed that there is a very broad landscape of useful solutions, where the skin 

dynamics of the mass-spring-damper model can provide rich information. For the remainder of the 

paper we picked one specific parameter combination (intermediate dampening, high-intermediate 

stiffness) which provided relatively high temporal resolution (Figure 2C) but which was also rich in 

information for the indentation phase (Figure 2B). We first tested different input stimuli which were 

created by varying the direction of the force vector(s) applied to one mass or a group of masses 

within layer 1, while keeping the same temporal profile (Figure 1D) (Figure 3A-E). The sensor data, 

represented by a subset of 10 sensors being in direct connection with the moved mass (M#15), was 

clearly different across these five conditions. Figure 3F shows this quantitatively by a cross-

correlation measure across these 10 sensors. Notably, this analysis indicated a higher degree of 

Figure 3 Sensory responses for different stimuli. (A - E) Five different input stimuli (as indicated in the sketches on left side 
of each plot) were tested, each having different initial force conditions (direction of force indicated with red arrows) applied 
on specific masses in layer 1 (red circles). The right side of each plot shows the sensor responses for the given input 
stimulus. In this illustration, we show only the responses of sensors that were connected to mass M#15. (F) Confusion 
matrix of the cross-correlation measure for the output of each single sensor across the five different input stimulus 
conditions. The values reported here are the mean values across all the sensors.  Cross-correlations of 1 signify a high 
similarity between the signals of individual sensors across the different stimulus conditions whereas 0 signifies high 
dissimilarity. 
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similarity between the sensor responses to Inputs 2 and 3 than between the rest, which can be 

explained by that these two inputs were more similar in terms of the forces applied, the only 

difference being that for input 2 the direction of the ‘pushing’ force had an angle against the z axis. 

Note that due to the fact that the model had dynamics, there were still forces arising in the x-y plane 

also in the case of the perpendicular force applied in input 2.  

High-precision decoding depending on the temporal resolution of the skin sensors 

Decoding depends on the reliability of the skin sensor output. If each skin sensor has no noise (as in a 

deterministic system), and has an infinite precision, then one sensor would be enough to achieve 

infinite resolution for sensing. This will be the case even for a static system; imagine for example a 

single node attached to a spring with a fixed base. If a force is applied to extend the spring along the 

x axis, and then next the same force, but now with a minimal angle deviation from the x axis, is 

applied then the deviation will mean that the force vector along the x axis has now become smaller. 

Hence, if the spring has infinite resolution, i.e. no matter how small the force difference is, the sensor 

will be able to report that small difference. Then the sensor has infinite resolution for the force angle. 

If the absolute level of force is not known, then disambiguation of force direction could be solved by 

a larger number of springs, with different orientation. In a system where forces are distributed across 

a large number of springs, those same effects would be in effect and it could in principle be enough 

with two sensors to sense any force direction and force angle. In a dynamical system with a large 

number of dynamical springs, the same effects plus the system dynamics would be expected to be in 

effect, where the complication for the static sensing task would be that the signal required to detect 

the force angle may be overlaid with internal dynamic modes of the skin.  
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This is shown in Figure 4, where Figure 4A shows the responses of 10 sensors to one input. Figure 4B 

illustrates that even one of these sensors (#5 in this case) can be used to tell a variety of stimuli 

apart. Again, if the sensor has infinite precision, it will have infinite resolution so no matter how small 

the differences in force vector directions, this one sensor would be enough to differentiate them. 

However, biological sensors have neural properties, i.e. they mediate their sensor signals with spike 

output. In neurons, the average intervals of the spikes approximately linearly reflect the amount of 

excitatory signal across the membrane [11], but each individual interval is subject to a certain level of 

stochasticity [12]. Hence, due to the inherent noise in neural spike signals, the spike output patterns 

are approximations of the continuous underlying receptor potential (receptor potentials for the 10 

sensors illustrated are given in Figure 4A). The temporal precision with which the skin sensor can 

reliably report information then becomes the limit of resolution of the sensing. This is shown for the 

10 sensors in Figure 4C, where an example of the spike responses across the 10 sensors are 

illustrated and for the example sensor (#5) across 50 repetitions in Figure 4D. In this case, the 

Figure 4. Differentiability of sensor signals and complications caused by spiking. (A) The sensor responses for an 
indentation (with the force profile given in Figure 1D) applied to a single mass along the x-axis (Fx = 0.5 N) and y-
axis (Fy = 0.5 N) in layer 1 (M15). In this illustration, we show only the responses of the 10 sensors that were 
connected to Mass #15. (B) For sensor #5 receptor potential (spring force) without spiking, the responses to 
indentations with varying forces and angles along the x and y axes. (C) The spike output of a stochastic Izhikevich 
neuron model driven by the sensory signals in A, one spike train for each sensor. (D) Izhikevich neuron model 
output for 50 repetitions of the exact same signal (from sensor #5 in A). This raster plot shows the stochastic firing 
behavior of the Izhikevich neuron model for a signal-to-noise ratio of 10 dB (see Methods). (E) For the same forces 
and angles as in B, spiking outputs from sensor #5 generated by the Izhikevich neuron model output for 50 
repetitions with a signal-to-noise ratio of 10 dB. The spike responses were convoluted using a kernel function (see 
Methods). (F) A confusion matrix showing the classification performance for the Izhikevich neuron responses for 50 
repetitions (the same responses as in E) under the 9 different indentation conditions. The classification was 
performed using Linear Support Vector Machine (SVM), with 5-fold validation. (G) The classification performance 
of the Izhikevich neuron responses across 9 different indentation conditions. Here we test the classification 
performance (the average in the diagonal of F) for the spiking neuron model at different settings for the signal-to-
noise ratio. 
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differentiation of the force angles becomes more difficult, because the integrated signal of those 

spike responses will differ between repetitions and so differentiation becomes less reliable (Figure 

