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Abstract 

Estrogen receptor-positive (ER+) metastatic tumors contribute to nearly 70% of 

breast cancer-related deaths. Most patients with ER+ metastatic breast cancer (MBC) 

undergo treatment with the estrogen receptor agonist fulvestrant (Fulv) as standard of 

care. Yet, among such patients, metastasis in liver is associated with reduced overall 

survival compared to other metastasis sites. The factors underlying the reduced 

responsiveness of liver metastases to ER agonists remain unknown, impeding the 

development of more effective treatment approaches to improve outcomes for patients 

with ER+ liver metastases. We therefore evaluated site-specific changes in MBC cells 

and determined the mechanisms through which the liver metastatic niche specifically 

influences ER+ tumor metabolism and drug resistance. We characterized ER activity of 

MBC cells both in vitro, using a novel system of tissue-specific extracellular matrix 

hydrogels representing the stroma of ER+ tumor metastatic sites (liver, lung and bone), 

and in vivo, in liver and lung metastasis mouse models. ER+ metastatic liver tumors and 

MBC cells grown in liver hydrogels displayed upregulated expression of glucose 

metabolism enzymes in response to Fulv. Furthermore, differential ERα activity, but not 

expression, was detected in liver hydrogels. In vivo, increased glucose metabolism led 

to increased glycogen deposition in liver metastatic tumors, while a fasting-mimicking 

diet increased efficacy of Fulv treatment to reduce the metastatic burden. Our findings 

identify a novel mechanism of endocrine resistance driven by the liver tumor 

microenvironment. These results may guide the development of dietary strategies to 

circumvent drug resistance in liver metastasis, with potential applicability in other 

metastatic diseases.  
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Introduction 

About one-third of women with early-diagnosed non-metastatic breast cancer 

later develop metastatic disease [1], and 90% of breast cancer deaths result from 

metastases that is intractable to treatment [2, 3]. Among US women with breast cancer, 

an estimated 168,000 had metastatic breast cancer (MBC) in 2020 [4]. This condition 

confers poor outcomes, with a median survival of approximately 18–24 months from 

metastatic tumor diagnosis [5]. These adverse outcomes underscore the need to 

identify mechanisms promoting metastatic disease and treatment resistance.  

MBC commonly spreads to the liver [6, 7]. Importantly, patients with liver 

metastasis (40.8%) have significantly increased death risk, similar to brain metastasis, 

and a disproportionally higher mortality rate compared to lung (36.8 %) or bone 

metastases (67%) [8-11]. About 70% of metastatic tumors express estrogen receptor 

alpha (ERα), rendering MBC responsive to endocrine-based therapies such as 

Fulvestrant (Fulv) [12, 13]. This ERα antagonist is the only clinically approved selective 

ER degrader prescribed either alone or in combination with CDK4/6 or PI3K inhibitors 

(for PIK3CA mutant tumors) to treat MBC, independent of metastatic site. Notably, 

patients with liver metastases have poorer response to Fulv compared to patients with 

bone or lung metastases [6, 7, 14]. Left untreated, survival for patients with MBC in liver 

is typically 4–8 months [15]. For those receiving endocrine/biotherapy or chemotherapy, 

median times to progression are in the range of 20–30 months with initial therapy, and 

these times shorten progressively with subsequent treatments until clinical resistance 

develops [10]. Therefore, there is a critical need for novel therapeutic approaches that 

will provide a durable therapy response or cure for patients with ER+ liver MBC.  
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Metastatic tumor phenotypes and treatment responses result from complex 

interactions between tumor cells and components of the tumor microenvironment, 

including inflammatory cells, fibroblasts, and biochemical composition and physical 

properties of the extracellular matrix [16]. A crucial aspect of this microenvironment is 

the metabolic state. Cancer cells exhibit a remarkable metabolic plasticity [17, 18], 

whereby they adapt to new metastatic environments by rewiring their metabolic 

pathways [16]. Yet, these changes not only provide building blocks to sustain the cells’ 

biological functions, they also create novel vulnerabilities that are potentially exploitable 

through pharmacological or dietary interventions.  

