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Abstract 1 

The dominant approach in investigating the individual reliability for event-related potentials (ERPs) is to 2 

extract peak-related features at electrodes showing the strongest group effects. Such a peak-based approach 3 

implicitly assumes ERP components showing a stronger group effect are also more reliable, but this 4 

assumption has not been substantially validated and few studies have investigated the reliability of ERPs 5 

beyond peaks. In this study, we performed a rigorous evaluation of the test-retest reliability of ERPs collected 6 

in a multisensory and cognitive experiment from 82 healthy adolescents, each having two sessions. By 7 

comparing group effects and individual reliability, we found that a stronger group-level response in ERPs did 8 

not guarantee a higher reliability. Further, by simulating ERPs with a computational model, we found that 9 

the consistency between group-level ERP responses and individual reliability was modulated by inter-subject 10 

latency jitter and inter-trial variability. The current findings suggest that the conventional peak-based 11 

approach may underestimate the individual reliability in ERPs. Hence, a comprehensive evaluation of the 12 

reliability of ERP measurements should be considered in individual-level neurophysiological trait evaluation 13 

and psychiatric disorder diagnosis. 14 
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1. Introduction 1 

Event-related potentials (ERPs) are noninvasive electrophysiological measures of indexing a range of sensory, 2 

cognitive, and motor processes involved in human brain activity. In clinical and translational applications of 3 

ERPs, a key challenge is to identify a reliable and valid mapping between individuals’ brain activation and 4 

their perceptual or cognitive capacities (Nelson and Guyer, 2012). Measurement reliability is the prerequisite 5 

for clinical applications of ERPs, such as assessments of meditative practice using sensory-evoked potentials 6 

(Cahn and Polich, 2006) or diagnoses of psychiatric cognitive dysfunction by cognitive ERPs like P300 7 

(Polich, 2004), and studies concerning reliability have received more attention recently (Dubois and Adolphs, 8 

2016; Höller et al., 2017; Noble et al., 2019; Croce et al., 2020). 9 

Originating from the field of psychometrics, reliability reflects the “trustworthiness” of a measure and 10 

denotes the extent to which a measure will yield a reproducible difference between individuals (Kraemer, 11 

2014). The importance of reliability in the research of individual difference cannot be overstated, regardless 12 

of the data analytics approaches used (e.g., correlational analysis or machine learning). In correlational 13 

analysis, the ability to find correlations between brain activation and cognitive behavior depends on the 14 

reliability of these measures (Goodhew and Edwards, 2019). In other words, the maximum possible 15 

correlation is constrained by the reliability of the individual measures used to calculate the correlation 16 

(Spearman, 1910). In machine learning-based individualized prediction, reliability has been proved 17 

mathematically to provide a lower bound on predictive accuracy (Bridgeford et al., 2020). 18 

Since the first systematic study on the reliability of ERPs (Segalowitz and Barnes, 1993), numerous studies 19 

have evaluated the test-retest reliability of ERP amplitude and the latency elicited from a variety of 20 

experimental paradigms (Cassidy et al., 2012; Cruse et al., 2014), but the primary focus has always been 21 

restricted to narrow time windows around ERP peaks (Thigpen et al., 2017; Cruse et al., 2014; Ip et al., 2018). 22 

Characteristic features, including latency, maximum amplitude, mean amplitude, and area under the window, 23 

are typically used to examine the reliability of ERPs. These ERP features are used in a machine learning 24 

model or correlation analysis to establish linkage between ERPs and cognitive/behavioral variables (Hu and 25 

Iannetti, 2019). However, such an analysis routine implicitly assumes that only the peak-related ERP 26 

measures reflect the subject-specific neurophysiological process to an external stimulus. This assumption is 27 

problematic, because the entire ERP shapes (rather than latency and amplitude of ERP peaks) are 28 

physiologically meaningful and important (Gaspar et al., 2011). Taking the temporal evolution of facial 29 

emotion perception as an example, the temporal shape of ERP can provide valuable clues about processing 30 

dynamics beyond what can be inferred from data restricted to ERP peaks (Van Rijsbergen and Schyns, 2009). 31 

In fact, ERP peaks represent the strongest group effects (i.e., group-level experimental effects among different 32 

conditions/cohorts). More specifically, by comparing the ERP response with its baseline activity, or 33 

contrasting two experimental conditions (i.e., the ERP difference wave), peak-related features of well-known 34 

ERP components, like N100, N200, and P300, were claimed to be closely associated with various perceptual 35 

and cognitive variables (Sur and Sinha, 2009). Here, the focus was on significant group effects responding 36 

to one condition versus another. As a representative example relevant to this research, the P300 was found to 37 

reflect the processes involved in stimulus evaluation or categorization as evidenced by experimental 38 

manipulation; thus, it is often reasonable to ask whether peak-related features of P300 reflect an individual's 39 
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cognitive function. From this perspective, as the dominant approach in investigating individual differences 1 

in ERPs, peak-based analysis implicitly employs group-level prior information. However, from the 2 

perspective of individual difference, it remains unclear whether peak-related activity shows robustness or 3 

consistency in assessing between-subject variance(Brandmaier et al., 2018). 4 

Indeed, the approach of identifying regions-of-interests (ROIs) by the strongest group effects and 5 

subsequently testing them for individual reliability was a common practice in evaluating individual 6 

differences in ERP studies, but recent studies have raised concerns that such a conventional approach may 7 

reduce the probability of detecting significant individual-level effects, especially in functional magnetic 8 

resonance imaging (fMRI) (Fröhner et al., 2019; Infantolino et al., 2018). For researchers interested in 9 

individual differences, between-subject variance in brain function is usually considered as the signal of 10 

interest rather than noise (Seghier and Price, 2018). For researchers interested in experimental effects, within-11 

subject variance is treated as the signal of interest, and between-subject variance represents the noise that 12 

should be minimized. Those different views imply that regions eliciting greater activation (i.e., a peak at an 13 

electrode showing the strongest group-averaged activity) on group effects may not correspond to reliable 14 

individual effects, which has been thoroughly discussed in psychology recently (Hedge et al., 2018; Goodhew 15 

