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Abstract 

A major challenge in current cognitive neuroscience is how functional brain connectivity 

gives rise to human cognition. Functional magnetic resonance imaging (fMRI) describes 

brain connectivity based on cerebral oxygenation dynamics (hemodynamic connectivity), 

whereas [18 F]-fluorodeoxyglucose functional positron emission tomography (FDG-fPET) 

describes brain connectivity based on cerebral glucose uptake (metabolic connectivity), each 

providing a unique characterisation of the human brain. How these two modalities differ in 

their contribution to cognition and behaviour is unclear. We used simultaneous resting-state 

FDG-fPET/fMRI to investigate how hemodynamic connectivity and metabolic connectivity 

relate to cognitive function by applying partial least squares analyses. Results revealed that 

while for both modalities the frontoparietal anatomical subdivisions related the strongest to 

cognition, using hemodynamic measures this network expressed executive functioning, 

episodic memory, and depression, while for metabolic measures this network exclusively 

expressed executive functioning. These findings demonstrate the unique advantages that 

simultaneous FDG-PET/fMRI has to provide a comprehensive understanding of the neural 

mechanisms that underpin cognition and highlights the importance of multimodality imaging 

in cognitive neuroscience research. 
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Introduction 

The human connectome is a comprehensive map of neural connections, that describes 

the brain as a complex network of interconnected brain regions (Sporns, 2013; Sporns et al., 

2005). Non-invasive neuroimaging methods provide us with the opportunity to characterise 

the functionality of brain connectivity on multiple levels (Raichle, 2009). As such, brain 

connectivity is a multidimensional concept that is defined by its measurement tool. Blood 

oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) has 

been the dominant tool to characterise functional brain connectivity, based on the temporal 

coherence of spontaneous, low-frequency large-amplitude changes in blood oxygenation 

whilst an individual is at rest (Biswal et al., 1995; Raichle, 2011). BOLD-fMRI provides a 

haemodynamic-based surrogate measure of neuronal activity at a high spatial and temporal 

resolution, but is confounded by non-neuronal components (e.g., heart rate, respiration, blood 

volume; Liu, 2017; Ward et al., 2020). Positron Emission Tomography (PET) scanning using 

the glucose analogue F18-fluordoxyglucose (FDG) provides the opportunity to characterise 

metabolic elements of brain connectivity based on cerebral glucose update (Yakushev et al., 

2017). In contrast to BOLD-fMRI, FDG-PET is a quantifiable index of neuronal activity 

capturing cerebral glucose uptake at the synapses. The integration of the two modalities in a 

simultaneous MR-PET system (Chen et al., 2018; Judenhofer et al., 2008) offers the unique 

opportunity to undertake multidimensional neuroimaging studies to examine the interaction 

between hemodynamic and metabolic aspects of brain connectivity. How these elements of 

human brain connectivity (i.e., hemodynamic and metabolic) individually and jointly 

contribute to human cognition and behaviour remains a formidable challenge of 

contemporary cognitive neuroscience. 

 A central assumption in cognitive neuroscience is that cognitive processes are 

emergent properties of neural communication, which is predicted by the coherent and flexible 
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oscillatory activity between neural ensembles (Avena-Koenigsberger et al., 2018; Barack and 

Krakauer, 2021). Two views of how the brain as a neural network relates to cognition have 

emerged: the domain-specific connectome-cognition view and the global connectome-

cognition view. According to the specific view, connectivity is domain-specific and multiple 

networks arise for distinct cognitive domains. According to the global view, the overall 

wiring of connectome gives rise to global cognitive functioning. A single set of connectivity 

patterns predict cognitive functioning across different domains, such as attention, memory, 

executive functioning. 

 Evidence from fMRI research using multivariate analytic approaches to examine 

brain-behaviour relationships has revealed support for both views (e.g., Goyal et al., 2020; 

Smith et al., 2015; Ziegler et al., 2013; Zimmermann et al., 2018). In support of the domain-

specific connectome-cognition view, Zimmermann and collegues (2018) found unique 

orthogonal sets of resting-state hemodynamic connectivity clusters that were associated with 

specific cognitive domains. Inter- and intra-hemispheric resting-state hemodynamic 

connectivity in the frontoparietal, occipital, temporal, and cingulate areas was negatively 

associated with processing speed, executing functioning, and working memory. Intelligence 

was related to a separate set of resting-state hemodynamic connectivity in cortico-cortical and 

cortico-subcortical networks, such as the caudate and putamen. In contrast, in support of the 

global view, Smith and others (2015) revealed a single mode of large-scale resting-state 

hemodynamic connectivity patterns capturing a wide set of behavioural (e.g., intelligence, 

verbal ability) and demographic variables (e.g., age, sex, income, drug use). This result has 

recently been replicated by Goyal and others (2020). These studies reveal initial insights into 

how coherent, low-frequency BOLD fMRI signalling in spatially distinct brain areas (i.e., 

hemodynamic connectivity) relates to cognition. However, as the BOLD signal represents a 

proxy of neural activity that is shaped by non-neuronal contributions to the BOLD signal 
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(Liu, 2017; Ward et al., 2020), this considerably restricts our existing understanding of 

connectome-cognition systems to haemodynamic correlates. 