We recently showed that MBC cells grown in tissue-specific extracellular matrix 

hydrogels to tune their microenvironment displayed altered metabolic profiles that 

rendered the cells vulnerable to metabolic inhibitors; notably, treatment with these 

inhibitors improved MBC cell responses to endocrine therapy [19]. Previous work using 

syngeneic mouse models showed metastatic site-specific metabolic adaptations in ER-

negative breast tumors [20, 21]. Yet, the impact of the liver microenvironment on ER+ 

MBC cell metabolic reprogramming and response to ER-targeting agents is unknown.  

Here, we sought to identify how the metabolism–cancer nexus in liver affects the 

response of metastatic ER+ tumors to Fulv, focusing particularly on tumor-intrinsic 

metabolic mechanisms arising following Fulv exposure. Spatial and bulk transcriptomic, 

and metabolic analysis of MBC cells and in vivo xenograft tumors identified an 

upregulation of glucose metabolism in the liver niche in response to Fulv. We fed mice 

with diets with differing carbohydrate levels to modulate metastatic burden and improve 

Fulv responses. Our findings delineating the underlying causes of the unique MBC 
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response to Fulv in the liver should inform the design of future clinical trials to test 

efficacy of combining dietary interventions with endocrine therapies to improve 

treatment response. 

Materials and Methods 

Clinical Data and Analysis 

The breast cancer management database at The University of Texas MD 

Anderson Cancer Center was used to identify patients for the current study, with the 

following inclusion criteria: age ≥ 18 years, diagnosed with de novo or recurrent 

ER+/HER2- MBC between 1997 and 2021, with metastasis to the liver and receipt of 

Fulv in their metastatic setting. To evaluate the difference in overall mortality among 

patients with MBC to the liver, we analyzed 3388 patients with MBC in a MD Anderson 

Cancer Center cohort study. Patients with either primary or secondary liver metastasis 

were identified as having hepatic involvement. All other patients with MBC were 

identified as having non-liver metastasis. Kaplan-Meier methods were used to visualize 

overall survival and survival after metastasis. The Cox proportional hazards model was 

then used to compare the survival between patients with metastasis to the liver versus 

metastasis to other sites. These models were adjusted for age at diagnosis, BMI, race, 

and tumor stage.   

Cell Culture 

All cell lines were obtained from American Type Culture Collection (Manassas, VA) 

unless indicated otherwise. MCF7 (ATCC HTB-22) (RRID:CVCL_0031) and T47D 

(ATCC HTB-133) (RRID:CVCL_0553) parental cells were cultured in RPMI-1640 

medium with NEAA salts (Sigma, St Louis, MO, USA), 5% fetal bovine serum (FBS) 
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(HyClone, Logan, UT), 100 µg/mL penicillin/streptomycin (Invitrogen, Carlsbad, CA, 

USA) and 50 mg/mL Gentamicin (Gibco, Gaithersburg, MD). MCF7/ESR1D537S and -

ESR1Y537S cells (RRID:CVCL_0031-citation needed) were generated as described in 

[22] and were cultured in Dulbecco’s Modified Eagle Medium (DMEM) with NEAA salts, 

10% FBS, 100 µg/mL penicillin/streptomycin, and 50 mg/mL gentamicin. T47D 

ESR1D537S and T47D ESR1Y537S cells (RRID: CVCL_0553-citation needed) were 

cultured in Modified Eagle Medium (MEM) with NEAA salts, 10% FBS, 100 µg/mL 

penicillin/streptomycin, and 50 mg/mL gentamicin. Cell line authentication was 

performed by checking activity and expression of ERα, proliferative responses to ER 

agonists and antagonists for all cell lines, and sequencing of MCF7/ESR1Y537S and 

MCF7/ESR1D537G as described [23]. 

3-D Cell Culture Models 

IN SITE Metastasis Kit (Xylyx Bio, Inc., NY) containing TissueSpec Bone 

(MTSBN101), Liver (MTSLV101), and Lung (MTSLG101) ECM Hydrogels, were used to 

model tumor microenvironments according to the manufacturer’s protocol. Briefly, 2×103 

cells were encapsulated in corresponding extracellular matrix (ECM) hydrogels by 

mixing them with tissue culture matrix. A mixture volume of 100 uL/well was placed in 

96-well plates in triplicate. Plates were incubated at 37°C in a humidified environment 

with 5% CO2 for at least 45 minutes to achieve gelation. Cells were treated with media 

containing Veh or 1µM Fulv every Monday and Friday for three weeks. Oncosphere 

formations were visualized by Invitrogen EVOS XL Core Light Microscope (4X and 25X 

magnifications) (Waltham, MA, USA). OpenCFU colony counting software 

(http://opencfu.sourceforge.net/) was used to automatically count colony number and 
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size. All statistical analyses were completed by using GraphPad Prism 8 software 

(RRID:SCR_002798). 