and Edwards, 2019; Fisher et al., 2018). To the best of our knowledge, the rationality of selecting individual 16 

difference variables based on group effects in ERP analysis has been seldom challenged. Whether and in 17 

which situation the group effects and individual reliability are consistent is still questionable. In real data, the 18 

underlying factors among different subjects are unmeasurable and cannot be adjusted at will, which makes it 19 

challenging to answer this question. Thus, a simulation model should be applied to investigate underlying 20 

factors of modulating the consistency between the group effect and individual reliability, but this 21 

investigation via computational modeling is still absent. 22 

To address the abovementioned problems, the present study sought to examine the test-retest reliability of 23 

sensory-evoked potentials and cognitive ERPs based on the whole waveforms but not those restricted to 24 

narrow time windows around the peaks. More specifically, to test whether there is a spatial and temporal 25 

dissociation between group effects and the individual reliability result, the reliability of auditory-evoked 26 

potential (AEP), somatosensory-evoked potential (SEP), visual-evoked potential (VEP), and P300 was 27 

systematically examined by spatiotemporal decomposition and evaluation in a pointwise way (i.e., at each 28 

spatial-temporal EEG sample). Further, a dynamical system model was applied for the simulation of ERP 29 

generation to investigate the underlying mechanism explaining the real data results, in which key model 30 

parameters were varied to test their influences on the consistency between group effects and individual 31 

reliability. 32 

  33 
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2. Materials and Methods 1 

2.1 Data collection and preprocessing 2 

2.1.1 Experimental paradigm 3 

 

Fig. 1. Experiment procedure. Lower Left: Sensory-evoked potentials were elicited by a random sequence 

of somatosensory, auditory, and visual stimuli. Auditory stimuli were brief tones produced by a speaker; 

visual stimuli were brief flashes produced by an LED; somatosensory stimuli were applied to the index 

finger of the left hand by a vibrator. Lower Right: Cognitive ERPs were elicited by the classical visual 

oddball paradigm with the red squares as the target stimuli and white as the nontarget stimuli on the screen. 

A total of 112 healthy subjects participated in this study, and 93 subjects (Meanage = 21.1 year; SDage =4 

2.3 years) among them attended two sessions, which were scheduled on different days, separated more than 5 

6 days and 20 days apart on average. After removing 11 subjects whose data were corrupted with heavy 6 

artifacts, 82 subjects were included in subsequent reliability analyses. Ethical approval of the study was 7 

obtained from the Medical Ethics Committee, Health Science Center, Shenzhen University (No. 2019053). 8 

All subjects were informed of the experimental procedure, and they signed informed consent before the 9 

experiment. As illustrated in Fig. 1, the experimental paradigm was the same for the two sessions on different 10 

days. The experimental paradigm contained three types of sensory-evoked experiments (visual, auditory, and 11 

somatosensory) and a cognitive visual oddball experiment. 12 

Multiple sensory stimuli were arranged in two runs for each session. Each run consisted of 90 trials, including 13 

visual, auditory, and somatosensory vibration stimuli. These stimuli were delivered in a random order with 14 

inter-stimulus-interval (ISI) randomly distributed in the range of 2–4 s. Each stimulus lasted 50 ms. Hence, 15 

for each subject, there were a total of 180 trials of sensory stimulation in each session and 60 trials for each 16 
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of the visual, auditory, and somatosensory stimuli. An Arduino Uno platform was programmed to release the 1 

three types of stimuli, which communicated with the Matlab program (The MathWorks Inc., Natick, USA) 2 

on a PC through a serial port. An light-emitting diode (LED: 3 W with light shield), a headphone (Nokia 3 

WH-102), and a vibrator (1027 mobile phone flat vibration motor) were used to generate the visual, auditory, 4 

and somatosensory stimuli, respectively. 5 

The P300 experiment was arranged between the two runs of multiple sensory stimuli for each session. The 6 

visual oddball experiment was performed with the red squares as the target stimuli and the white squares as 7 

the nontarget stimuli on the screen. Each square lasted 80 ms, with an ISI of 200 ms. Hence, a total of 600 8 

trials were delivered within 2 min in a run, in which the target stimuli appeared with the possibility of 5%. A 9 

subject was asked to count the number of red squares and report the result at the end of the run to keep his/her 10 

attention on the screen. 11 

2.1.2 EEG recording and preprocessing 12 

EEG signals were recorded via a multichannel EEG system (64 Channel, Easycap) and an EEG Amplifier 13 

(BrainAmp, Brain Products GmbH, Germany). The signals were recorded at a sampling rate of 1000 Hz by 14 

64 electrodes, placed in the standard 10-20 positions. FCz was set to be the reference. Before data acquisition, 15 

the contact impedance between the EEG electrodes and the cortex was calibrated to be lower than 20 kΩ to 16 

ensure the quality of EEG signals during the experiments. 17 

The raw EEG data were first filtered by a 0.01–200-Hz band-pass filter and a 50-Hz notch filter. Then, bad 18 

channel interpolation was performed, and artifacts produced by eye blinks or eye movements were identified 19 

and removed by an independent component analysis (ICA) (Jung et al., 2000). For both sensory-evoked 20 

potentials (AEP, SEP, VEP) and P300, continuous EEG recordings were segmented into 1.5-second-long 21 

epochs (from −0.5 to 1.0 s relative to stimulus onset) and band-pass filtered (0.1–30 Hz). The pre-stimulus 22 

interval from −0.5 to 0 s was used for baseline correction. Grand average ERP waveforms were computed for 23 

each participant and stimulus type (visual, auditory, somatosensory, and target stimuli of the visual oddball 24 

paradigm). All EEG pre-processing steps were carried out using Letswave7 (Huang, 2019) and Matlab. 25 

2.2 Reliability analysis 26 

2.2.1 Peak-based analysis and pointwise analysis 27 

As the peak of each ERP component indicates the time point with a larger signal-to-noise ratio in the 28 

surrounding samples, peak amplitude is commonly used as a representative feature in ERP analysis. In this 29 

research, the most significant positive and negative peaks were detected by manually searching for the local 30 

maximum/minimum value in their corresponding time intervals for each subject. The mean amplitude around 31 

the peaks was not considered in this research because it is not fair to compare the reliability of pointwise 32 

analysis with the reliability of the mean amplitude, which is the average of multiple points. 33 