Recent developments in continuous radiotracer delivery and improved PET signal 

detection of dual-modality magnetic resonance (MR)-PET scanners, has allowed the study of 

continuous glucose uptake with substantially improved temporal resolution (e.g., 60 seconds 

or less; Jamadar et al., 2021; Rischka et al., 2018; Villien et al., 2014). This novel method, 

termed “functional” FDG-PET (FDG-fPET), provides the opportunity to characterise the 

metabolic connectome beyond previous covariance measures resulting from static PET 

(Jamadar et al., 2021) and thus, approaches similar within-subject time-course correlational 

descriptions as exist for BOLD-fMRI hemodynamic connectivity. Using the fPET approach, 

we recently found that the metabolic FDG-fPET connectome showed moderate similarity 

with the BOLD-fMRI hemodynamic connectivity at rest, with the highest similarity between 

functional and metabolic connectivity obtained primarily with the superior and frontoparietal 

cortical areas (Jamadar et al., 2021). These initial findings suggest the complementary 

potential of describing the human connectome via fMRI and FDG-fPET. However, how 

resting-state metabolic connectivity derived from FDG-fPET relates to cognition and how it 

differs in their predictive ability from BOLD-fMRI hemodynamic connectivity remains 

unknown.  

The present study aimed to investigate whether (1) a single global or multiple distinct 

connectivity pattern maps onto cognition, and whether (2) the connectome-cognition 

relationship is different for hemodynamic and metabolic connectivity derived from a novel 

FDG-fPET methodology (Jamadar et al., 2020; Jamadar et al., 2021). We acquired FDG-

fPET data with high temporal resolution of 16s to measure glucose metabolic connectivity, 

and simultaneously acquired BOLD-fMRI data with a temporal resolution of 2.45s from 26 

participants. Participants completed a neuropsychological cognitive test battery, which 
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resulted in 14 cognitive outcome variables indexing cognition across several domains (verbal 

memory, attention, executive functioning). We used partial least squares (PLS) to map 

orthogonal patterns of brain-behaviour relationships (Krishnan et al., 2011; McIntosh and 

Lobaugh, 2004; McIntosh and Misic, 2013) (Figure 1). As evidence for both connectome-

cognition views has been reported for fMRI data (e.g., Goyal et al., 2020; Smith et al., 2015; 

Ziegler et al., 2013; Zimmermann et al., 2018), we undertook and exploratory analysis to 

investigate how hemodynamic and metabolic connectomes map onto cognition. However, as 

hemodynamic and metabolic connectomes have been shown to reveal distinct connectivity 

patterns (Jamadar et al., 2021), we hypothesised that both would provide a unique, but 

complementary insight, into the connectome-cognition relationship. 

Figure 1. Overview of partial least squares analyses. Two partial least squares analyses were 

performed on both brain connectivity data sets (i.e., hemodynamic connectivity, metabolic 

connectivity) separately. The brain connectivity matrices were first sorted by stacking the 

upper triangle elements from each participants’ matrices. The rows of the brain connectivity 

and cognitive matrices correspond to participants and the columns correspond to either the 

brain connections or cognitive scores. The covariance between the brain connectivity and 

cognition matrices was computed across participants, resulting in a rectangular connectivity-
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cognition covariance matrix. This covariance matrix was then subjected to singular value 

decomposition. Refer to Materials and Methods for details.	 

Results 

We first provide an overview of the cognitive outcome variables of the 

neuropsychological test battery. Next, we describe the hemodynamic (i.e., fMRI functional 

connectivity) and metabolic connectivity (i.e., FDG-fPET functional connectivity) across 

participants. Finally, we show how both connectivity maps relate to cognition and quantify 

their differences. 

Cognitive measures 

Participants completed a neuropsychological test battery that described distinct 

cognitive domains across 14 outcome variables (Table 1). Most cognitive variables correlated 

significantly within each cognitive test, but not across tests (Figure 2) suggesting each 

cognitive test measured distinct cognitive domains. An exception was that individuals with 

higher depression scores on the CESD-R were overall slower during congruent trials of the 

Stroop task (i.e., reading colour names; r(24) = 0.54, 95% CI [0.28, 0.83], p < 0.05). Also, 

performance during the Symbol Digits Modality test, correlated negatively with performance 

during the second part of the Colour Trail test (CT2 score) (r(24) = -0.48, 95% CI [-0.83, -

0.28], p < 0.05). For the Partial Least Squares analyses, the total score from the Stroop 

congruent trials was removed as there was no variability across participants, as all 

participants received the maximum score of 112.  

 
Table 1. Cognitive outcome variables from the cognitive battery.  