   Western Blot 

   Western blot analysis used specific antibodies against β-actin (Sigma Aldrich, St. 

Louis) and ERα (F10, Santa Cruz Biotechnology, Santa Cruz, CA). MCF-7 cells were 

seeded at 2–4x105 cells in 10-cm dishes in 5 mL growth media. The next day, cells 

were treated with fresh media and collected 15 min later into 250 µL lysis buffers. Cell 

lysate was prepared using RIPA buffer. Samples were sonicated three times for 10 s to 

shear the DNA. Ten micrograms of protein were loaded onto 10% SDS gels. Primary 

antibodies were used at 1:500 except for β-actin (1:5,000). Secondary antibodies are 

from Licor biosciences (Goat anti rabbit IRDdye 800 and goat anti mouse IRDye 680).  

Proteins were visualized using Odyssey LI-COR Imaging System that detect infrared 

dye on the secondary antibodies. 

In Vivo Xenograft Study  

Four-week-old, ovariectomized, NOD SCID gamma (NSG) immunodeficient 

female mice were obtained from The Jackson Laboratory (Bar Harbor, ME). All 

experiments involving animals were conducted in accordance with National Institutes of 

Health standards for the use and care of animals, with protocols approved by the 

University of Illinois at Urbana-Champaign (UIUC; IACUC protocol #20158). After one 

week of acclimatization to the housing facility, we injected 1×106 MCF7-ESR1Y537S cells 

resuspended in 1% PBS via tail vein and randomized animals to indicated treatment 

groups. Mice were housed in 12-h light-dark cycle. 
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Diet and metastatic burden study:  Three different diets were implemented for 

this study: Control (F4031, Bioserv, Flemington, NJ), High-fat Diet (HFD) (F3282, 

Bioserv), and Fasting-mimicking Diet (FMD) (F3666, Bioserv) (Supplementary Table 

1). We randomized N=8 mice to one of the two treatments Vehicle (Veh) or Fulv in each 

diet group. Fulv (Sigma) was dissolved in 10% DMSO and 90% corn oil and 

administrated via intramuscular injection (100 mg/kg) twice a week (Monday, Friday) for 

four weeks. 

FMD and Fulv response study: In our diet studies using MCF7 ESR1Y537S cells, 

metastatic tumor bioluminescence radiance had an average of 1.9X106 p/sec/cm2/sr 

and standard deviation of 1.5X106 p/sec/cm2/sr. Based on these values and Type 1 

error of 5% and Type II error of 5%, to observe a significant tumor response, 8 mice per 

group were randomized to the Fulv treatment or control groups (i.e., Control/Veh; 

Control/Fulv; FMD/Veh; FMD/Fulv). Fulv was dissolved in 10% DMSO and 90% corn oil 

and administrated via intramuscular injection (100 mg/kg) twice a week (Monday, 

Friday) for four weeks. 

   For all experiments, food intake and body weight were measured twice weekly for 

the study duration. After six weeks of treatment, mice were euthanized, and organs 

were harvested. Tumor growth was monitored over time using an in vivo 

bioluminescence imaging (IVIS) system (PerkinElmer). Tumor burden was assessed 

and measured (final metastatic tumor nodules) at necropsy. Aliquots of the samples 

were either flash frozen, frozen in RNAlater (Thermo Scientific, Waltham, MA, USA) for 

RNA isolation, or crosslinked in 10% neutral buffered formalin at room temperature 

(Millipore Sigma, Burlington, MA) for histological analysis.  
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Histology 

Tissues were cut in 5-micron sections using a microtome (Leica RM1255, Austria). 

For ERα immunostainings, tissues were deparaffinized and hydrated through graded 

alcohols to water. Antigen retrieval was performed by using citrate buffer, pH 6.0 in a 

steamer for 1 hour. Samples were blocked in hydrogen peroxide for 10 min. To remove 

non-specific protein staining, samples were blocked with Background buster (Innovex 

Biosciences, Richmond, CA) for 10 min and rinsed with TBS-Tween solution, pH 7.6. 

