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Abstract. The frequency-following response (FFR) is a scalp-recorded electrophysiological 
potential that closely follows the periodicity of complex sounds such as speech. It has been 
suggested that FFRs reflect the linear superposition of responses that are triggered by the 
glottal pulse in each cycle of the fundamental frequency (F0 responses) and sequentially 
propagate through auditory processing stages in brainstem, midbrain, and cortex. However, this 
conceptualization of the FFR is debated, and it remains unclear if and how well a simple linear 
superposition can capture the spectro-temporal complexity of FFRs that are generated within 
the highly recurrent and non-linear auditory system. To address this question, we used a 
deconvolution approach to compute the hypothetical F0 responses that best explain the FFRs in 
rhesus monkeys to human speech and click trains with time-varying pitch patterns. The linear 
superposition of F0 responses explained well over 90% of the variance of click train steady state 
FFRs and well over 80% of mandarin tone steady state FFRs. The F0 responses could be 
measured with high signal-to-noise ratio and featured several spectro-temporally and 
topographically distinct components that likely reflect the activation of brainstem (<5ms; 200-
1000 Hz), midbrain (5-15 ms; 100-250 Hz) and cortex (15-35 ms; ~90 Hz). In summary, our 
results in the monkey support the notion that FFRs arise as the superposition of F0 responses 
by showing for the first time that they can capture the bulk of the variance and spectro-temporal 
complexity of FFRs to human speech with time-varying pitch. These findings identify F0 
responses as a potential diagnostic tool that may be useful to reliably link altered FFRs in 
speech and language disorders to altered F0 responses and thus to specific latencies, 
frequency bands and ultimately processing stages.  
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Background 
The frequency-following response (FFR) is a scalp-recorded electrophysiological 

potential that closely follows the periodicity of complex sounds such as speech (Aiken and 
Picton, 2008; Chandrasekaran and Kraus, 2010; Skoe and Kraus, 2010). Initially thought to 
reflect activity arising mostly from the cochlear nucleus and inferior colliculus (Chandrasekaran 
and Kraus, 2010) current thinking assumes multiple sources distributed across brainstem, 
midbrain and cortex (Coffey et al., 2019). Altered FFRs have been established as an important 
biomarker in speech and learning disorders (Cunningham et al., 2001; Banai et al., 2005, 2009; 
Chandrasekaran et al., 2009; Russo et al., 2009; Anderson et al., 2010; Hornickel et al., 2012; 
Hornickel and Kraus, 2013). Given the current view of the FFR as a signal arising from widely 
distributed sources, there are many different potential anatomical substrates for pathologically 
altered FFRs. Despite important advances, it has remained challenging to map altered FFR 
features to altered processing in specific brain regions. As a result, the potential of the FFR to 
reveal insights into specific circuits at different auditory processing stages has not been fully 
unlocked.   

For ‘classical’ auditory evoked onset responses, important information about the neural 
origin can be gleaned from their latency and topography. Depending on their latency, neural 
responses have been coarsely attributed to auditory brainstem (<10 ms), midbrain (10-50 ms) 
or cortex (>50 ms) (Alain and Winkler, 2012). Topography, i.e., the spatial distribution of electric 
or magnetic fields across the scalp, can then be analyzed using source modeling approaches to 
further narrow down the exact spatial location of the underlying neural generators. Recent work 
has shown that source modeling can also be leveraged to better understand the neural 
generators of the FFR (Gerken et al., 1975; Bidelman, 2015; Coffey et al., 2016; Gorina-Careta 
et al., 2021). However, because of its dependence on high channel-count EEG and/or MEG 
recordings, source modeling is often not feasible for clinical FFR data which is typically recorded 
with a 3-electrode montage.  

An alternative approach can be derived from the hypothesis that FFRs reflect the linear 
superposition of responses to each glottal pulse (F0 response) that sequentially activates 
processing stages in brainstem, midbrain, and cortex (Gerken et al., 1975; Janssen et al., 1991; 
Dau, 2003; Bidelman, 2015; Teichert et al., 2020). Despite its theoretical relevance, the 
superposition hypothesis has not been subject to much empirical scrutiny (Bidelman, 2015). If 
the superposition hypothesis is accurate, FFRs would arise as the convolution of the F0 
response with a series of Dirac pulses whose time and amplitude reflect the onset and intensity 
of each glottal pulse, or more generally, each F0 cycle. Furthermore, it should be possible to 
compute the underlying F0 responses by inverting the convolution operation. So-called 
‘deconvolution’ approaches have successfully been used in a wide range of neuroscientific 
applications (Aquino et al., 2014; Teichert and Ferrera, 2015), including the closely related 40 
Hz auditory steady state response (Bohórquez and Özdamar, 2008) and continuous speech 
(Maddox and Lee, 2018; Polonenko and Maddox, 2021). To date, however, deconvolution has 
never been used to recover the F0 response underlying FFRs to stimuli with time-varying pitch. 
Thus, it is unknown how well a linear superposition model can account for the considerable 
spectro-temporal complexity of FFRs, and how much of their variance it can capture. If the F0 
responses indeed account for a substantial portion of the FFR, they would provide useful 
information about FFR generators. Specifically, the latencies at which F0 responses differ could 
provide information about the latency of the altered processing stages. If, however, F0 
responses only account for a very small fraction of the FFR, the F0 responses would likely be of 
limited use for understanding the alterations of the FFR in disease. 

The goal of the current study was to determine if F0 responses can help link altered 
FFRs to altered function in specific auditory processing stages. To that aim we addressed three 
main questions: (i) What percentage of the variance of FFRs can be explained by the linear 
superposition of F0 responses? (ii) How reliably can F0 responses be estimated? (iii) Can the 
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latencies of F0 responses be linked to anatomically distinct processing stages? Experiments 
were performed in macaque monkey which are known to exhibit human-like FFRs 
(Steinschneider et al., 1998, 2003; Brugge et al., 2009; Fishman et al., 2013; Ayala et al., 2017; 
Gnanateja et al., 2021). In addition, this species will ultimately allow us to confirm the results of 
the deconvolution method by directly measuring FFRs using invasive recordings.  

Methods 
Subjects. 

Data reported here was collected from 2 adult male macaque monkeys (Macaca 
mulatta). All experiments were performed in accordance with the guidelines set by the U.S. 
Department of Health and Human Services (National Institutes of Health) for the care and use of 
laboratory animals. All methods were approved by the Institutional Animal Care and Use 
Committee at the University of Pittsburgh. The animals had previously been exposed to pure 
tone and click-stimuli in passive and active listening paradigms.  
 
Stimuli. 