Cognitive 

Test 

Cognitive Domain Outcome 

Variable 

Descriptive Statistics 

   Mean SD Range 
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HVTL-R Verbal episodic 

memory 

Total Recall 26.96 3.72 19-33 

  Delayed 

Recall 

9.73 1.61 7-12 

  Retention 

Rate 

93.46% 10.93% 73-100% 

  Recognition 

Score 

11.19 1.02 8-12 

SDMT Processing Speed Total Score 56.19 5.72 45.45-

68.18 

Stroop Executive Function / 

Inhibition Control 

Incongruent 

Score 

109.42 5.22 89-112 

  Incongruent 

RT 

102.50 19.67 55-147 

  Congruent 

RT 

53.58 10.11 39-89 

  Frontal Lobe 

Dysfunction 

Score 

0.26 0.13 0.2-0.8 

COWAT Executive Function / 

Verbal Fluency 

Total Score 42.50 11.92 21-68 

Colour Trails Executive Function / 

Cognitive Flexibility 

CT1 Score 30.88 8.59 17-50 

  CT2 Score 56.88 8.77 45-75 
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  Interference 

Index 

0.96 0.54 0.11-2.38 

CESD-R Depression Total Score 9.12 8.54 0-31 

Abbreviations: HVTL-R, Hopkins Verbal Learning Test-Revised; SDMT, The Symbol Digit 

Modalities Test; COWAT, The Controlled Oral Word Association Test; CESDR-R, Center 

for Epidemiologic Studies Depression Scale – Revised; CT, Colour Trails; RT, Reaction 

time; SD, Standard Deviation. 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2021. ; https://doi.org/10.1101/2021.09.06.459214doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459214
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Correlation matrix of 14 cognitive outcome variables obtained from the 

neuropsychological test battery. Significant relationships are indicated with p > 0.05 

corrected for multiple comparisons using false discovery rate (Benjamini and Hochberg, 

1995). Pearson’s correlation was performed for continuous and Spearman correlation was 

performed for ordinal data. Positive relationships (0 ≤ r ≤ 1) are indicated in blue and 

negative relationships (0 > r ≤ -1) are indicated in red. Circle size corresponds to the absolute 

size of the correlation coefficient as indicated by the blue-red coloured scale. Abbreviations: 

HVLT, Hopkins Verbal Learning Test-Revised; SDMT, Symbol Digit Modality Test; 

COWAT, Controlled Oral Word Association Test; CESD-R, Center for Epidemiologic 

Studies Depression Scale – Revised; CT1, Colour Trails 1; CT2, Colour Trails 2; RT, 

Reaction Time. 

 

Hemodynamic and Metabolic Connectivity 

The haemodynamic and metabolic connectomes have been reported previously 

(Jamadar et al., 2021; Jamadar et al., 2020) and are included here for completeness. The 

hemodynamic connectome (Figure 3a) showed medium to strong connectivity within most 

anatomical subdivisions, both within and between hemispheres. The strongest hemodynamic 

connectivity (r ≥ 0.7) was found bilaterally in the frontal, parietal, and occipital anatomical 

subdivisions. A number of strong long-range connections included frontoparietal, parieto-

occipital, and temporoparietal regional connectivity. These long-range connections were 

evident both within and between hemispheres but were of smaller magnitude than the short-

range and homotopic connections. Subcortical and orbitofrontal regions were the least 

interconnected regions in the BOLD-fMRI data (r ≥ 0.2).  

The metabolic connectome (Figure 3b) showed the strongest connectivity (r ≥ 0.15) 

within the frontoparietal areas, which was more apparent within than between hemispheres. 
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Left–right homotopic connectivity was not visually apparent for subcortical, temporal, and 

occipital cortices.  

 

Figure 3. Hemodynamic and metabolic connectivity at rest. (a) The hemodynamic (i.e., fMRI 

functional connectivity) was thresholded from 0 < r < 0.76. (b) The metabolic connectivity 

(i.e., fPET functional connectivity) was thresholded from 0 < 0 < 0.15. Abbreviations: L, left; 

R, right. 

 

Partial Least Squares Results 

The Partial Least Squares (PLS) analyses applied to the fMRI and fPET data sets 

separately identified one significant latent variable that described the relationship between the 

hemodynamic connectivity and cognition, and one significant latent variable that described 

the relationship between the metabolic connectivity and cognition.  

Hemodynamic Connectivity and Cognition Relationship  
 
The PLS analyses revealed that one latent variable captures the relationship between 

hemodynamic connectivity pattern and cognition (67.13 % of total covariance; singular value 

= 39.43, p = 0.003, permutation testing with 5,000 iterations). The distribution of cognitive 

loadings revealed that each cognitive variable within each test (Table 1) in general loaded 
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uniformly in their direction onto the latent variable (Figure 4ai). For example, all sub-scales 

of the HVLT loaded negatively onto the latent variable, and all sub-scales of the Stroop 

loaded positively. Bootstrapped confidence intervals revealed that three cognitive variables 

were expressed the strongest by the latent variable: participant’s depression score (CESD-R 

score; loading = 0.61, 95% bootstrapped CI [0.15,0.82]), inhibition control speed (i.e. the 

response time in naming a font colour of an incongruent word during the Stroop task; loading 

= 0.56, 95% bootstrapped CI [0.18,0.57]), and memory retention (HVTL retention score; 

loading = -0.71, 95% bootstrapped CI [-0.34, -0.72). The hemodynamic connections all 

loaded strongly positively onto the latent variable (loading > 0.67; Figure 4aii). The strongest 

loadings (r ≥ 0.85) were found bilaterally in the frontal and parietal anatomical subdivisions. 