Then, samples were incubated with anti-ERα (F10, Santa Cruz Biotech) (RRID: 

AB_631470) primary antibody overnight at 4° C. After rinsing with TBS-Tween solution, 

pH 7.6, samples were stained with secondary anti-rabbit and anti-mouse HRP-Polymer 

(Biocare Medical, Concord, CA) for 30 min. Finally, samples were incubated with DAB 

(Innovex, Richmond, CA) for 5 min and counterstained with hematoxylin, dehydrated, 

and mounted on slides. Visualization of samples was performed with Nanozoomer Slide 

Scanner (Hamamatsu, Japan) at 80X magnification, and positive staining quantification 

was performed using NDP software.  

For the Periodic Acid Schiff’s (PAS) staining, paraffin sections were deparaffinized 

in xylene and rehydrated through graded alcohols to water. Then they were placed in 

0.5 % periotic acid for ten minutes. After rinsing well in water, they were placed in 

McManus Schiff’s Reagent (Newcomer Supply, Inc., Middleton, Wisconsin) for 10 

minutes. Following a 30 second rinse in 0.55 % Potassium Metabisulfite, the slides were 

placed in warm running tap water for10 minutes. They were then counterstained with 

modified Harris hematoxylin (Thermo Fisher Scientific, Kalamazoo, MI).  They were 

then dehydrated, cleared in xylene and mounted. For glycogen digestion, following 
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deparaffinization, the slides were placed in 1% amylase in a 37 degree incubator for 30 

minutes before proceeding with the PAS stain. 

      Gene Expression Analysis 

To identify gene sets regulated in different ECMs, Selective Estrogen Receptor 

Modulators (SERM), or by Fulv in liver metastatic tumors, RNASeq analysis was 

performed. For hydrogel experiments, 30-mm cell culture plates were coated with 

Native Coat ECMs for liver, lung, or bone (Xylyx). Then, these plates were incubated at 

37ºC in a humidified environment with 5% CO2 for at least for 1 hour. MCF7-ESR1Y537S 

cells were seeded on coated plates after removing native coat mixtures at a density of 

2×103 cells/well in DMEM. Cell lysates were collected using Trizol after 24 h of culture. 

MCF7-ESR1Y537S cells were treated with Vehicle (Veh, 0.5% EtOH), 10−6 M 4-

hydroxytamoxifen (4OHT) (Sigma), 10−6 M Fulv (Sigma), or 10−6 M Palbociclib (Palb) 

(Sigma) for 24 h. Concentrations of drugs were selected are based on our previously 

published studies [19, 24] and clinical data [25-27]. Experiments were performed in 

triplicate. For cell line xenograft tumors of MCF7-ESR1Y537S cells, Veh- or Fulv-treated 

tumors were homogenized in 1 mL of TRIzol reagent (Life Technologies, Carlsbad, CA, 

USA). Total RNA was extracted with TRIzol reagent according to the manufacturer’s 

protocol and cleaned using a kit (QIAGEN, Hilden, Germany). RNA quality was 

assessed using bioanalyzer. Total RNA from each sample (three per treatment group) 

was sequenced at the UIUC sequencing center, and data were generated in Fastqc file 

format to compare transcript abundance between the four treatment groups.  

Preprocessing and quality control: Fastqc files containing raw RNA sequencing data 

were trimmed using Trimmomatic (Version 0.38) (RRID:SCR_011848) [28]. Next, the 
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reads were mapped to the human reference genome (GRCh37) or mouse reference 

genome (GRCm38) from the Ensembl (RRID:SCR_002344) [29] database and aligned 

using the STAR alignment tool (RRID:SCR_015899) (Version 2.7.0f) [30]. Read counts 

were generated from SUBREAD (Version 1.6.3) (RRID:SCR_009803) [31], and feature 

counts were exported for statistical analysis in R. Quality control and normalization was 

conducted in R using edgeR (Version 3.24.3) (RRID:SCR_012802) [32]. Statistical 

analysis was conducted in R using limma (Version 3.38.3) (RRID:SCR_010943) [33, 

34]. Empirical Bayesian statistics were conducted on the fitted model of the contrast 

matrix. Differentially expressed genes were then determined by fold-change and p-value 

with Benjamini and Hochberg multiple test correction for each gene, for each treatment 

relative to the vehicle control. We considered genes with fold-change >1.5 and p-value 

<0.05 as statistically significant, differentially expressed. Cluster3 software was used for 

clustering the differentially expressed genes. Data were visualized using Treeview Java. 