Two types of stimuli were used: (a) synthesized Mandarin tones (Fig 1A) and (b) click 
train versions thereof (Fig 1B). Mandarin tones: The synthesized mandarin tones used the 
vowel /yi/ in the context of 4 distinct F0 patterns: T1 (high-level, F0 = 129 Hz), T2 (low-rising, F0 
ranging from 109 to 133 Hz), T3 (low-dipping, F0 ranging from 89 to 111 Hz), and T4 (high-
falling, F0 ranging from 140 to 92 Hz). Mandarin tones were synthesized based on the F0 
patterns derived from natural male speech production(Xie et al., 2017). All stimuli had a 
sampling rate 96000 Hz and were 250 ms in duration. The stimuli were presented in both 
condensation and rarefaction polarities to minimize potential contamination of the neural 
responses by the stimulus artifact and pre-neural cochlear microphonics7. The stimuli were 
presented in a randomized manner, with a randomly selected inter-stimulus intervals between 
300 and 500 ms. In each 40-minute long recording session, we presented 500 repetitions of 
each tone and polarity for a total of 4000 sweeps. Click train stimuli: From each of the four 
synthesized mandarin tone stimuli we prepared a click train version that consisted of trains of 
0.1 ms long monophasic impulses. Timing and amplitude of the clicks in the click trains matched 
the timing and amplitude of the F0 cycles of the mandarin tone stimuli. The timing of the F0 
cycles was operationalized as the time of the peak pressure (Fig 1C, second F0 cycle), the 
intensity was operationalized as twice the absolute amplitude of the peak activity. The rationale 
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Figure 1 – Stimuli. A) The 4 synthetic mandarin tone in the time domain. B) The corresponding click train stimuli. C) A snippet 
containing two F0 cycles of a mandarin tone stimulus in the time- (black line) and time-frequency domain (color). Timing of the 
clicks in the click train stimuli matched the time of the highest pressure peak (second F0 cycle). We subsequently defined the 
onset of an F0 cycle in as the first positive pressure peak that coincides with the first of several peaks of power in the third 
formant that follows the opening of the glottis (first F0 cycle).    
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for choosing twice the amplitude was to account for the fact that speech sounds are modulated 
bi-directionally.  
 
Experimental setup.  

All experiments were performed in a small (4’ x 4’ x 8’ ) sound-attenuating and 
electrically insulated recording booths (Eckel Noise Control Technology). The animal was 
positioned and head-fixed in custom-made primate chairs (Scientific Design). Neural signals 
were recorded at a sampling rate of 30kHz with a 256-channel digital amplifier system 
(RHD2000, Intan).  
 

Experimental control was handled by a windows PC running an in-house modified 
version of the Matlab software-package monkeylogic. Sound files were generated prior to the 
experiments and presented by a sub-routine of the Matlab package Psychtoolbox. The sound-
files were presented using the right audio-channel of a high-definition stereo PCI sound card (M-
192 from M-Audiophile) operating at a sampling rate of 96 kHz and 24 bit resolution. The analog 
audio-signal was then amplified by a 300 Watt amplifier (QSC GX3). The amplified electric 
signals were converted to sound waves using a single element 4 inch full-range driver (Tang 
Band W4-1879) located 20 cm in front of the animals. 
 
To determine sound onset with high accuracy, a trigger signal was routed through the unused 
left audio channel of the sound card directly to one of the analog inputs of the recording system. 
Thus, sound onset could be determined at a level of accuracy that was limited only by the 
sampling frequency of the recording device (30kHz: corresponding to 33 μs). 
 
Cranial EEG. 

EEG activity was recorded from 33 EEG electrodes that were chronically implanted in 
1mm deep non-penetrating holes in the cranium (Woodman et al., 2007; Purcell et al., 2013; 
Teichert, 2016). Electrodes were positioned across the entire accessible part of the cranium at 
positions approximately homolog (Li and Teichert, 2020) to the international 10-20 system in the 
human (Li and Teichert, 2020). More details of the EEG recording setup have been provided in 
earlier work (Teichert, 2016; Teichert et al., 2016). Data was recorded with an Intan RHD 2000 
digital amplifier. The midline electrode immediately anterior to Oz served as the recording 
reference and ground electrode. Data was referenced offline to the Oz electrode. In one animal, 
all electrodes were functional, allowing us to perform the deconvolution for all electrodes and 
thus visualize topographies of the F0 responses. In the second animal only a subset of the 
electrodes were functional, thus preventing topographical analyses. 
 
Pre-processing 

The raw data were high pass filtered using a second-order zero-phase shift Butterworth 
bandpass filter with cutoff frequencies of 60 and 2000 Hz. Time-locked epochs were extracted 
and down-sampled to a rate of 10kHz. Epochs that exceeded an artifact-rejection criterion 
based on  the distribution of peak-to-peak amplitudes for each individual channel were excluded 
from further analyses for that channel. If an epoch exceeded the relative amplitude criterion in 
two or more channels, it was rejected for all channels. This relative amplitude criterion allowed 
us to process a range of channels with different noise levels simultaneously, i.e., using the 
same (relative) criterion. The valid epochs were averaged separately for the four tones to obtain 
a total of four FFR waveforms. In addition, the valid epochs were also averaged separately for 
all tones and polarity to obtain eight FFRs. 
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Deconvolution approach 
Click trains. The starting point for the click train deconvolution approach were click 

onset times and their amplitudes. The amplitudes were further normalized to an average value 
of 1 across all 4 click trains. The onset times were then shifted in steps of 0.1 ms (i.e., the 
sampling rate of the FFRs), to create 800 identical regressors, shifted in time relative to the 
original F0 onsets in a range between 0 to 79.9 ms. We then fit a linear model to the FFR using 
all 800 regressors. To that aim, the FFRs from all stimuli and the corresponding regressors were 
concatenated into a single time-series padded with NaN values (Not a Number) between them 
to avoid cross-talk between the end of one stimulus and the beginning of the next. The FFR 
kernel was then defined as the 800 weights of the 800 regressors. The deconvolution approach 
thus identified the kernel, that best explained the observed FFRs as the linear sum of 
overlapping responses to each individual click in the click train. Note that the FFRs to all stimuli 
was explained by a single 80 ms long kernel. The deconvolution approach was implemented in 
the statistical software R, using an in-house written deconvolution package (deconvolvR). 

Mandarin tones. An almost identical procedure was used to create the predictors for the 
tone FFRs. However, to create the click trains, we had placed individual clicks at the time of the 
peak pressure of each F0 cycle (Fig 1C, second F0 cycle). This choice may have been 
suboptimal, as peak pressure does not coincide with the timing of the actual glottal pulse. We 
thus identified an approach and operationalized the onset of each F0 cycle as the first positive 
pressure peak that coincided with a peak of power in the third harmonic (Fig 1C, first F0 cycle). 
The two different approaches yielded highly similar timing, but the estimated F0 onsets 
preceded the time of peak pressure very reliably by 1.01 ms. Tone FFR kernels were estimated 
from both types of predictors based on the timing of the peak pressure and glottal pulse. Both 
yielded almost identical results. However, the kernels from the peak pressure were delayed by 
approximately 1ms, and they explained a somewhat lower amount of variance. Furthermore, the 
timing of the tone kernel based on the glottal pulse matched the timing of the click kernel much 
better than the tone kernel based on peak pressure. Following the theoretical arguments and 
the empirical support, we report the tone kernels using the glottal onset time rather than the time 
of peak pressure. 
 