Thresholding the connectivity matrix at the 99th percentile (Jamadar et al., 2020), revealed 

that 41.4% of the strongest connections were part of the frontal cortex (e.g., superiorfrontal, 

middlefrontal, parstriangularis, parsopercularis, medialorbitofrontal, precentral and 

rostralanteriorcingulate), and 24.1% of the total strongest connections were part of the 

parietal cortex (e.g., supramarginal, posteriorcingulate, precuneus, isthmuscingulate). The 

subcortical areas contained (e.g., caudate, hippocampus, insula, putamen) and the temporal 

cortex contained 17.2% of the total strongest connections (i.e., superiortemporal, fusiform, 

banks), respectively. There were no strong connections in the occipital cortex. Interpreting 

the cognition loadings together with the brain loadings, the PLS analysis revealed that higher 

depression, higher inhibitory control speed and lower memory retention are associated with 

higher hemodynamic connectivity particularly in the frontal and parietal anatomical 

interhemispheric subdivisions. 

 
Metabolic Connectivity and Cognition Relationship  
 

The PLS analyses revealed that one latent variable captures the relationship between 

metabolic connectivity pattern and cognition (30.77 % of total covariance; singular value = 
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24.42, p = 0.04, permutation testing with 5,000 iterations). The distribution of cognitive 

loadings revealed that each cognitive variable within each test (Table 1) loaded generally 

uniformly and in their direction onto the latent variable (Figure 4bi). The direction of the 

cognitive loadings was similarly expressed by the latent variable describing the 

hemodynamic connectivity-cognition relationship. Bootstrapped confidence intervals 

revealed that all outcome variables of the Stroop task, measuring executive 

functioning/inhibitory control, loaded strongly positively onto the latent variable. Further, the 

COWAT score loading = -0.58, 95% bootstrapped CI [-0.15, -0.79]), measuring executive 

functioning/verbal fluency was also expressed strongly negatively by the latent variable. The 

metabolic connections loaded mostly positively (loading > 0.54) onto the latent variable 

(Figure 3bii). However, there were also a few connections that loaded negatively, although 

very weakly (loading < -0.15) (Appendix Figure S2). These negative loadings were 

distributed across the brain. The strongest loadings (r ≥ 0.54) all loaded positively and were 

found predominantly in the frontal and parietal anatomical subdivisions. Thresholding the 

connectivity matrix at the 99th percentile, revealed that 50% of the strongest connections were 

part of the frontal cortex (e.g., frontal pole, superior frontal, middle frontal, lateral 

orbitofrontal, caudal anterior cingulate, precentral) and 33% of the total strongest connections 

were part of the parietal cortex (e.g., postcentral, posterior cingulate, pre-cuneus, inferior 

parietal, superior parietal, supra-marginal). The occipital cortex contained only 8.3% of the 

total strongest connections (i.e., lateral occipital) and the subcortical (i.e., thalamus) and 

temporal cortex (i.e., temporal pole) only 4.2%, respectively. Interpreting the cognition 

loadings together with the brain loadings, the PLS analysis revealed that higher inhibitory 

control and lower verbal fluency are associated with predominantly higher metabolic 

connectivity particularly in the frontal and parietal anatomical subdivisions. 
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Figure 4. Partial least squares analysis results showing the a) cognition-hemodynamic 

connectivity relationship, and b) cognition-metabolic connectivity relationship. (i) Cognition 

loadings for significant latent variable. Error bars represent 95% Confidence intervals from 

bootstrap resampling (5,000 iterations). (ii) Connectivity loadings for significant latent 

variable. The circular plot shows the strongest anatomical connections thresholded at the 99th 

percentile.  

 
Differences in Hemodynamic-Cognition and Metabolic-Cognition Relationship  
 

To compare the connections that contributed to the cognition-metabolic connectivity 

relationship and those that contributed to the cognition-hemodynamic relationship, we 

computed the scalar dot product between the brain saliences (U) of the significant latent 
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variable from both PLS analyses. A cosine value of 1 means that the saliences are identical 

and 0 means orthogonality or no correlation. This analysis revealed a cosine similarity of 0.23 

(i.e., weak relationship) indicating that the effects of the PLS for the hemodynamic-cognition 

relationship differed from the effects from the metabolic-cognition relationship. This was 

confirmed by the similarity matrix of each relationship’s brain loadings, showing overall little 

overlap across the two modalities with the most correlation coefficients ranging between -0.1 

and 0.1 (Figure 5). The highest similarity between the two modalities (r > 0.4) was evident 

for the frontal and parietal cortex for both hemispheres. The loading matrices were 

anticorrelated (loading < -0.3) for occipital and temporal subdivisions. 