Pointwise analysis was also used to examine the reliability of the ERP. More specifically, the ERP amplitude 34 

at each time point and each channel was taken as the variable for measuring individual difference. Unlike the 35 

peak-based analysis, pointwise analysis is a fully data-driven method that is performed along with the 36 
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temporal and spatial domain in a point-by-point way. 1 

2.2.2 Metric of Reliability: Intraclass correlation coefficient (ICC) 2 

ICC is a commonly used metric for reliability analysis. In this study, the reliability was measured by using 3 

ICC(A, 1) of case 2A (McGraw and Wong, 1996) to represent the absolute agreement between repeated 4 

measurements for both the peak-based and pointwise analyses for both the peak-based and pointwise analyses. 5 

The subject-by-experiment matrix was modeled by a two-way ANOVA with random subject effects (row 6 

effects), fixed session effects (column effects), and residual effects, as shown in Eq. (1), and ICC(A, 1) is 7 

calculated as Eq. (2). 8 

 𝐸𝑅𝑃𝑖𝑗 = 𝜇 + 𝑟𝑖 + 𝑐𝑗 + 𝑟𝑐𝑖𝑗 + 𝑒𝑖𝑗, (1) 

 
𝐼𝐶𝐶(𝐴, 1) =  

𝜎𝑟
2

𝜎𝑟
2+𝜎𝑐

2+(𝜎𝑟𝑐
2 +𝜎𝑒

2)
=

𝑀𝑆𝑅−𝑀𝑆𝐸

𝑀𝑆𝑅+(𝑘−1)𝑀𝑆𝐸
, (2) 

In the above two equations, 𝑖 = 1, . . ,82 is used as the subscript for subjects; j = 1,2 is the subscript for 9 

multiple observations; 𝜇 represents the population mean for all observations; 𝑟𝑖  (row effects) is random, 10 

independent, and normally distributed, with a mean of 0 and a variance of 𝜎𝑟
2; 𝑐𝑗  (column effects) is random, 11 

independent, and normally distributed, with a mean of 0 and a variance of 𝜎𝑐
2; 𝑒𝑖𝑗 (error terms) and 𝑟𝑐𝑖𝑗 12 

(the interaction effects) are the residual effects with a variance of 𝜎𝑒
2 and 𝜎𝑟𝑐

2 . The reliability according to 13 

ICC(A, 1) was defined as the proportion of the between-subject variation over the total variation. The mean 14 

value and confidence interval of ICC(A, 1) for both peak-based and pointwise analyses were obtained 200 15 

times by bootstrap, which involved choosing random samples with replacement from a dataset and analyzing 16 

each sample in the same way. Based on Eqs. (1) and (2), the variance in an ERP measure could be partitioned 17 

into several components as Eq. (3), which was first conceived by (Segalowitz and Barnes, 1993): 18 

 𝑉𝑎𝑟(𝐸𝑅𝑃) = 𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡) + 𝑉𝑎𝑟(𝑆𝑡𝑎𝑡𝑒) + 𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒),            (3) 

in which 𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡) = 𝜎𝑟
2 represents the stable characteristics of the subject, which may affect the ERP 19 

outcome; 𝑉𝑎𝑟(𝑆𝑡𝑎𝑡𝑒) = 𝜎𝑐
2 represents the subject’s psychological state, which may affect the ERP, and 20 

𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒) = 𝜎𝑟𝑐
2 + 𝜎𝑒

2  represents the residual error. Partitioning variance into these components was 21 

applied in a pointwise way along with the spatial and temporal domains of the ERPs. 22 

2.2.3 Statistical analysis 23 

To further investigate the group- and individual-level measures in the reliability analysis, we analyzed the 24 

statistical consistency of reliability with the absolute value of the t-value and between-subject variance. 25 

Taking AEP as an example, one-sample t-test was performed along the post-stimulus time course at electrode 26 

Cz against a zero mean for grand average data on 82 subjects to derive group-level statistics. Time points that 27 

satisfied the Bonferroni-corrected criterion (p-value < 0.05/1000; 1000 was the number of post-stimulus time 28 

points) were selected to reduce the influences of noisy background activity. At these selected time points, the 29 

group- and individual-level measures were extracted, which were the absolute value of the t-value and 30 
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standard deviation across the 82 subjects. Then the linear trends were removed from the time series of each 1 

measure and reliability to avoid spurious correlation. The associations between different measures and 2 

reliabilities were quantified by Spearman's rank correlation coefficient, which is more robust to the non-3 

linearity of changes and outliers than Pearson’s correlation. For SEP, VEP, and P300, same procedures were 4 

applied at electrodes Cz, Oz, and Pz, respectively, to explore the consistency between group effects and 5 

individual reliability because those electrodes showing the strongest group-level response. 6 

2.3 Model Simulation 7 

In an ERP experiment, the brain can be treated as a black-box system. With a certain type of stimulus input, 8 

the output of the system can be measured by ERP recording. However, changes in the internal variables in 9 

the brain cannot be accurately detected. As a supplement to the real EEG data analysis, a dynamic model 10 

simulation allows us to further understand the internal mechanism of the brain. In this work, a simulation 11 

model was applied to explore underlying factors that have a critical impact on the test-retest reliability of 12 

ERP analysis. David et al. (2005) considered that evoked changes of an EEG signal could be ascribed to 13 

transients that arise as the system’s trajectory returns to its attractor, which was more like a dampened 14 

oscillation and may not be necessarily associated with system parameter change. Considering that rhythmic 15 

oscillations are the basic characteristics of an EEG signal, a two-dimensional linear dynamical model, as 16 

shown in Eq. (4), was proposed in this work for the simulation of ERP. The linear dynamical model is: 17 

 𝑥′(t) = 𝐴𝑥(𝑡) + 𝐶 ∗ 𝑢(𝑡) + 𝑒(𝑡), (4) 

in which 𝐴 ∈ [
−10 50
−50 −10

] is the state-transition matrix with the corresponding eigenvalues −10 ± 50𝑖. 18 