Quantification of model fit 

The primary variable used to quantify the quality of the model fit was percent variance 
explained. Percent variance explained is typically calculated as 100 * (TMS-RMS)/TMS. Here 
RMS stands for the mean of the squares of the residuals and TMS for the mean of squares of 
the total signal, i.e., including variance pertaining to the actual FFR as well as measurement 
noise. Since no model can be expected to account for measurement noise this traditional metric 
cannot reach 100% unless there is no measurement noise. The limit of percent variance a 
model can explain is given by 100 – 100/signal-to-noise ratio. As a result, the metric is only 
comparable for data sets with similar signal-to-noise ratio. Because some of our data sets have 
rather different signal-to-noise ratios, we decided to use an alternative metric that adjusts for 
different SNRs. This metric sets out to quantify how much of the ‘explainable’ variance, i.e., the 
portion of the variance that exceeds the variance of the baseline, can be explained by the 
model: 100 * (TMS-RMS)/(TMS-BMS). In this context, BMS stands for the mean of the squares 
of the signal on the baseline, defined as the 50 ms period before stimulus onset, and the period 
from 320 to 390 ms after stimulus onset, i.e., 70 to 140 ms after stimulus offset. We had found 
the variance on the post-stimulus baseline to be systematically smaller than on the pre-stimulus 
baseline. Hence the decision to use the average of both periods.  

Unless mentioned otherwise, we will refer to this SNR-corrected measure of percent 
variance explained throughout the manuscript. Percent variance explained was calculated 
across the entire simulation period (0 to 280 ms after stimulus onset), as well as the sustained 
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period which excluded both on- and offset responses (50 to 250 ms). Note that in all cases, the 
kernel was estimated by fitting it to the entire temporal duration of the data.  Consequently, any 
difference in percent variance explained is not caused by requiring the model to fit a simpler 
subset of the data, but rather depends on how well the same underlying model accounts for the 
data in different epochs. 

Furthermore, we performed a wavelet decomposition of the signal as well as the 
residuals and evaluated percent variance explained in three different frequency bands, the 
frequency range of the fundamental frequency F0 (70–170 Hz), the frequency range of the first 
harmonic H1 (180–300Hz), and the frequency range of harmonics beyond the second harmonic 
Hx (400–1200Hz). To account for the temporal smearing of the wavelet decomposition, the time 
ranges of all periods were shrunk by 20 ms on each side. 

 
Data split control. To prevent overfitting caused by determining the kernel and the 

percent variance explained from the same data set, we randomly split the data of each 
recording session in two equally sized subsets. The first subset of data (training set) was used 
to estimate the kernel. This kernel was then used to determine percent variance explained of 
the second subset (testing set). In the context of the work presented here, the approach was 
only used for the data averaged across all sessions.  
 Cross-day control. At the single session level, we used a different approach to prevent 
overfitting. Specifically, to explain FFRs from one recording sessions we only used kernels 
extracted from different recording sessions. The data fit metric for the session in question, e.g., 
percent variance explained, was then defined as the average of that metric using kernels from 
all other sessions.  

Shuffle control. To control for the large number of predictors in the linear model (80 
[ms] x 10 [samples per ms] = 800) we included a shuffle-control. To that aim we used the same 
averaged data and the same predictors. However, the timing of the dirac pulses was shifted 
such that the timing and amplitude designed to match the F0 onsets for tone 2 were used to 
predict data for tone 1, the timing and amplitude designed for tone 3 were used for tone 2 and 
so on. This approach was used for data averaged across all recording sessions as well as for 
data of individual recording sessions. 

 
Data quality and rejection of recording sessions.  

For the click train stimuli we recorded a total of 27 EEG sessions (animal B: 17, animal 
J: 14). For the mandarin tone stimuli we recorded a total of 18 EEG sessions (animal B: 2, 
animal J: 18). Sessions were included into the analyses if the noise of the averaged FFRs on 
the baseline was below 0.008 uV^2. Data quality for animal J was variable between sessions, 
and approximately half of the sessions did not meet the criterion (animal J, click train sitmuli: 
8/14 sessions; tone: 9/18 sessions). Data quality for animal B was consistently high. Only one of 
the click train sessions needed to be excluded because of noise. In addition, we excluded one 
of the click train sessions because the signal amplitude was less than half of the other sessions, 
a clear outlier given the tight distribution of values for the other sessions. In summary, we used 
2/2 tone sessions and 15/17 click train sessions for animal B. 

Noise amplitude on the excluded sessions were distributed bimodally: a small fraction of 
cases with an increase of well over 10-fold, and a larger fraction with an increase below 2-fold. 
Including the sessions with less than a two-fold increase did not change the main conclusions. 
However, it did increase variability of the results between sessions and decrease the percent 
variance explained by a relatively modest amount. The key takeaway from including the noisier 
sessions is not very unexpected: if data quality is lower, less variance can be explained.   
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Results 
FFRs were recorded in response to two types of stimuli: (i) 4 synthetic mandarin tones 

using the syllable /yi/ and click train versions of these mandarin tone stimuli. Click train stimuli 
were created by converting the 4 mandarin tone stimuli into series of mono-phasic clicks whose 
timing and amplitude matched the estimated time of onset of each F0 cycle (Fig 1A, see 
Methods for details). We report data from a total of 23 EEG recording sessions using the click 
train stimuli (15 sessions animal B, 8 sessions animal J) and 11 sessions using the mandarin 
tone stimuli (2 sessions animal B, 9 sessions animal J). Each session lasted 40 minutes and 
contained a total of 4000 stimuli, 500 from each type and polarity.  

 
Tone and click train FFRs 

As expected, both types of stimuli elicited periodic FFR-like responses in both animals. 
Figure 2 depicts the mandarin tone stimuli as well as the grand average FFRs in the time and 
time-frequency domains for both subjects. In the time-domain, we observed a wide diversity of 
shapes of the FFRs as F0 changed both within and between different mandarin tone stimuli. In 
the time-frequency domain, we observed modulation of the fundamental frequency (F0) and the 
first harmonic (H1) in concert with the dynamically changing fundamental frequency of the 
mandarin tone stimuli. Figure 3 depicts the click train FFRs in the time and time-frequency 
domains. The click train FFRs were qualitatively similar, but of larger amplitude than the 
mandarin tone FFRs. In the time-frequency domain, we observed power above the first 

Figure 2 – Mandarin Tone FFRs. Representation of mandarin tone stimuli and the corresponding FFRs in the time and 
time-frequency domain. A-D stimuli, E-F monkey B FFRs, I-L monkey J FFRs  
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harmonic. Especially for animal B, there was evidence of a second harmonic (F2) in cases when 
F0 was low, such as for click train #3 or towards the end of click train #4. Furthermore, we often 
observed power beyond the second harmonic in even higher frequency bands >400 Hz. In 
contrast to the first and second harmonic, the frequency of these higher-frequency components 
did not change in line with the fundamental frequency of the stimulus. These higher frequencies 
were also present for the tone FFRs, but harder to distinguish due to their lower amplitude. 
Based on the time-frequency decomposition of the FFRs, we will focus on three different 
frequency bands, the frequency range of the fundamental frequency F0 (70–170 Hz), the 
frequency range of the first harmonic H1 (180–300Hz), and the frequency range beyond the 
second harmonic Hx (400–1200Hz). 