 
 
Figure 5. Similarity between the metabolic and hemodynamic connectivity loadings. (a) 

Similarity matrix by brain area. (b) Histogram of Pearson’s correlation coefficients indicating 

the frequency of similarity strength.  
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Discussion 

The present study used simultaneous resting-state FDG-PET/fMRI to investigate, for 

the first time, how spatially distant synchronous brain signals measured via cerebrovascular 

hemodynamic responses (i.e., fMRI; hemodynamic connectivity) and glucose uptake (i.e., 

FDG-PET; metabolic connectivity) relate to a range of cognitive functions. Our simultaneous 

fPET and fMRI acquisition at a high temporal resolution enabled multimodal within-subject 

analyses of resting-state brain activity without the confound of intra-individual differences 

(e.g., fatigue, nutrient intake, blood chemistry) that occur when measuring both modalities 

not simultaneously. We applied Partial Least Squares (Krishnan et al., 2011; McIntosh and 

Lobaugh, 2004) to extract latent variables capturing the maximum covariance between 

hemodynamic and metabolic connectivity matrices with 14 cognitive measures, including 

episodic memory, processing speed, executive functioning, and depression. Results revealed 

that one latent variable captured the relationship between hemodynamic connectivity and 

cognition and one latent variable captured the relationship between metabolic connectivity 

and cognition. The cognitive battery was indexing orthogonal cognitive domains. This 

supports the global connectome-cognition view, which states that a global cognitive factor is 

accounted by a single set of connections (Goyal et al., 2020b; Smith et al., 2015b). By 

contrast, our results do not support the domain-specific connectome-cognition view, which 

would suggest that distinct sets of connections are required to support cognition (e.g., Ziegler 

et al., 2013; Zimmermann et al., 2018).  

Although cognition was expressed globally by one set of connectivity-cognition latent 

variable, the specificity of how hemodynamic and metabolic connectivity related to cognition 

varied. For both modalities the frontoparietal anatomical subdivisions related the strongest to 

cognition (Figure 4), however for hemodynamic responses this network expressed executive 

functioning, episodic memory, and depression, whereas for metabolic responses this network 
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exclusively expressed executive functioning. This is compatible with the argument that 

metabolic and hemodynamic connectivity provide unique, but complementary insights into 

cognition (Chen et al., 2018; Hahn et al., 2020; Jamadar et al., 2021; Mier and Mier, 2015; 

Sala and Perani, 2019; Yakushev et al., 2017).  

A global set of metabolic and hemodynamic connections map onto cognition 

Our results support the contention that the overall wiring of a connectivity network 

has a domain-general role in cognition. Critically, this domain-general characteristic is shared 

by both the metabolic and hemodynamic processes, indicating that it is a shared characteristic 

across multiple physiological levels of the human connectome. This finding is in line with 

classical theoretical proposals that brain networks exhibit a flexible architecture with their 

functional network assignment to adaptively process changing cognitive demands (Dehaene 

et al., 1998; Duncan, 2001; Miller and Cohen, 2001). Flexible, domain-general interactions 

likely allow different information to become quickly integrated and exchanged, leading to a 

dominant pattern of co-activation across different cognitive states.  

In our results, the frontoparietal anatomical subdivisions emerged as the dominant 

regions supporting a domain-general role in cognition. The frontoparietal anatomical network 

was previously coined a multi-demand system that is co-activated when performing a diverse 

range of cognitive demanding tasks, including selective attention, working memory, task 

switching, response inhibition, conflict monitoring, learning or problem solving (Assem et 

al., 2020; Chein & Schneider, 2005; Cole et al., 2014; reviewed by Marek & Dosenbach, 

2018). In line with this general systems role to support information integration and exchange 

that mediates cognitive operations, damage to the frontoparietal network has been reported to 

be associated with disorganised behaviour and decreased fluid intelligence (Hearne et al., 

2016). Further, this system has been shown to play domain-general protective role against 

mental health symptoms such as depression (Schultz et al., 2018).  
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Metabolic and functional connectivity relate to distinct aspects of cognition  

The behavioural variables loaded uniformly on the latent variables for the metabolic 

connectivity-cognition and hemodynamic connectivity-cognition pattern but differed in their 

loading strengths. The fPET metabolic and BOLD-fMRI hemodynamic connectivity had the 

strongest network configuration in frontoparietal cortices. However, this network seems to 

relate to distinct cognitive functions for both imaging modalities. Specifically, the resting-

state hemodynamic connectivity in this network was positively associated with inhibition, 

depression and negatively with memory retention. The resting-state metabolic connectivity in 

this network in turn was associated positively with executive functioning and inhibition; and 

negatively with executive functioning and verbal fluency. 

The cognition-connectivity pattern revealed by fMRI is in strong accord with 

numerous previous fMRI studies revealing the brain mechanisms underlying cognition. For 

example, the frontoparietal network, particularly involving the anterior cingulate cortex, 

precuneus or posterior cingulate cortex, has been shown to be a core network involved in 

cognitive control monitoring and the facilitation of conflict resolution during a task 

(Botvinick et al., 2004; Shenhav et al., 2013). Additionally, this flexible and domain-general 

hub has also been involved in emotional processing, clinical symptoms such as depression 

(Schultz et al., 2018), and memory (Wallis et al., 2015). These findings are corroborated in 

the cognition-connectivity patterns observed in this study. In addition to frontoparietal co-

activation, the hemodynamic connectivity loadings were also prevalent in cortico-cortical 

networks, for example involving the insula or hippocampus. The insula is strongly 

interconnected with frontal and parietal areas supporting its role as a major multimodal 

network hub that underpins cognition, memory and emotional processing (Contreras et al., 

2012; Menon and Uddin, 2010). The hippocampus supports a vast array of memory 
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functions, such as retaining information across delays (Jeneson et al., 2011; Müller et al., 

2018).  