The real parts of the eigenvalues were negative to ensure that the system would eventually converge to its 19 

point attractor [0,0], and the imaginary parts of eigenvalues indicated the periodical oscillation during the 20 

convergence. The input strength, 𝐶,  was formulated as 𝐶𝑠𝑢𝑏 + 𝐶𝑡𝑟𝑖𝑎𝑙 , where 𝐶𝑠𝑢𝑏  is a random variable 21 

representing the input strength for a given subject conformed to a Gaussian distribution (μsub, σsub
2 ), and 22 

𝐶𝑡𝑟𝑖𝑎𝑙  is a random variable representing the input strength for a given trial conformed to a Gaussian 23 

distribution (μtrial, σtrial
2 ). According to Jansen and Rit’s neural mass model (Jansen and Rit, 1995), the input 24 

of the system was simulated by using Eq. (5): 25 

 
𝑒(𝑡) =  {

𝑎𝑡 ∗ 𝑒−𝑏𝑡     𝑡 ≥ 𝑗𝑖𝑡𝑡𝑒𝑟𝑠𝑢𝑏 ,    
   0               𝑡 < 𝑗𝑖𝑡𝑡𝑒𝑟𝑠𝑢𝑏,   

 (5) 

in which 𝑗𝑖𝑡𝑡𝑒𝑟𝑠𝑢𝑏 is a rounded random variable with a uniform distribution [−𝜏𝑠𝑢𝑏, 𝜏𝑠𝑢𝑏] relative to the 26 

onset time 𝑡 = 0, and 𝑒(𝑡) is the pink Gaussian noise representing the input of the background EEG activity 27 

in the simulation. The core setting of this model was the additive term 𝐶𝑠𝑢𝑏 + 𝐶𝑡𝑟𝑖𝑎𝑙, which coupled the input 28 

strength with the subject-level and the trial-level, thus allowing both 𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡) and 𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒) to co-29 

vary with the signal amplitude. 30 

To better simulate the real data, there were 82 subjects with 120 trials for two sessions in the simulation. For 31 

the two sessions, there were 60 trials for each session. No systematic state variance was introduced 32 
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considering the neglectable proportion of 𝑉𝑎𝑟(𝑆𝑡𝑎𝑡𝑒)  in real data results. To mimic the real data 1 

preprocessing procedure, baseline correction was also applied to simulated ERP. With a sampling rate of 2 

1000 Hz, there were 1500 time points for each trial, from −0.5 to 1 s. In this work, two major parameters of 3 

this model potentially influencing the test-retest reliability were investigated: (1) inter-subject variability, 4 

𝜏𝑠𝑢𝑏, for the latency jitter, 𝑗𝑖𝑡𝑡𝑒𝑟𝑠𝑢𝑏, and (2) inter-trial variability, 𝜎𝑡𝑟𝑖𝑎𝑙, for the input strength, 𝐶𝑡𝑟𝑖𝑎𝑙. 5 

Considering the state equation Eq. (4) with the phase portrait shown in Fig. 2(C), two factors, 𝜏𝑠𝑢𝑏 and 6 

𝜎𝑡𝑟𝑖𝑎𝑙, had a consistent form. Controlled by 𝜎𝑡𝑟𝑖𝑎𝑙, the disturbance of input intensity would cause a change 7 

in the amplitude of the ERP response. Hence, it could be treated as a disturbance to the trajectory of the 8 

response from normal direction. While controlled by 𝜏𝑠𝑢𝑏, the disturbance in the time domain did not change 9 

the amplitude of the ERP response but shifted its occurrence time in the phase portrait. Hence, it could be 10 

treated as a disturbance to the trajectory of the response from a tangential direction. Two factors, 𝜏𝑠𝑢𝑏 and 11 

𝜎𝑡𝑟𝑖𝑎𝑙 , were selected to investigate the test-retest reliability in the simulation because they provided 12 

disturbances perpendicular to each other, in which their influence in different phases of the ERP response 13 

would be different. Further, 𝜎𝑡𝑟𝑖𝑎𝑙 is a trial-level factor, 𝜏𝑠𝑢𝑏 is a subject-level factor, and the change in 14 

𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡) and 𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒) could be investigated in the simulation. 15 

 

 

Fig. 2. The ERP generation simulated by a second-order dynamic system model. (A) the framework of the 

dynamic model in Eq. (4); (B) the evolution of 𝑥1 and 𝑥2 over time, with its two-dimensional projection 

of the phase portrait in (C) and the evolution of 𝑥2 over time in (D). 
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3. Results 1 

3.1 Reliability of real data 2 

3.1.1 Reliability for multisensory and cognitive ERPs 3 

 

 

Fig. 3. Grand average waveforms of the four types of ERPs at their representative channels: (A) AEP at 

channel Cz, (B) SEP at channel Cz, (C) VEP at channel Oz, and (D) P300 at channel Pz from the two 

sessions. The name of ERP (i.e., “N2”) in each bar plot represents the reliability of the peak amplitude of 

the ERP. The digit in bold font (such as “90”, “113”, and “180” in the subplot of AEP) in each bar plot 

represents the reliability obtained by extracting the amplitude of each subject at that time point as an 

individual difference variable. 