  
Deconvolution of click train FFRs 

We next set out to test if FFRs with such a complex phenomenology both in the time and 
time-frequency domain can be explained by a simple linear super-position model. Given their 
larger amplitude and thus higher signal-to-noise ratio we first focused on the click train FFRs. To 
further improve signal-to-noise ratio, we initially focused on data averaged across all recording 
sessions. To that aim, data from each session was randomly split into two equally sized sets, 
subsequently referred to as the training and test set, respectively. Within each set, trials were 
averaged across the four different click train stimuli. The deconvolution was performed on the 
four click train FFRs averaged across all training sets. The model fit was then evaluated by 
comparing the model predictions derived from the training set with the data from the testing set.  

Figure 4 visualizes the deconvolution process, the F0 response, also referred to as the 
FFR kernel, and the model fits in the time-domain for animal B. All key features of the click train 
FFRs were well-captured by the convolution model (black lines in Fig 2C&D). It is noteworthy 
that the wide range of shapes of the click train FFRs could be accounted for with just one 
underlying kernel. The different shapes of the click train FFRs were created exclusively by slight 
variations of constructive and destructive interference driven by subtle timing and amplitude 
differences from otherwise identical F0 responses to individual clicks. In both animals, the 
extracted kernels contained two key spectro-temporal features: a series of brisk peaks and 

Figure 3 – Click train FFRs. Representation of click train FFRs in the time and time-frequency domain. A-D monkey B click 
train FFRs, E-H monkey J clicktrian FFRs  
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troughs with short latencies and high frequency, as well as wavelet-like responses at longer 
latencies and a lower frequency (Fig 4B).  

Figure 5 visualizes the deconvolution process for animal J in the time and time-
frequency domain. This visualization confirmed that the model captured key aspects in all 
relevant frequency bands and not just the fundamental frequency. Note that the model captured 
the components whose frequency changed dynamically with F0 (fundamental and first 
harmonic), as well as the higher frequency components above F2 whose frequency is 
unaffected by dynamic F0 of the stimulus (or the ensuing FFR).  

Figure 6 visualizes the deconvolution process for the mandarin tone stimuli in the time-
domain. Other than using mandarin tone FFRs as inputs to the model, the procedure for 
obtaining the response kernels was identical, and the results closely resembled the 
deconvolution process for the click train stimuli. 

While the convolution model captured all key aspects of the data, we also observed 
regions of systematic misfit. In particular, the model underestimated the response amplitudes 
during the first ~50 ms of the stimulus. In part to compensate for this, the model tended to over-
estimate the amplitudes for the remainder of the stimulus. This effect may likely be caused by 
short-term adaptation, a non-linear effect that cannot be accounted for by a strictly linear model. 
We will briefly touch on this issue later in the manuscript by introducing a non-linear–linear 
convolution approach that resolves most of the remaining systematic misfit during the onset 
period. 

 
Percent variance explained – click train FFRs 

We next quantified the performance of the model as the percent variance explained, 
either calculated across the entire stimulation period (0 to 280 ms after stimulus onset), or the 
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sustained period which excluded both on- and offset responses (50 to 250 ms). Furthermore, 
we evaluated percent variance explained in three different frequency bands, the frequency 
range of the fundamental frequency F0 (70–170 Hz), the frequency range of the first harmonic 
H1 (180–300Hz), and the frequency range of harmonics beyond the second harmonic Hx (400–
1200Hz). See methods for details.  

Because no model can be expected to account for measurement noise, percent variance 
explained cannot exceed a threshold of 100 – 100/SNR. As a result, the traditional metric of 
percent variance explained is only comparable for data sets with similar signal-to-noise ratio. 
Thus, we decided to quantify how much of the ‘explainable’ variance, i.e., the portion of the 
variance that exceeds the variance of the baseline, can be explained by the model. See 
methods for details. 

In both animals, the convolution model explained the vast majority of the explainable 
variance (monkey B: 79%; monkey J: 90%, solid circles in Figure 7A). This value was even 
higher in the sustained period that excluded on- and offset responses (monkey B: 95%; monkey 
J: 97%; solid circles in Figure 7B). Within the sustained period, there was a gradient of percent 
variance explained by frequency range. The largest fraction of variance could be explained in 
the F0-range, followed by the H1 and Hx ranges (F0-range: 95% and 98%, for monkey B and J, 
respectively; H1-range: 96% and 95%; Hx range: 92% and 92%, solid circles and lines in 
Figure 7C).  

We next tested if the high percentage of explained variance may be caused by 
overfitting. To that aim, we used a shuffle control in which the number of predictors remained 

Figure 5 – Deconvolution of grand average click train FFRs for animal J in the time and time-frequency domain. A-D) click 
train FFRs; E-H) fit of the deconvolution model. I-J) residuals of the model fit.   
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constant but no longer matched the timing and amplitude of the actual F0 onsets (see methods 
for details). This shuffling dramatically attenuated the percent variance explained (animal B: 7%, 
animal J: 5%, open circles in Figure 7A). The percent variance explained was even smaller in 
the sustained period (animal B: 1%, animal J: 2%, open circles in Figure 7B). The lower values 
for the sustained period likely occurred because the shuffled model tended to capture variance 
at stimulus onset (which is identical for all stimuli) at the expense of the sustained period.  

We next set out to quantify how much of the click train FFRs can be explained by the 
linear kernel in more common experimental settings, i.e., from data collected in individual 
recording sessions. To that aim, we calculated the kernel from data averaged across one 
recording session and evaluated the fit by comparing the predictions to the FFRs of all other 
recording sessions. The results largely replicated the findings at the level of the grand averages 
and confirmed that a substantial amount of the explainable variance could be captured by the 
linear model even at the level of individual recording sessions (animal B: 75±2.7%, animal J: 
85±2.7%, mean standard deviation, solid diamonds in Figure 7A). An even higher percent of 
the variance was captured during the sustained period (animal B: 90±4.0%, animal J: 92±2.9%, 
solid diamonds in Figure 7B). Results from the shuffle control predictor confirmed that 
overfitting was also not a major concern for the single session data (animal B: 4±0.9%, animal J: 
2±0.9%, open diamonds in Figure 7A). The percent variance explained by the shuffle predictor 
was even smaller in the sustained period (animal B:  -2±1.3%, animal J: 0±0.9%, open 
diamonds in Figure 7B). The negative values for animal B indicate that the shuffle predictor 
inflated the variance in the sustained period. 