In contrast to the hemodynamic connectivity-cognition relationship, the latent variable 

expressing the metabolic connectivity-cognition relationship was strongly localised in the 

frontoparietal areas and associated exclusively with executive functioning. Previous studies 

have reported that resting-state metabolic connectivity is particularly evident in frontoparietal 

areas (Shokri-Kojori et al., 2019; Yakushev et al., 2017; Hahn et al., 2019). Here we extend 

these finding by observing that the co-activation at rest is behaviourally relevant in 

supporting executive control. We note the existence of a small proportion of negative 

connections (only 25.22 % of connections) that contributed to the cognition-metabolic 

connectivity relationship. These negative cognition-connectivity associations can reflect 

either reduced positive associations or anti-correlations (Hearne et al., 2016). There is also 

the possibility that these scattered negative loadings (Figure S2) might be a pre-processing 

epiphenomenon (Jamadar et al., 2020). Future research is needed to investigate whether the 

small fraction of negative associations in the metabolic connectome are behaviourally 

meaningful.   

The apparent specificity of the cognition-metabolic connectivity relationship, i.e., the 

exclusive focus on frontoparietal cortices, may be indicative of signal artefacts in either the 

FDG-fPET or BOLD-fMRI, i.e., reduced signal-to-noise or non-neuronal confounders, 

respectively. The reduced sensitivity of the FDG-fPET signal must be noted as the processing 

pipeline, including filters and models, are immature compared to the years of advanced 

development that has been dedicated to BOLD-fMRI signal processing as reported in the 

scientific literature. Conversely, this advancement has potentially led to the identification of 

non-neuronal confounders and spatial artefacts in BOLD-fMRI that are not present in the 

FDG-fPET signal, such as magnetic field and haemoglobin-based artefacts (Liu, 2017; Ward 
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et al., 2020). The disparity in the results from the two modalities is augurs well for gaining 

deeper insights to improve our understanding of cognition-brain connectivity relationships. 

In conclusion, this study is an important step in revealing that cognition is supported 

by a domain-general hemodynamic and metabolic processing. Crucially, the metabolic 

processes appear to be more spatially defined by frontoparietal areas, whereas the 

hemodynamic processes throughout the frontal, parietal, temporal, and occipital areas 

collectively support cognition. These findings demonstrate the unique advantages that 

simultaneous FDG-PET/fMRI has to provide a comprehensive understanding of the neural 

mechanisms that underpin cognition, and highlights the importance of multimodality imaging 

in cognitive neuroscience research. 

 

Materials and Methods 

All methods were reviewed by the Monash University Human Research Ethics 

Committee, following the Australian National Statement of Ethical Conduct in Human 

Research (2007). Participants provided informed consent to participate in the study. 

Administration of ionising radiation was approved by the Monash Health Principal Medical 

Physicist, following the Australian Radiation Protection and Nuclear Safety Agency Code of 

Practice (2005). Data from this study is available on OpenNeuro with the accession number 

ds002898. The Data Descriptor for this study with detailed acquisition and validation 

analyses is provided in Jamadar et al. (2020), and results of the comparison between fPET, 

static PET, and BOLD-fMRI connectomes is presented in Jamadar et al. (2021).  

 
Participants 

Twenty-eight participants were recruited from the general community. An initial 

screening interview assessed that these participants had no history of hypertension or 

diabetes, had no neurological and psychiatric illness, or were on psychoactive medication 
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affecting cognitive functioning or cerebral blood flow. Participants were also screened for 

claustrophobia, non-MR compatible implants, clinical or research PET scan in the past 

12months, and women were screened for current or suspected pregnancy. Prior to the scan, 

participants were directed to consume a high-protein/low-sugar diet for 24h, fast for 6h, and 

drink 2-6 glasses of water. Blood sugar level was measured using an Accu-Check Performa 

(model NC, Mannheim, Germany); all participants had blood sugar levels <10mmol/L with 

none exceeding 4.73 mmol/L. Two participants were excluded for further analyses, as one 

participant did not complete the full scan and the infusion pump failed for one participant. 

The total sample (n = 26, 77% females) were aged between 18-23 years (mean age = 19.50 

years , SD = 1.36 years), right-handed (Oldfield, 1971), English speakers (Table S1 for 

summary demographics). Although the sample consisted of significantly larger proportion of 

females, there were no significant (p>0.5) gender-based differences observed in their 

demographics (Figure S1).  

 
Neuropsychological Test Battery 

Prior to the scan, participants completed a test battery consisting of six 

neuropsychological test or scales assessing a wide range of cognitive functioning: (1) 

Hopkins Verbal Learning Test-Revised (Benedict et al., 1998), (2) Symbol digit modalities 

test (Smith, 1991), (3) Stroop Neuropsychological Screening test (Trenerry et al., 1989), (4) 

single-letter controlled oral word association test (COWAT; Ruff et al., 1996), (5) Colour 

Trails Task (Reitan, 1958), and the (6) Center of Epidemiologic Studies Depression Scale – 

Revised (Radloff, 1977). Full details of the neuropsychological tests are provided in the 

Appendix.  