The grand average waveform of AEP at channel Cz, SEP at channel Cz, VEP at channel Oz, and P300 at 4 

channel Pz are shown in Fig. 3, where red and purple curves denote the signals of the two sessions. The 5 

representative ERP peaks included: N1 at 90 ms and P2 at 180 ms for AEP, N2 at 150 ms and P2 at 245 ms 6 

for SEP, N1 at 64 ms, P2 at 185 ms for VEP, and P3 at 345 ms of P300. The negative and positive peaks are 7 

respectively indicated by blue and yellow dashed lines in Fig. 3. For the pointwise analysis, the red dashed 8 

lines indicate the maximal reliability along the ERP time courses. As the subjects were more familiar with 9 

the experimental environment in the second session, the amplitudes of the ERP peaks were reduced. 10 
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As illustrated in the bar plots of Fig. 3, the reliability results of the peak amplitudes were compared with the 1 

pointwise analysis at corresponding time points. The results showed that the peak amplitude was significantly 2 

(p < 0.05) less reliable than the corresponding pointwise amplitudes at the latency of the grand average for 3 

all types of ERPs. Importantly, the most reliable time point in the ERP did not correspond to the ERP peak. 4 

For the VEP shown in Fig. 3C, the maximal reliability time point appeared at 182 ms, which was close to the 5 

peak of P2. For P300 shown in Fig. 3D, the maximal reliability time point in the pointwise analysis appeared 6 

at 220 ms (red dashed lines), with a reliability of 0.61 and bootstrap confidence interval of [0.46, 0.72]. This 7 

was much earlier than the well-known P3 component in the peak-based analysis, with a reliability of 0.47 8 

and bootstrap confidence interval of [0.23, 0.63]. More interestingly, the time point with the maximal 9 

reliability for AEP appeared at 133 ms, with the mean amplitude being close to 0. The specific value in the 10 

bar plot can be found in Table.S1 in the Supplementary Material. Then, we used AEP as an example to 11 

conduct an in-depth analysis of the dynamic changes about the reliability of ERP, and similar results for VEP, 12 

SEP, and P300 can be found in the Supplementary Material. 13 

3.1.2 Spatiotemporal evaluation of reliability: a case study of AEP 14 

 
Fig. 4. (A) Grand average waveform of AEP at electrode Cz. (B) Pointwise test-retest reliability analysis 

considering the entire shape of the AEP time-course calculated by ICC(A,1). (C) The variance in the 

observation matrix with the size of subject × experiment was decomposed into three parts: 𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡), 

𝑉𝑎𝑟(𝑆𝑡𝑎𝑡𝑒), and 𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒) by a two-way random effects model along with the AEP time-course. (D) 

and (E) Scatter plots of 82 subjects’ amplitudes of AEP at electrode Cz in the two experiments were 

compared between 180 and 133 ms in (D) and between 180 and 350 ms in (E). 

Next, AEP was used to further investigate the consistency between group effects and reliability with different 15 

exploratory analyses (results for other types of ERPs are provided in the Supplementary Material). As 16 

illustrated in Fig. 4A, the t-value of significant regions that satisfied the Bonferroni-corrected criterion (p-17 
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value < 0.05/(1000*64, where 1000 is the number of post-stimulus time points, and 64 is the number of 1 

channels) are presented in the shaded region, which was consistent with the amplitude of the grand average 2 

waveform. Also, the post-stimulus AEP response behaved as a process of attenuating oscillations and finally 3 

approached the baseline. In contrast, the reliability of AEP after the stimulation shown in Fig. 4B increased 4 

significantly at first, lasting for a certain period, and then slowly returned to 0. Hence, the reliability of AEP 5 

along the ICC temporal profiles was not correlated with the amplitude of AEP. The maximal reliability of 6 

0.78 appeared at the time point 133 ms, with the mean amplitude of AEP close to 0, which did not correspond 7 

to N1 at 90 ms or P2 at 180 ms with the minimal/maximal amplitude. The topographies of the grand average 8 

amplitude and the reliability at 90, 133, and 180 ms are illustrated in Figs. 4A and 4B. 9 

Pointwise variance decomposition results based on a two-way ANOVA are shown in Fig. 4C. The magnitude 10 

of 𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡) was close to 0 before the stimulation. At the beginning of stimulation, the magnitude of 11 

𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡) reached a peak in the at 180 ms and then returned to 0. The local maximum of 𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡) did 12 

not correspond to the peak of AEP. The magnitude of 𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒) showed similar trends as 𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡), 13 

but the baseline was not 0. During the first 400 ms after stimulation, there was a certain correspondence 14 

between the waveform of AEP and 𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒). The peak of AEP corresponded to the local maximum of 15 

𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒), while the zero-crossing point of AEP corresponded to the local minimum of 𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒). 16 

Compared with 𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒) and 𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡), the magnitude of 𝑉𝑎𝑟(𝑆𝑡𝑎𝑡𝑒) was too small and had little 17 

impact on reliability. Hence, the reliability was mainly determined by the ratio of 𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡)  to 18 

𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒). Next, the time points of 133, 180, and 350 ms were selected for the comparison, in which 180 19 

ms corresponded to the peak of the grand average of AEP, while 133 and 350 ms corresponded to the local 20 

maximum of the reliability. 21 

Figure 4D shows the comparison of the scatter plots of 82 subjects’ amplitude of AEP between time points 22 

133 ms (diamonds) and 180 ms (asterisks). As 𝑉𝑎𝑟(𝑆𝑡𝑎𝑡𝑒) was close to 0, 𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡) could be measured 23 

as the variance along the black diagonal line, and 𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒)  could be measured as the variance 24 

perpendicular to the black diagonal line. As shown in Fig. 4D, the mean amplitude of AEP at 133 ms (mean 25 

value of the diamonds) was much smaller than that at 180 ms (mean value of the asterisks), but the 26 

𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡) values at the two different time points were similar. Hence, the reliability at 133 ms was larger 27 

than that at 180 ms because of the smaller 𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒) at 133 ms than that at 180 ms. Figure 4E shows a 28 

different situation compared with that shown in Fig. 4D. The reliabilities at 180 ms (asterisks) and 350 ms 29 

(circles) were similar, but both 𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡) and 𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒) at 350 ms were smaller than that at 180 ms. 30 

3.1.3 Statistical results 31 

Table 1 Associations between group-level measure (t-value), individual-level measure (between-subject 

variance), and reliability 

ERPs 
abs(t-value)  between-subject variance 

Spearman's ρ p-value Spearman's ρ p-value 

AEP (Cz) −0.14 0.01 0.35 3.90 × 10−11 

SEP (Cz) 0.26 6.4 × 10−8 0.63 <  10−12                

VEP (Oz) 0.16 0.002 0.67 <  10−12               

P300 (Pz) 0.56 <  10−12  0.75 <  10−12               
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Spatiotemporal dissociation between group effects and individual reliability was revealed as shown in Figs. 1 