Furthermore, the single-session analysis confirmed that the model captured the most 
variance in the frequency range of the F0 (animal B: 91±4.4%, animal J: 94±3.3%, solid 
diamonds in Figure 7C), followed by the frequency range of the H1 (animal B: 92±2.7%, animal 
J: 82±4.8%), and the highest frequency range Hx (animal B: 86±2.9%, animal J: 82±4.8%). 
 

Figure 6 – Deconvolution of grand average tone FFRs for animal J. Conventions as in Figure 4.  
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Percent variance explained – mandarin tone FFRs 
The results so far suggest that the deconvolution method works rather well on artificial 

click train stimuli. By itself, this is an important finding. However, given the substantial 
differences between click trains and speech, we then tested if the method also explains much of 
the variance of the FFRs in response to the spectro-temporally complex and realistic mandarin 
tones.  

As for the click train stimuli, we first computed the deconvolution on data combined 
across all recording sessions for each animal. Kernels were fit to a training set and the quality of 
the fits were then evaluated by comparing the predictions to the FFRs of the test set. In both 
animals, the convolution model explained a large proportion of the explainable variance 
(monkey B: 77%; monkey J: 72%, solid circles in Figure 7D). This value was even higher in the 
sustained period that excluded on- and offset responses (monkey B: 89%; monkey J: 88%, solid 
circles in Figure 7E). Within the sustained period, there was a clear gradient of percent variance 
explained by frequency range. The largest fraction of variance could be explained in the F0-
range, followed by the H1 and Hx ranges (F0-range: 93% and 92%, for monkey B and J, 
respectively; H1-range: 82% and 90%; Hx range: 69% and 77%, solid circles and lines in 
Figure 7F). 

As for the click train stimuli, using the shuffled predictor dramatically attenuated the 
percent variance explained (animal B: 6%, animal J: 4%, open circles in Figure 7D). The 
percent variance explained was even smaller in the sustained period (animal B: 1%, animal J: -
1%, open circles in Figure 7E).  

Despite the overall lower signal amplitudes for the tone FFRs, a large proportion of the 
variance was captured by the linear convolution model even on a session-by-session basis 
(animal B: 75±3.5%, animal J: 63±4.0%, mean ± standard deviation, solid diamonds in Figure 
7D). Excluding on- and offset responses, the percentage variance explained is even higher 
(animal B: 87±3.9%, animal J: 77±4.6%, filled diamonds in Figure 7E). As for the grand 
averages, shuffling dramatically attenuated the percent variance explained at the single session 
level (animal B: 4.0±1.8%, animal J: 3.0±1.9%, open diamonds in Figure 7D; sustained period: 

Figure 7 – Percent Variance 
Explained. A) Percent variance 
explained across the entire FFR as a 
function of baseline noise. Solid 
points indicate fits to the grand 
averages across all sessions. Solid 
diamonds indicate fits to individual 
sessions. Unfilled symbols indicate 
fits using shuffled predictors. B) 
Same as A) but percent variance 
explained is only evaluated for 
steady state portion of the FFR (50-
250ms). C) Percent variance 
explained by frequency band. E,F,G) 
Same as A,B,C but for mandarin 
tone stimuli. 
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animal B: -1±2.4%, animal J: -1±2.9%, open 
diamonds in Figure 7E), again confirming that 
overfitting was not a substantial contribution to the 
high percentage of variance explained.  

Furthermore, the single-session analysis 
confirmed that the model captured the most 
variance in the frequency range of the F0 (animal 
B: 93±1.1%, animal J: 84±3.8%, solid diamonds in 
Figure 7F), followed by the frequency range of 
the H1 (animal B: 76±2.5%, animal J: 66±11.1%), 
and the highest frequency range Hx (animal B: 
73±8.7%, animal J: 47±19.5%). 
 
Consistency of deconvolution approach across 
recording sessions  

The ability to explain the FFRs of one 
recording day using the kernel from a different 
session, suggests that the kernels are remarkably 
similar between days. Figure 8 A&B confirms the 
high degree of similarity for the click train kernels. 
Especially early features of the kernel (<5 ms) 
were highly preserved across sessions, to the 

point that it was hard to even distinguish the presence of more than one trace. Above 5 ms, 
differences between sessions became somewhat more apparent. The largest between-session 
variability was observed for the late wavelet-like response between 15 and 35 ms. We 
quantified the similarity of the kernels as the Pearson correlation coefficient which was found to 
be 0.97±0.02 for both animals (average plus minus standard deviation). Note that while the 
kernels for different sessions were highly similar, the kernels for the two animals were quite 
distinct from each other. In particular, the early features of the kernels below 5 ms are like a 
finger-print that uniquely identify the subject with high confidence on the basis of a single 
session.  

Cross correlations for kernels of the mandarin tone stimuli were similarly high (animal B: 
0.98±NA, animal J: 0.91±0.08). Standard deviation was not available for animal B, since only 
two sessions were recorded, resulting in a single cross-correlation value. For monkey J, the 
average cross-correlation was attenuated mostly by one session. As a result of the left-ward 
skew of the distribution, the median correlation coefficient was a good bit higher and probably a 
more robust estimate (median correlation coefficient monkey J: 0.95).  
 
Spectro-temporal features of the F0 responses 

Figures 8&9 visualize the time-course of the click train kernels for both animals. The 
kernels could be split into three epochs: (1) an initial period from 1-5 ms that featured a series of 
brisk peaks and troughs; (2) a transition period from 5 to 15 ms; (3) the final period from 15 to 
~45 ms that featured 3 peaks and 2 troughs of a large-amplitude and relatively slow, wavelet-
like oscillation. In the initial period, both animals exhibited a prominent trough at ~2 ms and a 
prominent peak at ~4.5 ms. In between the two, animal B featured two peaks at 2.9 and 3.7 ms, 
while animal J featured only one intermittent peak at 3.1ms. The peak at ~4.5 ms likely 
corresponds to wave V of the brainstem auditory evoked potential. Transforming the kernels into 
the time-frequency domain revealed a complex spectral composition (Figure 9A&B top panels). 
Both animals exhibited prominent high-frequency components above 500 Hz: in animal B, they 
manifested in two distinct spectral peaks at 600 and 1050 Hz. In animal J, they manifested as a 

Figure 8 – Comparison of F0 responses across 
sessions, stimuli and subjects. A,B) Click train F0 
responses for individual sessions of animals B and J. 
C,D) Mandarin tone F0 responses for individual 
sessions of animals B and J. 
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single peak at 700 Hz. In both animals, these high-
frequency bursts were extremely short-lived. In 
addition, both animals show spectral power at 
frequencies around 200 Hz. For both animals, 
activity in this frequency range extended into the 
transition period. The key spectro-temporal feature of 
the kernel was an extended period of power in the 
lower frequency range between 70 and 120 Hz. 
Closer inspection revealed a gradual decrease of 
frequency over time: in animal B the frequency 
decreased from 90 Hz to 70 Hz, in animal J the 
frequency decreased from 105 to 75 Hz. It is unclear 
if this decrease resulted from the gradual change of 
frequency of a single component, or from the 
transition between two components with slightly 
different frequencies. 