Principal components analysis (PCA) was performed using StrandNGS (Version 3.1.1). 

Gene set enrichment analysis (GSEA, RRID:SCR_003199) [35, 36] was used to identify 

GO terms associated with different treatments. 

Visium Spatial transcriptomics libraries are constructed in the at the Carl R. 

Woese Institute for Genomic Biology Core Facility and the DNA Services laboratory of 

the Carver Biotechnology Center at the University of Illinois at Urbana-Champaign. 

Briefly, frozen tissues were sectioned and placed onto a Tissue Optimization Slide with 

eight capture areas, each having thousands of spots with poly-dT capture probes. 

Tissue sections were permeabilized across a time-course from 3 to 30 minutes. The 

mRNAs from the tissue anneal to the oligos, were converted to cDNA by reverse 
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transcription with a fluorophore and the sections were evaluated with the Zeiss Axio 

Observer Z1 microscope. The permeabilization condition producing the brightest image 

with the least diffusion were chosen for the processing of the tissues. A permeabilization 

time of 12 minutes was selected for these samples. Next, tissue sections were placed 

onto the Visium spatial Gene Expression slide, which contains 4 capture area squares 

6.5mm x 6.5mm. Each square has approximately 5,000 spots with barcoded poly-dT 

oligos. Tissue sections were fixed, stained with hematoxylin and eosin (H&E) and 

visualized with the Hananatsu Nanozoomer microscope. After permeabilization, 

messenger RNAs were converted into spatially-barcoded cDNAs following the 10x 

Genomics protocol. The double-stranded-barcoded cDNAs are then denatured and 

converted into a sequencing-ready, dual-indexed libraries. The final libraries were 

quantitated on Qubit and the average size determined on the AATI Fragment Analyzer 

(Advanced Analytics, Ames, IA), then diluted to 5nM concentration and further 

quantitated by qPCR on a Bio-Rad CFX Connect Real-Time System (Bio-Rad 

Laboratories, Inc. CA).  The libraries were pooled by qPCR value and capture spot 

coverage and sequenced on an Illumina NovaSeq 6000 to a length of 28nt (read 1, 

contains the spot barcode and unique molecular identifier used for removing PCR 

duplicates), 10nt for each index (libraries contain unique dual indexes to prevent index 

switching) and 150nt for read 2 (the cDNA read) to a minimum depth of at least 100,000 

cDNA read 2 per spot.   Fastq.gz files were generated and demultiplexed with 

SpaceRanger 1.3.0. Data was processed and visualized using Space Ranger Analysis 

Pipelines and Loupe browser using a combined human (GRCh38) and mouse 

(GRCm39) reference based on Ensembl Release 104.  Visium uses the cDNA barcodes 
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to associate the transcripts to an X-Y coordinate on the slide, which can then be used to 

overlay the H&E-stained image with the transcript information from a spatial viewpoint. 

The R package Seurat was used to read in both the count data and the images. To 

identify spots that were primarily mouse host, we calculated the proportion of all UMIs 

that were from human genes and excluded spots that were <= 25% human. All mouse 

genes were also removed and then all 4 samples were normalized together using 

sctransform, then principal components analysis was performed and the top 30 PCs 

were used in both nearest neighbor cluster calling and UMAP dimension reduction. 

Metabolomics Analysis 

MCF7-ESR1Y537S cells were seeded at a density of 2x105 cells/plate in the same 

coated plates after removing native coat mixtures as explained above. After 24 hours, 

metabolites were extracted using acetonitrile/isopropanol/water and stored at -80ºC until 

submitted to the Metabolomics Center in the Roy J Carver Biotechnology Center at 

UIUC. GC/MS whole metabolite profiling was performed to detect and quantify the 

metabolites by using gas chromatography-mass spectrometry (GC/MS) analysis. 