3 and 4. These findings went against our expectations, given the fact that extracting peak-based measure 2 

using group-level prior information is the most common approach in reliability analysis. Hence, Spearman's 3 

rank correlation analysis was further performed on AEP, SEP, VEP, and P300 to analyze the statistical 4 

relationships of reliability with the absolute value of the t-value and between-subject variance. In the results, 5 

there was a negative rank relationship between the the absolute value of the t-value and reliability concerning 6 

AEP with ρ = −0.14 and p = 0.01. For other ERPs, it still showed a weak relationship, as ρ = 0.26, p < 0.001 7 

for SEP; ρ = 0.16, p < 0.001 for VEP; and ρ = 0.56, p < 0.001 for P300. Compared with group-level measure 8 

(t-value), the Spearman's ρ between the individual-level measure (between-subject variance) and reliability 9 

was greatly improved. 10 

3.2 Reliability of simulated data 11 

3.2.1 Simulation results 12 

 

Fig. 5. Grand average waveform of simulated ERP for a given set of system parameters (A). Pointwise 

test-retest reliability analysis along with the simulated ERP time course (B). The variance of observation 

matrix with the size of subject by experiment was decomposed into three parts: 𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡) , 

𝑉𝑎𝑟(𝑆𝑡𝑎𝑡𝑒), and 𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒) by a two-way random effects model along with the simulated ERP time-

course (C). (D) and (E) Scatter plots of 82 subjects’ amplitudes of AEP at electrode Cz in two experiments 

were compared between 134 and 164 ms in (D) and between 134 and 229 ms in (E). 

  13 
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To further understand the internal factor influencing the reliability in ERP analysis, a dynamic model, as 1 

expressed by Eq. (4), was used for the simulation. The simulation results, shown in Fig. 5, were consistent 2 

with the results from real ERP data, shown in Fig. 4. Specifically, the grand average waveform of the 3 

simulated ERP is shown in Fig. 5A, with a peak of 134 ms and subsequent zero crossings appearing at 164 4 

and 229 ms. The reliability curve across time is shown in Fig. 5B, and the corresponding variance 5 

decomposition is shown in Fig. 5C. In the simulation, the correlation between 𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒)and the amplitude 6 

of the ERP was more obvious. 𝑉𝑎𝑟(𝑆𝑡𝑎𝑡𝑒) was close to 0 because the systematic differences between the 7 

two sessions were not considered in this simulation. Hence, the reliability at the peak latency was the local 8 

minimum, and the reliability at the zero-crossing point was the local maximum. Similarly, the scatter plots 9 

in Figs. 5D and 5E show that the larger amplitude of the ERP may not necessarily lead to greater reliability, 10 

which was determined by the ratio of 𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡) to 𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒). 11 

3.2.2 The influence of the variability of jitter: 𝝉𝒔𝒖𝒃 12 

 

Fig. 6. The influence of increasing the variability of inter-subject latency jitter of the dynamic system at 

the subject-level on (A) Grand average waveform of simulated ERP. (B) Pointwise test-retest reliability 

along the time-course of simulated ERP. (C) 𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡) along the time-course of simulated ERP. (D) 

𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒) along the time-course of simulated ERP. (E) Comparisons between peak-based reliability 

and pointwise reliability at group-level peak latencies. (F) Comparisons between the maximum value of 

pointwise reliability and peak-based reliability. 

As a tangential disturbance in the phase portrait of Eq. (4) shown in Fig. 2, an increase in 𝜏𝑠𝑢𝑏 did not make 13 

a large difference in the waveform of the grand average ERP in the simulation, but it made the peak of P1 14 

and N2 smoother. As 𝜏𝑠𝑢𝑏 increased from 0 to 20, the amplitude of the peak P1 reduced slightly, as shown 15 

in Fig. 6A. As illustrated in Fig. 6B, the reliability of the peaks at 134 and 194 ms remained around 0.7, while 16 

the reliability of the zero-crossing points at 164 and 229 ms increased greatly. As inter-subject latency jitter 17 
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increased, the ICC values at 134 and 194 ms, which corresponded to the peaks of the grand average waveform, 1 

gradually shifted from the peaks of the ICC temporal profiles to their local minimum. The ICC values at 164 2 

and 229 ms, which corresponded to the zero-crossing point, behaved conversely. The corresponding variance 3 

decomposition is shown with different values of 𝜏𝑠𝑢𝑏  in Fig. 6(D–E). 𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡)  at the zero-crossing 4 

point (164 and 229 ms) of the grand average waveform increased as inter-subject latency jitter increased, 5 

while 𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒) fluctuated randomly. In comparison with the reliability of the peak amplitude, there was 6 

a greater difference between the maximum values of the ICC temporal profiles and the reliability of the peak 7 

amplitude. 8 

3.2.3 The influence of the variability of input power: 𝝈𝒕𝒓𝒊𝒂𝒍 9 

 

Fig. 7. The influence of increasing the variability of input power of the dynamic system at the trial-level 

on (A) Grand average waveform of simulated ERP. (B) Pointwise test-retest reliability along the time-

course of simulated ERP. (C) 𝑉𝑎𝑟(𝑇𝑟𝑎𝑖𝑡)  along the time-course of simulated ERP. (D) 𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒) 

along the time-course of simulated ERP. (E) Comparisons between peak-based reliability and pointwise 

reliability at group-level peak latencies. (F) Comparisons between the maximum value of pointwise 

reliability and peak-based reliability. 