Figures 8C&D provides a direct comparison 
of the tone and click train kernels in the time domain. 
The most striking difference is the overall reduced 
amplitude of the kernels, which matches the overall 
reduced amplitudes of the tone FFRs themselves. 
However, most of the key features of the kernels 
were preserved. In particular, the timing and polarity 
of most peaks were identical. Only the earliest 
putative brainstem components were affected more 
strongly. In both animals the initial trough that was 
evident at ~2 ms for the click train kernels was 
reduced in amplitude, temporally smeared and 
delayed to ~3 ms. In animal B, this temporal 

smearing may have contributed to the cancellation of the first of the three subsequent positive 
peaks that occurs at 2.9 ms in the click train kernel. Figure 9 highlights another interesting 
distinction that is not visible in the time-domain. For both animals, the tone kernels included 
power in an even lower frequency band centered around 50 Hz that was not active for the click 
train kernels.  

 
Topography of the click train F0 responses   

It is tempting to link these different spectro-temporal features of the kernel to processing 
in brainstem, midbrain and cortex, respectively. If correct, it would support the notion that the 
deconvolution method was indeed able to partially disentangle these different generators whose 
activity is temporally completely overlapping in the FFR. If different latencies of response 

Figure 9 – Comparison of F0 responses across 
stimuli and subjects in the time-frequency 
domain. A,B) Average click train F0 responses for 
animals B and J. C,D) Average mandarin tone F0 
responses for animals B and J. 
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Figure 10 – Topography of click train F0 responses. Topography of different peaks and troughs of the F0 onset response 
for animal B. Different components are tentatively grouped in to brainstem, midbrain and cortex based on latency, frequency 
and topography.  
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components in the FFR kernel indeed reflect 
the gradual activation of successively higher 
stages of auditory processing, then this 
should be reflected in different topographies 
for early relative to late components. In one 
subject, animal B, we had access to an entire 
grid of 33 EEG electrodes. We thus set out to 
estimate the kernels for all 33 EEG 
electrodes in this animal. The resulting 
topographies are summarized in Figure 10. 
The topographies of the putative cortical 
components indeed closely resembled  the 
topographies of classical evoked potentials 
that are believed to arise from core auditory 
regions in the superior temporal plane 
(Teichert, 2016). In contrast, the putative 
brain-stem topographies were much more 
varied, and, except for the peak at 4.2 ms, 
clearly not of cortical origin. The topographies 
of the putative midbrain components were 
diverse. While the topography of the 

component at 6 ms was not unlike the classical cortical topography, the component at 11ms 
was clearly not suggestive of cortical origin. 
 
Dependence of F0 responses on stimulus polarity 

  Both stimulus types, click trains and mandarin tones, were presented in two randomly 
intermixed polarities. The results presented above reflect the model fit to the average of the two 
polarities. Figure 11 compares the FFRs for the two polarities for the click train stimuli and 
mandarin tone stimuli separately. For the click train stimuli, the two polarities were quantitively 
almost identical, except for a minor deviation during the putative midbrain components at a 
latency of ~7 ms. Note that while the effect was extremely small in absolute terms, it was highly 
replicable between sessions and present in both animals. A qualitatively similar, but 
substantially larger effect emerged for the tone kernel: the difference between the two polarities 
was most evident in the late brainstem and early midbrain latencies. In both animals, the 
putative component V of the brainstem response was strongly attenuated in the rarefaction 
condition (Figure 11 B&D, orange arrow). In its stead, a new peak at a latency of ~7ms that was 
superposed over the trough was also observed at this latency (Figure 11 B&D, blue arrow). 
Note that for both stimuli and both animals, the putative cortical contribution to the kernels 
beyond ~15-20 ms onwards are again very similar. As a result, the temporal fine-structure, i.e., 
the subtraction between the polarities, would emphasize the putative midbrain components that 
emerge at latencies between 4 and 15 ms, at the expense of subtracting out the putative cortical 
contribution as well as the earliest brainstem components.  

 
Non-linear – linear deconvolution model 

 For both stimulus types, the linear model could predict a surprisingly large amount of 
the variance. However, in both cases, even the click train FFRs, the linear model fell short of 
explaining a substantial amount of variance around stimulus onset. The observed pattern of 
misfit suggests that short-term adaptation prevents the linear model from providing an even 
better account of the data. To confirm this hypothesis, we developed a two-stage model that 
includes a non-linear first stage to account for short-term adaptation, and the linear convolution 

Figure 11 – Effect of stimulus polarity on F0 responses. 
A,B) Effect of stimulus polarity on click train kernels for 
monkeys B and J (orange: condensation, blue: rarefaction). 
C,D) Same for mandarin tone kernels. 
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model as a second stage. The short-term adaptation model uses two parameters, tau and U, to 
estimate how quickly and how strongly early stages of the auditory system adapt to the 
repeated F0 onsets. In contrast to the previous convolution model, the convolution stage of this 
non-linear – linear model also included a stimulus onset regressor to allow for the possibility that 
the very first F0 onset triggers an onset response that is qualitatively distinct from the remaining 
F0 responses. To keep the number of regressors similar and the gradient descent 
computationally manageable, we reduced the lag from 80ms (800 regressors) to 45 ms for both 
type of response (2 x 450 = 900 regressors). As before, the model was fit to the training set and 
model fit was evaluated in the testing set.   

In both animals, the non-linear – linear convolution model improved model fits for the 
click train stimuli, especially in the onset period (monkey B: 58% to 91%, monkey J: 72% to 
92%). Noticeable improvements could also be found when focusing on the entire FFR period 
(monkey B: 79% to 92%; monkey J: 90 to 94%). Importantly, percent variance improved or 
remained constant even in the sustained period (monkey B: 95% to 97%; monkey J: unchanged 
at 97%), even though fewer degrees of freedom were used to model the sustained period 
(rather than 800 parameters, the non-linear – linear model used only 2 non-linear parameters 
plus 450 F0 response parameters to model the sustained period; the 450 predictors for stimulus 
onset have no direct effect on the sustained period). Similar improvements were found for the 
mandarin tone stimuli in the onset period (monkey B: 55% to 90%, monkey J: 42% to 91%), 
across the entire FFR (monkey B: 77% to 88%, monkey J: 72% to 87%), and in the sustained 
period (monkey B: 89% to 92%, monkey J: 88% to 88%). 