Metabolite profiles were acquired using an Agilent GC-MS system (Agilent 7890 gas 

chromatograph, an Agilent 5975 MSD, and an HP 7683B autosampler). Spectra of all 

chromatogram peaks were evaluated using the AMDIS 2.71 and a custom-built 

database with 460 unique metabolites. All known artificial peaks were identified and 

removed before data mining. To allow comparison between samples, all data were 

normalized to the internal standard in each chromatogram. This analysis identifies about 

200 metabolites and reports a relative abundance of metabolites, which enabled us to 

compare metabolites across the sample batch. Metabolomics data with sample class 
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annotations (No ECM, Liver ECM) were uploaded to the Statistical Analysis tool of 

MetaboAnalyst software (RRID:SCR_015539) version 4.0 [37]. Features with more than 

50% missing values were removed. Data were normalized based on values from No 

ECM samples. Data were log transformed and scaled using the auto-scaling feature. A 

heatmap of class averages of 25 metabolites was generated using the Heatmap feature 

with default options for clustering and restricting the data to top 25 metabolites ranked 

by t-test. Partial least squares discriminant analysis (PLS-DA) was performed to 

sharpen the separation between No ECM and Liver ECM groups to distinguish 

metabolic profiles. VIP scores for the top 25 metabolites that discriminated between 

treatment groups were calculated and displayed using the PLS-DA tool. Fold-change 

analysis was performed to compare the absolute value of change of metabolites 

between two group means. Enrichment analysis and pathway analysis were used to 

identify metabolic pathways associated with enriched metabolites (fold change >2 or 

<0.05).  

Seahorse Metabolic Profiling Assays  

Seahorse XFp plates were coated with Native Coat ECMs for bone, lung, or liver 

(Xylyx). The coated plates were incubated at 37°C in a humidified environment with 5% 

CO2 for at least for 1 hour. Cells were seeded in the coated Seahorse plates after 

removing native coat mixtures. MCF7-ESR1Y537S cells were seeded at a density of 

3×104 in corresponding treatment media without phenol red in each well of the XFp Cell 

Culture miniplates, respectively (Seahorse Bioscience Inc., Billerica, MA, USA). The 

next day, the cartridges were hydrated with the calibration solution and kept in a non-

CO2 incubator at 37°C overnight. In parallel, a duplicate of each plate was used for cell 
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counting to monitor cell number changes after 24 h of treatments, and Seahorse data 

were normalized to total cell number. On the assay day, cells were washed with XF 

Base Media without phenol red (Seahorse Bioscience Inc., Santa Clara, CA) 

supplemented with 10 mM L-glucose, 2 mM L-glutamine (Gibco), and 1 mM sodium 

pyruvate (Gibco, Waltham, MA). The ECAR (mpH/min) and OCR (pmol/min) values 

were obtained by using Seahorse XFp Cell Energy Phenotype Test Kit (Seahorse 

Bioscience Inc.), which were run with Seahorse XFp Analyzer (Seahorse Bioscience 

Inc.). Experiments were performed in triplicate and repeated at least three times. 

   ChIP-seq Analysis 

   ChIP-seq analysis was performed as described previously using MCF7-ESR1Y537S 

cells [38, 39]. ERα–DNA or IgG–DNA complexes were immunoprecipitated using ERα-

specific F10 and HC20 antibodies (Santa Cruz Biotech, 3:100 dilution). ChIP DNA was 

obtained from three pooled biological replicates. Libraries were prepared according to 

Illumina Solexa ChIP-Seq sample processing (San Diego, CA), and single-read 

sequencing was performed using the Illumina HiSeq 2000. Sequences generated were 

mapped uniquely onto the human genome (hg18) by Bowtie2 (RRID:SCR_016368). 

The MACS (model-based analysis of ChIP-seq) algorithm was used to identify enriched 

peak regions (default settings) with a P value cutoff of 6.0e−7 and FDR of 0.01, as we 

have described [40, 41].  

Statistical Analyses 

Data from all studies were analyzed using a one-way analysis of variance 

(ANOVA) to compare different ligand effects, or a two-way-ANOVA model to compare 

time-dependent changes. All datasets were tested for normal distribution. Normally 
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distributed data were analyzed using unpaired t-tests with a Bonferroni correction to 

identify treatments that produced significantly different results (* p <0.05, ** p <0.01, *** 

p <0.001, **** p <0.0001). For every main effect that was statistically significant at α 

=0.05, pairwise t-tests were conducted to determine which ligand treatment levels 

significantly differed. For these t-tests, the Bonferroni correction was employed to 

control experiment-wise type I error rate at α =0.05 followed by Bonferroni post hoc test. 