4E). The reliability of signal differentiation was evaluated by an SVM classifier to give a quantitative 

example (Figure 4F). The classification was well below 100%, even though the angular differences 

between the stimuli were relatively large. This resolution would in turn vary with the nature of the 

stimulus, where we here used a very brief force peak with a gradual decay. Finally, a higher 

resolution was naturally achievable with a better signal-to-noise ratio in the spike encoding in the 

sensor (Figure 4G). 
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DISCUSSION 
Here we introduced a dynamical skin model to better understand the potential effects that can arise 

in biological skin during haptics interactions and what advantages those effects could have for 

information richness. This work builds on that the biological skin is a dynamic entity and that the 

biomechanics of skin plays an important role in defining the relation between tactile interactions and 

mechanosensory responses. The mechanical properties of biological skin vary greatly regionally 

within the same individual [13], between individuals (i.e. for example related to age; [14]) and even 

more across species. In our model, these mechanical properties were to a large extent defined by the 

parameter settings of the spring constants (𝐾) and the damper coefficients (𝐶). It is possible that 

actual skin could have been more precisely captured with more extensively fitted spring constants 

and damper coefficients adapted for a specific type of skin. However, our aim was primarily to 

illustrate the implications of the concept of the skin as a dynamical system, and our initial analysis 

(Figure 2) showed that useful effects arose across a broad spectrum of parameter settings.  

The main advantage of a dynamical skin is that the information generated from it is richly resolvable, 

more so than in a static system. Hence, it merely requires that sensors have a distribution within this 

tissue, and the brain can potentially learn to perceive/separate a variety of mechanical effects. Since 

this effects are separable into relatively independent components, as indicated by PCA (Figures 1 and 

2), these effects could also potentially be combined thus enabling extremely rich perceptual 

capability. Notably, in normal behavior, skin-object interactions typically are highly dynamic and last 

for 100s of ms, which hence can result in multiple overlaid dynamical effects that are specific to the 

skin-object interaction (Figure 3), which will be superimposed on the more generic internal harmonic 

modes of the skin. Full perceptual capability requires that the brain learns these internal harmonic 

modes, which hence will be part of the understanding of ‘self’, against which the specific 

superimposed modes generated in the interaction can be compared. 

Even though a sensor with infinite precision can only exist in software, as we described in this paper 

such sensors, if they existed in reality and were located in a dynamical skin such as in our model, 

would be capable of carrying very rich information. In biology, however, sensors transfer information 

to the brain via spikes. Spikes require the neural process of spike generation, which is an extra filter 

imposed on the information transfer, and which does not have infinite precision (Figure 4). This is 

hence the main limiting factor for the information richness that the brain can access. However, due 

the inherent richness of the skin dynamics, the brain could still receive rich information, if the 

number of sensors distributed in the tissue becomes sufficiently high. Note that these issues apply in 

particular to situations with dynamic skin-object interactions, where sensors may spend a large part 

of the time close to their firing threshold and thus exhibiting a larger level of stochasticity [11,12]. 

Several earlier skin models had the explicit aim to fit their models to recreate the skin afferent neural 

responses observed in experiments for given, reduced, input conditions. One of these models was a 

3D finite element analysis (FEM) based model [15]. Here, a multi-layer skin model was constructed 

using a finite element mesh that was generated based on the macroscopic anatomical structures of 

both monkey and human fingertips. Another approach has been to use continuum mechanics [16,17] 

to characterize the deformations in the tissue, which portrait stress as a quasistatic elastic model of 

the skin [18]. In contrast, here we used the mass-spring-damper model to achieve a computationally 

efficient skin model, designed according to the microscopic structural elements of the skin and to 
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capture the rich skin dynamics that could occur under natural skin-object interactions, rather than 

fitting the model to recording data of skin afferent responses evoked by an arbitrary input.  

Extensive research has also focused on creating bio-inspired electronic skin sensors for various haptic 

applications [19–22] and in neuro-prosthesis to establish tactile sensory feedback [23–26]. For 

example for skin-neuro-prostheses, which would be designed along the lines described by our skin 

model, could enable a richer sensation and hence elevating the usability of such prostheses. 
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Supplementary Figures 

 

Supplementary Figure 1. Sensory information for various spring and damper coefficients. Left side of 

each plot illustrate the sensor responses for input stimulus 1. In this illustration, we show only the 

responses of sensors that were connected to Mass #15. Right side of each plot show the PCA analysis 

across all the 338 sensor output responses. These curves indicate the amount of information present 

in the skin sensors (see Methods) during the indentation phase and post-indentation phase. 

 

 

Supplementary Figure 2. Area computation between the information curves (for indentation and 

post-indentation phases) explaining variance for given PC 1. 
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