 10 

For normal perturbation in the phase portrait of Eq. (4) shown in Fig. 2, it is shown in Fig. 6B that the overall 11 

magnitude of the ICC temporal profiles dropped because of increasing inter-trial variability in the dynamic 12 

systems’ input, while the reliability in the response amplitude at 134 and 194 ms, which corresponded to the 13 

peak latencies of the grand average waveform, dropped more quickly compared with the reliability of the 14 

response amplitude at 164 and 229 ms, exhibiting an unbalanced influence. The above observations were 15 

further investigated by pointwise variance decomposition, in which the within-subject variation (𝑉𝑎𝑟(𝑁𝑜𝑖𝑠𝑒)) 16 

increased systematically in proportion to the signal amplitude of the grand average waveform with increasing 17 
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inter-trial variability, while the between-subject variation fluctuated randomly, thus explaining why the 1 

reliability of the signal with larger amplitude decreased more. Interestingly, it can be noted from Fig. 6F that 2 

there was a larger difference between the maximum values of the ICC temporal profiles and the reliability of 3 

the peak amplitude as the inter-trial variability increased. 4 

4. Discussion 5 

The purpose of this study was to investigate the relationships between group effects and individual reliability 6 

across different types of ERPs. By performing pointwise reliability analysis and rigorous simulation, we 7 

found inconsistency between individual reliability and group effects and provided potential explanations from 8 

the perspective of oscillations of ERP. The findings have implications for a series of questions that are of 9 

theoretical and practical relevance for ERP researchers, which will be discussed below sequentially. 10 

As the dominant approach in current ERP reliability studies, peak-based analysis has some potential 11 

problems. Until now, peak-related feature extraction (i.e., peak amplitude, area under the curve, mean 12 

amplitude) has been a dominant approach for examining the reliability of ERPs (Nordin et al., 2011; Munsters 13 

et al., 2019; Devos et al., 2020). For peak-based approach, researchers have found that the reliability of ERPs 14 

is influenced by the number of trials, channel selection, and various preprocessing strategies (Huffmeijer et 15 

al., 2014; Leue et al., 2013). The basic hypothesis behind the peak-based analysis is that the peak of the ERP 16 

indicates a higher signal-to-noise ratio, which produces results with a higher confidence level because of the 17 

relatively small interference from background EEG noise, yet this concept of signal-to-noise ratio may not 18 

generalize to the research area interested in individual difference, in which between-subject variance are 19 

treated as signal, within-subject variance are treated as noise, as mentioned by (Brandmaier et al., 2018). 20 

Another limitation of peak-based analysis is that the latency and amplitude of ERP peaks, as well as the entire 21 

ERP shapes, are physiologically meaningful and important (Gaspar et al., 2011). 22 

Spatiotemporal evaluation and decomposition of reliability are good for identifying reproducible 23 

individual difference. In this research, it was found that high signal-to-noise ratio assumption for the peak 24 

of ERP did not hold when considering individual difference research, which was also mentioned by 25 

Brandmaier et al. (2018). As illustrated in Fig. 4, the variance of the noise (blue curve in Fig. 4C) was highly 26 

correlated with the magnitude of the AEP response (absolute value of the black curve in Fig. 4A). Considering 27 

that the essence of EEG is neural oscillation, the peak in the ERP is just a certain phase (0 or 𝜋) during the 28 

oscillation. There is nothing more special about it compared to other phases. Hence, there is no reason why 29 

reliability analysis should be limited to peak-based features; pointwise analysis can bring us more 30 

comprehensive results. As compared with t-test or ANOVA, the pointwise analysis of test-retest reliability 31 

did not have the family-wise error rate problem, as we calculated the ICC values but did not judge whether 32 

there was a significant difference. Compared with peak-based analysis, the results from the pointwise analysis 33 

always had significantly higher ICC values at the time point of the peaks for all four types of ERP analysis 34 

in our investigation. In the test-retest reliability of AEP, SEP, VEP, and P300, the pointwise analysis 35 

consistently showed that the ICC value increased greatly after the stimulation, and after maintaining it for a 36 

while, decreased slowly to the baseline (Fig. 4). Hence, the peak of ERP may not relate to a higher ICC value. 37 

Even in AEP, the two local maximum points of the ICC value corresponded to the two zero-crossing points 38 
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of the AEP. The findings suggest that reliability analysis restricted by the narrow time windows around the 1 

peaks is questionable. By performing pointwise analysis, dynamic changes in reliability in the spatial-2 

temporal domain can be traced, given enough sample size, thus providing a new angle of ERP reliability 3 

analysis in a data-driven manner. Also, agreeing with the opinions of Gaspar et al. (2011), we believe that 4 

shape-based metrics rather than peak-based metrics may be more reliable for individual difference research. 5 

Stronger group effects do not guarantee higher individual reliability. In reliability analysis, the group 6 

effects are commonly used as a prior information (Plichta et al., 2012; Aron et al., 2006; Fliessbach et al., 7 

2010), which assumes that experimental manipulation eliciting greater activation at the group level should 8 

also show reliable between-subject variation. This conventional approach has been questioned in recent years, 9 

especially in the fMRI community (Fröhner et al., 2019; Infantolino et al., 2018; Yarkoni and Braver, 2010; 10 

Li et al., 2019). In line with these studies, our results also revealed inconsistency between group effects and 11 

individual reliability in ERP analysis. More specifically, concerning the temporal domain discrepancies 12 

illustrated in Fig. 3, the most reliable points in the four types of ERPs (Cz for AEP, SEP, Oz for VEP, and Pz 13 

for P300) did not all correspond to maximum or minimum points of group-level activations. For AEP, the 14 

most reliable point appeared at the zero-crossing point of ERP. The spatial domain discrepancies are 15 

illustrated in Fig. 4 for AEP, in which we did not find the topography of the AEP response corresponding to 16 

the topography of the reliability at 133 and 350 ms. Further analysis, presented in Table 1, indicated that, as 17 

an individual-level measure, the between-subject variance showed a higher correlation coefficient than the 18 

group-level measure (abs(t-value)) across all four types of ERPs. All these evidences suggest that it is not 19 

advisable to select peak-related features at the electrode showing the strongest group effects without carefully 20 

examining their reliability. 21 

Intuitively, the spatial-temporal distribution of group-level analyses and individual-level analyses should tend 22 

to converge. In other words, increased activation by experimental manipulation at the group level should 23 

relate to individual-level analysis, given a large enough sample size and no confounding factors. However, 24 

few empirical pieces of evidence support this idea (Lee et al., 2006); more often, individual difference 25 

analyses simply fail to reveal any significant effects in regions that show a robust within-subject effect (Vetter 26 

et al., 2017; Raemaekers et al., 2007). In this research, the simulation results indicate that the consistency 27 

between group-level effects and individual reliability may be dynamically modulated by inter-subject latency 28 