Data that were not normally distributed were analyzed using Mann-Whitney test for 

nonparametric data (* p <0.05, ** p <0.01, *** p <0.0001). Statistical significance was 

calculated using GraphPad Prism 9 for Windows. 

    Data Availability  

    Gene expression data were submitted to the GEO database and will be available 

from the day of the acceptance of the manuscript. 

Results 

Patients with liver metastatic breast tumors respond poorly to Fulv 

Small cohort studies reported that patients with liver metastases are less 

responsive to Fulv compared to patients with bone or lung metastases [6, 7, 14]. To 

validate these findings in a larger cohort, we analyzed data from an ongoing trial for 

patients with ER+ MBC. We identified 1556 (46%) patients in our cohort with liver 

metastasis. Median overall survival in patients with liver metastasis was 10 years (9.6, 

10.4), which was significantly shorter than those with metastasis elsewhere. The hazard 

ratio was 1.46 (1.34, 1.59), indicating an increased risk of mortality associated with liver 

metastasis across all treatment regimens (Fig.1A). Those with liver metastasis also had 

worse survival post-metastasis, with a median survival of 6.7 years (6.5, 7.0) compared 
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to 5.8 years (5.6, 6.0) in the non-liver metastasis cohort (Fig.1B). To characterize ER 

antagonist responses of MBC cells and test potential efficacy of combination therapies, 

we previously used decellularized hydrogels from different metastatic tissues [19]. To 

examine the differences in Fulv response when MBC cells are grown in different 

hydrogels, we used MCF7-ESR1Y537S cells (Fig. 1C). Estrogen receptor alpha gene 

(ESR1) mutations were identified in 15-40% of patients with ER+ metastatic tumors [42-

45]. Since these ESR1-activating mutations within the ligand-binding domain of ERα are 

enriched only in metastatic tumors [42-45], particularly in visceral tissue metastasis 

including liver metastases [46-48], we used this cell line to model MBC cell behavior in 

response to metastatic niche. Consistent with the clinical observation, MBC cells grown 

on liver hydrogels were less responsive to Fulv compared to cells grown on Matrigel or 

lung or bone hydrogels (Fig. 1D and Figure S1).  

ER+ MBC cells display distinct transcriptomes and ER cistromes in different 

tissue-specific ECM hydrogels  

To determine the molecular changes associated with different metastatic 

environments, we compared gene expression profiles from MCF7-ESR1Y537S cells 

grown on plastic (2D), bone, liver, or lung ECM hydrogels. MBC cells grown on different 

hydrogels exhibited distinct gene expression profiles (Fig. 2A and 2B). Intriguingly, 

gene sets associated with classical ERα target genes were downregulated in liver but 

not in bone or lung hydrogels (Fig. 2C), despite a lack of change in ERα mRNA or 

protein expression (Fig. 2D). To investigate why classical ERα target genes were 

downregulated on liver hydrogels, we performed ChIP-seq analysis, which revealed that 

ERα recruitment to chromatin was significantly altered in a niche-specific manner (Fig. 
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2E). For example, ER binding sites in cluster 2 (C2), present in cells grown in 2D plastic 

or bone hydrogels, were lost in cells grown on liver or lung hydrogels. Overall, there 

were more ER binding sites in bone hydrogels compared to lung or liver (Figure S2). 

These binding sites mapped to classical ER target genes, consistent with Fig. 2D. A 

histogram for ERα binding to an example classical ERα target gene, GREB1, is shown 

in Fig. 2F. Conversely, a new cluster of binding sites, cluster 3 (C3), was present only in 

cells grown in liver hydrogels, indicating the liver metastatic niche can promote a distinct 

pattern of ERα recruitment. These binding sites mapped to genes involved in metabolic 

regulation and insulin signaling, suggesting that these newly gained sites might be 

responsible for an altered metabolic phenotype (Table S2). Moreover, the fraction of 

distal intergenic binding sites was increased in liver hydrogels compared to other sites 

(Fig. 2G). Estrogen response element was the most enriched motif in liver ER binding 

sites, suggesting a direct ERα binding to chromatin rather than tethering (Table S3).   