The time-constants tau of the short-term synaptic depression that provided the best fit 
were well below 100 ms for the click train stimuli (monkey B: 63 ms, monkey 26: y ms) and the 
mandarin tone stimuli (monkey B: 74 ms, monkey 13: y ms). Such short time-constants are 
consistent with a locus of adaptation in the early auditory system.  

 

Discussion 
 

In this study, we characterized a deconvolution approach that recovered F0 responses 
from FFRs in response to stimuli with time-varying pitch in the non-human primate. Our ultimate 
goal is to link altered FFRs observed in neuropathologies to specific latencies of the F0 
response and thus to narrow down the anatomical substrate of the pathologically altered FFRs. 
Such an approach would be particularly useful in clinical settings that often record FFRs with a 
simple three-electrode montage (Bidelman, 2015), and are thus not amenable to sophisticated 
source reconstruction analyses. 

We report advances along three main avenues. First, we were able to show that the 
convolution model captures a substantial portion of the variance of the mandarin tone and click 
train FFRs. Second, we were able to show that the kernels indeed have distinct spectro-
temporal features that emerge at distinct latencies and likely reflect the sequential activation of 
generators in brainstem, midbrain and cortex. Third, we were able to show that the FFR kernels 
can be estimated with high signal-to-noise ratio. In the following we will discuss the implications 
of these advances in more detail. 

 
F0 onset response captures much of the variance of mandarin tone and click train FFRs 

A key novelty of our study is that it allowed us to quantify how much variance of the 
FFRs can be explained by the F0 responses. This is important, because it determines the 
likelihood that the approach will be able to account for altered FFRs in future work. To clarify 
why this is so important, we point out that the convolution approach can be viewed as data 
compression algorithm: complex and high-dimensional FFRs consisting of ~12,000 data points 
(4 tones times ~300 ms duration times 10 samples per ms) are represented by a much simpler 
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kernel consisting of 800 data points (80 ms duration times 10 sample per ms). As with any data-
compression algorithm, and especially for one with such a high compression ratio, its utility is 
determined by the amount of information loss. The less variance the algorithm captures, the 
more likely is a scenario where FFRs differ meaningfully between conditions but the F0 
responses do not, simply because the relevant features of the FFRs were not captured by the 
linear model.  

In the best-case scenario, i.e., when excluding on and offset responses and when using 
high signal-to-noise grand averages, the F0 responses can account for an average of 96% of 
the variance of the click train FFRs and for 88% of the variance of the tone FFRs. Even at the 
level of single sessions, the model was able to explain on average 91% of the variance for the 
click train FFRs and 82% of the variance for the tone FFRs. Our finding that such a substantial 
portion of the FFRs was explained by the convolution method increases the odds that F0 
responses will be able to capture many clinically relevant FFR phenomena. Since the F0 
responses capture more variance for the click train FFRs, one could argue in favor of using the 
click train stimuli in clinical settings. However, this would only be warranted if the click train 
FFRs can be shown to be equally sensitive to pathological changes as other commonly used 
FFR stimuli.  

It is worth noting that the F0 responses are less adept at capturing variance in the higher 
frequency ranges. This drop-off is particularly pronounced for the mandarin tone stimuli and for 
single sessions (rather than grand averages). In those circumstances, the utility of the method 
will likely be reduced. However, it is worth noting that even if the F0 response captures less 
variance in the higher frequency ranges, it does not automatically mean that it won’t be sensitive 
to any neuropathological changes in that frequency range. It is quite possible for the 
pathological alterations to occur within the linear subspace that can be captured by the F0 
response. In this case, it would even be expected to have higher sensitivity than the FFRs 
themselves because they would ignore anything outside of that linear subspace. However, 
capturing less of the variance would certainly suggest that it is more likely for at least some of 
the pathological changes in the higher frequency range to be outside of the linear space of the 
kernel.  
 
F0 responses compress FFRs into a meaningful format 

We were also able to address a second key question that determines the utility of the 
deconvolution approach, namely whether or not the F0 responses represent information about 
the FFRs in a meaningful format. Specifically, we had speculated that the latency of different 
features of the F0 response would represent the latency of different neural generators being 
activated sequentially along the ascending auditory hierarchy. Indeed, we were able to identify 
distinct spectro-temporal features that emerge at distinct latencies and likely reflect the 
sequential activation of generators in brainstem (<5ms; 400-1000 Hz), midbrain (5-15 ms; 180-
300 Hz) and cortex (15-45 ms; ~90 Hz). This hypothesis was supported by distinct topographies 
that could be measured in one of the two animals that had a fully intact 32 channel EEG system. 

These results are consistent with and extend some closely related earlier studies. 
Bidelman tested if the FFR to a click train stimulus can be explained as the superposition of an 
empirically measured 12 ms long auditory brainstem responses to each click in the train 
(Bidelman, 2015). The conclusion from the paper was that the FFR was not satisfactorily 
explained by auditory brainstem responses, suggesting that other structures must contribute to 
the FFR. Our results are consistent with this conclusion. In order to explain the FFRs well, it was 
necessary to allow the kernel to be at least 45 ms long, thus extending well beyond the temporal 
range of auditory brainstem latencies. Our results are also consistent with an earlier study 
showing that the auditory steady-state response can be modeled as the linear superposition of 
onset responses to each individual 40Hz cycle (Bohórquez and Özdamar, 2008). Our findings 
extend this work into a higher frequency range and into the realm of spectro-temporally complex 
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speech sounds. More recent work, conducted in parallel with studies reported here, has used a 
similar deconvolution approach to calculate the F0 response from continuous speech 
(Polonenko and Maddox, 2021). In line with our findings, they also identified F0 responses that 
are consistent with the notion of resulting from a sequential activation of generators along the 
ascending auditory pathway. Our work extends their findings by showing that F0 responses 
account for the bulk of the FFRs, and likely also speech-evoked responses in general. In 
addition, our results point out the limitations of the linear superposition approach and how to  by 
including a simple short-term adaptation component that adjusts the effective amplitudes of the 
F0 cycles based on their actual amplitude as well as adaptation caused by the processing of 
previous F0 cycles.  