Overall, the five tests produced 14 cognitive outcome variables, which are 

summarised in Table 1 (Results). Relationships between the cognitive outcome variables 

were explored via Pearson’s correlations for continuous outcome variables and Spearman 
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correlation for ordinal outcome variables. Relationships were considered significant at a false 

discovery rate corrected p value of 0.0062 (Benjamini and Hochberg, 1995) 

Simultaneous MR-PET data acquisition 

Following the completion of the cognitive battery (approximately 30 minutes), 

participants underwent preparation for the simultaneous MR-PET scan. They were first 

cannulated in the vein in each forearm, and a 10-ml baseline blood sample was taken. For all 

participants, the left cannula was used for FDG infusion, and the right cannula was used for 

blood sampling.  

Participants underwent a 95-min simultaneous MR-PET scan in a Siemens (Erlangen) 

Biograph 3-Tesla molecular MR scanner. Participants were positioned supine in the scanner 

bore with their head in a 16-channel radiofrequency head coil and were instructed to lie as 

still as possible with eyes open and think of nothing in particular. FDG (average dose 233 

MBq) was infused over the course of the scan at a rate of 36 mL/h using a BodyGuard 323 

MR-compatible infusion pump (Caesarea Medical Electronics, Caesarea, Israel). Infusion 

onset was locked to the onset of the PET scan.  

Plasma radioactivity levels were measured throughout the duration of the scan. At 10-

minutes post-infusion onset, a 10 mL of blood sample was taken from the right forearm using 

a vacutainer; the time of the 5-mL mark was noted for subsequent decay correction. 

Subsequent blood samples were taken at 10-minute intervals for a total of 10 samples for the 

duration of the scan. Immediately following blood sampling, the sample was placed in a 

Heraeus Megafuge 16 centrifuge (ThermoFisher Scientific, Osterode, Germany) and spun at 

2000 rpm for 5 minutes; 1000 μL plasma was pipetted, transferred to a counting tube, and 

placed in a well counter for 4 minutes. The count start time, total number of counts, and 

counts per minute were recorded for each sample. The average radioactivity concentration 
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persistently increased over time with the lowest relative rate occurring at the end of the 

acquisition.  

MRI pre-processing 

For the structural T1 image, the brain was extracted in Freesurfer, then registered to 

MNI152 space using Advanced Normalization Tools (ANTs). The gray matter, white matter, 

and brain cortex labels of the structural T1 image were segmented into 82 regions using 

Freesurfer with Desikan-Killiany Atlas (Diedrichsen et al., 2009).  

 The six blocks of EPI scans for all participants (a total of 1452 volumes) underwent a 

standard fMRI pre-processing pipeline. Specifically, all scans were brain extracted (FSL 

BET, Smith, 2002), motion corrected (FSL MCFLIRT, Jenkinson et al., 2002), slice timing 

corrected (FSL, using Fourier-space time-series phase-shifting) and band-pass filtered 

(0.1>Hz > 0.01) to remove low-frequency noise (FSL, Jenkinson et al., 2012), and spatially 

smoothed using a Gaussian kernel of FWHM of 8mm. Across subjects, the average mean 

framewise translation motion was 0.41 mm, maximum was 1.09 mm. 

 

PET image reconstruction and pre-processing  

The 5700-s list-mode PET data for each subject were binned into 356 3D sinogram 

frames each of 16-s interval. The attenuation for all required data was corrected via the 

pseudo-CT method (Burgos et al., 2014). Ordinary Poisson-Ordered Subset Expectation 

Maximization algorithm (3 iterations, 21 subsets) with point spread function correction was 

used to reconstruct 3D volumes from the sinogram frames. The reconstructed DICOM slices 

were converted to NIFTI format with size 344×344×127 (voxel size: 2.09×2.09×2.03 mm 3) 

for each volume. A 5-mm FWHM Gaussian postfilter was applied to each 3D volume. All 3D 

volumes were temporally concatenated to form a 4D (344 × 344 × 127 × 356) NIFTI volume. 

A guided motion correction method using simultaneously acquired MRI was applied to 
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correct the motion during the PET scan. We retained the 225 16-s volumes commencing from 

the 30-minute timepoint, which matched the start of the BOLD-fMRI EPI acquisition, for 

further analyses.  

The 225 PET volumes were motion corrected (FSL MCFLIRT, Jenkinson et al., 

2002); the mean PET image was brain extracted and used to mask the 4D data. The fPET data 

were further processed using a spatiotemporal gradient filter to estimate the short-term 

change in glucose uptake from the cumulative glucose uptake that was measured (Jamadar et 

al., 2020). The filter removed the accumulating effect of the radiotracer and other low-

frequency components of the signal to isolate short-term resting-state fluctuations. This 

approach intrinsically adjusted for the mean signal while avoiding global-signal regression 

and other approaches that may create spurious anticorrelations in the data (Murphy and Fox, 

2017). Due to radiotracer dynamics, it was not expected that the fPET sensitivity would be 

uniform across the 60 minutes of the resting-state data acquisition. As the radiotracer 

accumulated in the brain, it was anticipated that the signal-to-noise ratio (SNR) of the PET 

image reconstruction would progressively improve. The spatiotemporal filter has been 

described extensively in our previous work (Jamadar et al., 2021; Jamadar et al., 2020). 
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Functional and Metabolic Connectivity Analyses 

For fPET and fMRI, time series were extracted for each of the 82 regions of interest 

(ROIs) from the segmentation of the T1 - weighted image, interpolated using an ANTs rigid 

registration (Avants et al., 2011). To construct a connectivity matrix, Pearson’s correlation 

coefficients were estimated between the timeseries from pairs of regions. This produced a 

per-subject per- modality 26 x 82 × 82 matrix corresponding to the 60 minutes of resting- 

state in the experimental protocol. For interpretation of connectivity patterns, the 82 ROIs 

were anatomically sorted as defined by the Desikan-Killiany Atlas (i.e., frontal, parietal, 

occipital, subcortical, temporal; Diedrichsen et al., 2009).  