jitter and inter-trial variability of dynamic system input, providing a dynamic view of the relationships 29 

between the two types of analysis in ERP analysis. 30 

Both peak and zero-crossing points of ERPs just represent different phases of one unified oscillation 31 

process. To further understand spatial-temporal inconsistency between group-level effects and individual 32 

reliability in ERP analysis, a dynamic model was applied for the simulation. The simulation model was 33 

simplified to be a second-order linear attractor with noise to simulate the EEG oscillation. From the 34 

perspective of dynamic system theory (Jansen and Rit, 1995; Youssofzadeh et al., 2015), peaks in the EPR 35 

are just an observation of EPR from one dimension of the computational models of neural processes. The 36 

phase portrait of our simulations (Fig. 2) provides a more comprehensive perspective, in which the peaks are 37 

just some special phases during the neural oscillation. In the dynamic model, the variability of jitter 𝜏𝑠𝑢𝑏 38 

provides a subject-level disturbance tangent to the trajectory of the ERP oscillation, and the variability of 39 

input power 𝜎𝑡𝑟𝑖𝑎𝑙 provides a trial-level disturbance perpendicular to the trajectory of the ERP oscillation. 40 

Owing to the different directions and different levels of the two factors, the simulation result showed that the 41 
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changes of these two factors played very different roles in different phases of ERP. Figures 6 and 7 illustrate 1 

the effect, especially at the peak and zero-crossing points of the ERP, with the changes of these two factors. 2 

With the similar wave form of the group-level ERP, the reliability would be determined by several factors. 3 

Measuring the peak-based features would not provide a comprehensive understanding about the oscillations 4 

in ERP. 5 

To translate group effects into individual difference research, some issues must be reconsidered in ERP 6 

data analysis. ERP analysis focusing on individual difference often implicitly or explicitly uses prior 7 

information from group effects. For reliability analysis, electrodes showing the strongest stimulus-related 8 

activity by group-level analysis are often chosen for test-retest reliability analysis of ERPs (Gaspar et al., 9 

2011). For constructing single-subject predictive models, it has been done in translating findings in group-10 

level statistics of ERPs into a machine learning framework (Boshra et al., 2019). Hence, here we discuss 11 

some critical issues about ERP data analysis concerning the use of group effects in individual difference 12 

research. 13 

⚫ Tracing back to history, the original idea of ERPs was to index specific cognitive processes rather 14 

than distinguishing different individuals (i.e., the research interest was how brain activity responds 15 

to one condition versus the other). Individual differences were treated as measurement error that 16 

could not be explained by experimental manipulation, as t-test, omnibus ANOVA assumes. From 17 

this perspective, there is no reason to select regions based on strongest group effects and then feed 18 

them into the correlation or reliability analysis, except that this region also shows greater between-19 

subject variation. 20 

⚫ For the data analysis pipeline of ERPs, it is very common to perform the subtraction operation (e.g. 21 

ERP difference waves) to minimize the impact of baseline individual differences. Such operations 22 

forcibly promote the activity of the baseline period at a constant rate across individuals, and the 23 

goal is to obtain a reliable experimental effect at the group level. This pervasive practice was 24 

inherited from research focusing on experimental effects, but few studies have noticed whether this 25 

approach is reasonable for individual difference analysis. Recently, the fMRI and psychology 26 

communities have argued that difference scores often exhibit a robust group-level effect but lower 27 

reliability (Infantolino et al., 2018; Onie and Most, 2017). 28 

Considering statistical analysis, typically, ERP data are averaged within conditions and participants 29 

after preprocessing and then analyzed for the mean difference between conditions using paired t-30 

test or repeated measures ANOVA. This traditional approach implicitly assumes that experimental 31 

manipulation yields uniform effects across all participants. Random variance of individual 32 

difference in effect sizes is not taken into account. By adopting linear mixed-effect models, in which 33 

random effects are used to capture individual variability as a form of random slopes or random 34 

intercepts, fixed effects are estimated by the grand mean across all participants. Such an approach 35 

has been adopted to simultaneously capture both group effects and individual difference (Frömer et 36 

al., 2018; Tibon and Levy, 2015). 37 

Several limitations are presented below. Our research and reliability analyses had several limitations. First, 38 

higher reliability does not ensure higher validity. The fact that the response amplitude at some time points 39 

was more reliable than the peak amplitude may be explained by sacrificing validity. More specifically, each 40 
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subject’s response amplitude at a given time point may indexed different neurophysiological processes, 1 

leading to larger between-subject variance. Increasing reliability in this way is not desirable because the 2 

underlying process of this measure is different across subjects. However, we cannot verify this potential 3 

explanation without behavioral data. Second, the neglectable portion of 𝑉𝑎𝑟(𝑆𝑡𝑎𝑡𝑒) may be attributed to 4 

not having enough sessions to capture systematic variance. Third, our analysis was restricted to univariate 5 

features; the relationship between group-level effects and individual reliability concerning multivariate 6 

analysis warrants further investigation in the future. 7 

5. Conclusion 8 

In summary, the purpose of this research was to investigate the consistency between group effects and 9 

individual reliability of ERPs. We performed spatiotemporal evaluation and decomposition of reliability in 10 

four different ERPs, and the findings indicate that peak-based approach (i.e., selecting regions showing the 11 

strongest group-level response as individual difference variables) may be inappropriate for reliability analysis 12 

of ERPs. Without carefully examining reliability, this approach based on group-level prior information may 13 

fail to reliably capture individual differences, which is supported by spatiotemporal dissociation between 14 

group effects and individual reliability. The disadvantages of peak-based reliability analysis were illustrated 15 

by spatiotemporal evaluation and decomposition of reliability, statistical results and the phase portrait in the 16 

simulation model. Further, the simulation results highlight the modulation role of inter-subject latency jitter 17 

and inter-trial variability in modulating the consistency between group-level effects and individual reliability. 18 

To conclude, all these results provide a new perspective beyond peak-based analysis in the ERP reliability 19 

studies. Furthermore, the findings deepen our understanding of ERP generation and the reliability of ERPs. 20 
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