 
For the type of F0 responses described above to arise, neural activity in the early 

auditory system needs to be preferentially focused on a specific phase of the F0 cycle. 
Furthermore, the sharp spectro-temporal features of the measured F0 responses suggest that 
the focusing of neural activity must have been temporally very precise. For the click train stimuli, 
such highly precise focusing is easily explained by the fact that all of the acoustic energy itself is 
focused on one specific phase. However, in the case of the mandarin tone stimuli, acoustic 
energy is distributed rather evenly throughout the entire F0 cycle (Fig 1C). Hence, it was not 
clear a priori if the focusing of neural activity to a specific phase would be strong enough and 
temporally precise enough to generate an F0 response in the same way as for the clicks in the 
click trains. In the context of this manuscript, we had operationalized the onset of the F0 cycle of 
the mandarin tones as the positive pressure peak (in the time-domain) that coincides with the 
first and strongest of six closely spaced peaks of power in the third formant (in the time-
frequency domain) that follow the opening of the glottis. Of all spectro-termporal features, this 
one probably comes closest to resembling a click. Nevertheless, it is important to note that this 
feature only represented a very small portion of the total acoustic energy of each F0 cycle. 
Hence, it is somewhat surprising, that the mandarin tone F0 responses are only moderately 
smaller and share so many striking similarities to F0 responses of the click trains. It remains to 
be determined to what degree our particular choice of stimulus, i.e., the /yi/ vowel with its very 
high third format, or some non-linearities of the early auditory system, e.g., refractory periods or 
other forms of extremely short-term adaptation, facilitate this process of focusing neural 
responses to a specific phase of the F0 cycle.   

The key difference between the tone and click train F0 responses is the absence of the 
first negative and the first positive ABR-like potentials at latencies of 2 and 3 ms, respectively. 
We speculate that their absence is caused by temporal smearing of the earliest auditory 
responses to spectro-temporal features distributed across the entire F0 cycle. This interpretation 
implies that the focusing of responses to a specific phase of the F0 cycle becomes more precise 
at later processing stages of the brainstem. 

It remains to be determined why the F0 responses depended at least in part on the 
polarity of the mandarin tone stimuli. But it is noteworthy that the differences were strongest in 
the latency range of 5 to 10 ms that most likely reflect early processing stages in the midbrain. 
Interestingly, the putative cortical components of the F0 response were mostly insensitive to 
polarity. Taken together, these findings suggest that the temporal fine structure of the FFRs 
which is typically analyzed by subtracting FFRs to the different polarities would preferentially 
enhance neural activity originating from the midbrain, while specifically attenuating cortical 
responses.   

 
F0 responses can be measured with high signal-to-noise 

Finally, we were able to show that the F0 responses can be estimated with high signal-
to-noise ratio. The mean pairwise correlation coefficient between F0 responses estimated on 
different days was above .90 for both animals and both stimulus types. Such a high signal-to-
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noise ratio is possible because F0 response is estimated from approximately 120,000 F0 cycles 
(4000 trials, each of which contains on average 30 F0 cycles). The high signal-to-noise ratio of 
the F0 responses suggest that even small effects can be detected with a very reasonable 
number of sessions or subjects and may thus provide a solid basis for downstream statistical 
inference. 

 
Limitations of the linear convolution model 

The high degree of variance that can be captured with the F0 responses suggests that 
the neural responses to each click in the click train were able to propagate through subsequent 
stages of the auditory processing hierarchy largely without interference from previous or 
subsequent clicks that were being processed at the same time in higher or lower processing 
stages. Given the rich recurrent connections between different stages of the auditory hierarchy, 
and numerous well-established non-linearities at the earliest stages of auditory processing 
(Heinz et al., 2001; Dau, 2003; Zilany et al., 2014), one might have predicted that a linear 
convolution model would be sorely insufficient to capture much of the spectro-temporal 
complexity of the FFRs.    

However, it is also important to keep in mind that the linear model fell short of capturing 
all of the variance, especially around stimulus onset. Accounting for stimulus onset with an 
additional onset regressor and allowing the amplitudes of the click-responses to be subject to 
short-term adaptation was able to increase percent variance explained to above 90% even in 
the onset period. These results show that relatively minor deviations from the assumption of 
linearity can lead to substantial additional improvements. 
 
Future directions 

While the results so far are promising, several additional steps need to be taken before 
the method can be used to identify which processing stages are the cause of altered FFRs. 
Most importantly, the findings need to be confirmed in humans. Our own preliminary results 
(Teichert et al., 2020) as well as work with continuous ‘peaky’ speech (Polonenko and Maddox, 
2021) suggest very similar effects in humans. But the percent of variance that is captured by the 
F0 responses remains to be determined for human participants. Furthermore, it is likely that at 
least initially latency by itself is not sufficient to unequivocally identify an underlying generator. 
Even for extremely well-established classical onset responses such as the different ABR waves 
or the different mid-latency components, there is considerable debate about their more fine-
grained origin. Consequently, we predict that the method should initially be calibrated in a 
sample data set with high-density EEG/MEG recordings to leverage both latency and 
topography of the F0 responses. Once the origin of different peaks and troughs has been 
established, subsequent analyses will no longer be reliant on high-density EEG recordings.   

Furthermore, the ability of the deconvolution approach to correctly identify generators 
based on the latency of the F0 responses needs to be validated empirically by recording FFRs 
directly from these structures. Ongoing work takes advantage of the monkey model system to 
acquire these invasive recordings and confirm the role of cortex to the later components of the 
F0 response. 

It is known that the FFR fine-structure can mirror the formant structure of the underlying 
vowel (Arenillas-Alcón et al., 2021). The current experiments were performed exclusively using 
the vowel /yi/, so it remains an open question if and how the F0 responses may be modulated 
by the formant structure of different vowels. 

The current version of the click train stimuli used clicks with twice the peak amplitude of 
the corresponding F0 cycle to account for the bi-directional modulation of the speech sounds. 
However, going forward, the amplitude of an F0 cycle may need to be defined in a more 
principled way. Specifically, our results suggest that the F0 responses were driven by a very 
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specific aspect of the F0 cycle: a click-like response driven mostly by a peak of power in the 
third formant. Thus, it may be more appropriate to define the amplitude of the regressor as the 
amplitude of this specific aspect of the F0 cycle.  
 
Conclusion 

Based on our studies in the rhesus macaque, we conclude that the deconvolution 
method can be used to compress complex and high-dimensional FFRs to stimuli with time-
varying pitch into a short and meaningful F0 response that captures most of the variance of the 
FFRs. The different latencies of the peaks and troughs likely reflect the sequential activation of 
structures along the auditory pathway, and may at some point be useful to map altered FFRs in 
disease to altered function in specific brain regions. 

There are already a large number of different ways to analyze FFRs, including 
broadband timing, F0 periodicity, phase consistency, and stimulus response correlation, to 
name just a few (Krizman and Kraus, 2019). The deconvolution approach and the resulting F0 
responses are thus just one of many currently available analysis tools. We propose that the 
strength of the deconvolution approach arises from the three main points outlined above: 1) the 
F0 responses are a lower-dimensional summary that captures and condenses much of the 
variance of the original FFRs, 2) the latency of different features of the F0 responses is 
meaningful, and likely reflects the latency of different generators, thus linking altered F0 
responses to specific anatomical substrates, and 3) the F0 responses can be measured with 
high signal-to-noise ratio, thus increasing the sensitivity and power of subsequent statistical 
analyses. 
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