Partial Least Squares Analyses 

 We used Partial Least Squares (PLS) analyses to assess the multidimensional 

functional relationships between (1) the hemodynamic connectome and cognition, as well as 

(2) the metabolic connectome and cognition (Krishnan et al., 2011; McIntosh and Lobaugh, 

2004) (Figure 1). PLS is an unsupervised multivariate machine learning technique that 

extracts the common information between two datasets (i.e., brain connectivity [X] and 

cognitive responses [Y]) by finding orthogonal sets of latent variables with maximum 

covariance, which reflect the linear combinations of the original data. In our case, the brain 

connectivity is either the hemodynamic connectome [XF] or metabolic connectome [XM]. 

Prior to the application of PLS, the upper triangle of the hemodynamic connectivity matrix 

and the metabolic connectivity matrix (i.e., 3321 connections, respectively) were vectorized 

and stacked as participant by connection resulting in matrices sized 26 x 3321, respectively. 

The cognition matrix was sized at 26 x 14. These subject-specific the hemodynamic 

connectivity matrix (XF), metabolic connectivity (XM) matrices and the cognitive response 

matrix (Y) were subsequently z-scored column-wise.  
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 First, the correlation matrix between the brain connectivity (X) and cognition matrix 

(Y) is computed R = XTY and single value decomposition (Eckart and Young 1936) is next 

applied to that connectivity-cognition matrix, resulting in R = USVT. The outcome of the 

single value decomposition is a set of mutually orthogonal latent variables, whereby U and V 

are orthogonal matrices consisting of left and right singular vectors and S is a diagonal matrix 

of singular values. The number of latent variables is equal to the rank of the covariance 

matrix R, which is the smaller of its dimensions. Every latent variable is associated with 1) a 

singular value (diagonal elements of S) indicated the correlation explained by that latent 

variable, 2) a vector of singular values U, which represent the behavioural saliences, and 3) a 

vector of singular values V, which represent the brain saliences. The behavioural saliences 

indicate how strong each one of the cognitive variables contributes to the brain-design 

correlation explained by a particular latent variable. Similarly, the brain saliences V express 

how strong every connection contributes to the brain-design correlation explained by a 

particular latent variable. The projection of every subject’s original connectivity (in X) onto 

the multivariate brain salience pattern (in V) results in brain scores Lx = XV. Brain scores 

measure the similarity of a subject’s individual brain data with the salient brain pattern. 

Similarly, cognitive scores can be computed by Ly = YU, which represent a projection of 

every subject’s design variable onto the respective design saliences. Finally, brain loadings 

(or weights) were computed as the Pearson’s correlation between the brain connectivity 

matrix and the PLS analysis-derived brain scores. Similarly, cognitive loadings were 

computed as the Pearson’s correlations between cognitive variables and the PLS analysis-

derived cognition scores across the cohort. Loadings can be interpreted as indexing the 

degree contribution of each variable to the PLS analysis-derived latent variable. Loadings are 

only interpreted for significant latent variables. 
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The significance of each latent variable is assessed via permutation tests (5000 

iterations) of the singular values from the single value decomposition of the brain and 

cognition matrices and the reliability of each connectivity estimate to the latent variable is 

assessed via bootstrap resampling (5000 iterations). The reliability of the loading of each 

connection onto the brain-cognition relationship in each latent variable is established via 

bootstrap (5000 iterations). A connection with a positive bootstrapped loading contributes 

positively and reliably to the brain-cognition correlation obtained for that latent variable, 

whereas a connection with a negative high bootstrapped loading contributes negatively and 

reliably to the brain-cognition relationship. Bootstrapping is also used to construct 95% 

confidence intervals on the brain-cognition correlations.  

 
Hemodynamic versus metabolic connectivity in relation to cognition  

To compare the brain connections that contributed to the hemodynamic connectome-

cognition relationship and metabolic connectome-cognition relationship, the scalar product 

between the brain saliences (U) resulting from each PLS were computed for significant latent 

variables. Similarly, to compare the cognitive responses that contributed to the metabolic 

connectome-cognition relationship and functional connectome-relationship, we calculated the 

dot product between the behavioural saliences (V) that resulted from both PLS analyses. A 

scalar product of 0 suggests no overlap across modalities and a scalar product of 1 suggest 

strong overlap across modalities (i.e., fPET and fMRI). Finally, to identify the anatomical 

location of similar brain loadings across modalities, Pearson’s correlations was performed on 

the brain loadings matrices of both modalities. This results in a matrix of cosine similarity 

between the two modalities.  
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