Glucose dependence of MBC cells increases in liver hydrogels 

To assess the impact of metastatic ECM on MBC metabolism, we grew MCF7-

ESR1Y537S cells on different ECMs. Growth of these cells on liver ECM caused an 

increase in both the glycolysis and oxidative respiration in Seahorse cell phenotype 

tests (Fig. 3A). To identify specific pathways impacted by liver ECM, we performed a 

metabolomic analysis. Growth of MBC cells on different hydrogels resulted in distinct 

metabolite profiles when a PLS-DA classification was performed (Fig. 3B). While the 

abundances of fatty acid and glucose metabolism pathway metabolites were increased 

on liver ECM, amino acid and nucleotide metabolism-related metabolites were 

increased on lung ECM (Fig. 3C). To dissect the specific fuel dependency on different 
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hydrogels, we assayed glycolytic and oxidative respiration, which showed that liver 

hydrogels but not hydrogels from bone or lung increased glycolytic respiration in the 

presence of full media, or media with glucose or pyruvate compared to cells that were 

grown on plastic (2D) (Fig. 3D). Liver ECM led to an increase in oxidative respiration 

only when cells were supplemented with full media (Fig. 3E). A Seahorse cell 

phenotype test in different media showed that MBC cells grown in media with glucose 

had an increase in glycolytic potential when also grown on liver ECM (Fig. 3F). Finally, 

we performed metabolomic profiling in MBC cells grown on liver ECM that were treated 

with Veh or Fulv. This analysis further showed that relative abundance of glucose 

metabolism-associated metabolites including pyruvate were increased in response to 

Fulv (Fig. 3G).   

Glucose metabolism pathways are upregulated in liver metastatic tumors in 

vivo 

To uncover the mechanistic basis of decreased Fulv efficacy in patients with ER+ 

liver MBC, we used a preclinical xenograft mouse model with MCF7-ESR1Y537S cells. 

Tail vein injection of MCF7-ESR1Y537Scells in NSG mice resulted in liver metastasis, 

with a small portion of tumors forming in the lung, and Fulv treatment failed to reduce 

metastatic burden (Fig. 4A and 4B). To study if metastatic site altered gene regulation 

in response to Fulv, we compared gene expression changes of MCF-7 ESR1Y537S liver 

and lung xenograft tumors. This analysis showed that Fulv reduced expression of 

classical ER target genes PgR and GREB1. However, unlike lung metastatic tumors, 

liver metastatic tumors failed to downregulate GREB1 and PCNA in response to Fulv 

(Fig. 4C). To validate this observation, we performed spatial sequencing in Veh and 
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Fulv treated liver metastatic tumors. Overall, UMAP plots showed that tumors from 

same treatment groups clustered together (Fig. 4D). We identified 22 distinct clusters 

associated with liver metastatic tumors (Fig.4E). Human transcripts were majority of the 

transcripts identified in liver sections we analyzed (Fig. 4F). Interestingly, Fulv treatment 

increased ESR1 expression throughout the tumors. While MKI67 or PCNA expression 

did not change in response to Fulv, classical ER target changes GREB1, PgR and 

TSKU were downregulated (Fig. 4G). These results suggested that, while ERα retained 

some of its activity and Fulv response in liver metastatic tumors, suppression of cell 

proliferation in response to Fulv was lost.    

Tumor metastatic burden correlates with carbohydrate levels in the diet 

To determine why Fulv failed to reduce tumor progression and if any critical 

survival pathways were activated in response to Fulv, we performed RNASeq of liver 

metastatic tumors (Fig. 5A). Fulv significantly increased glycolysis and glycogenesis 

metabolism pathways, as well as lipid metabolism-related genes, consistent with our 

metabolomics analysis in Fig. 3 (Fig. 5B). We compared changes in expression of 

genes in cells that were grown on plastic (2D) treated with Fulv, 4-hydroxytamoxifen, or 

palbociclib; different hydrogels (Bone, liver, or lung); or changes in mouse transcripts in 

xenograft tumors with Fulv treatments. We found that glycogen pathway regulation was 

strongest in xenograft samples, suggesting that glycogen pathway regulation occurs in 

liver MBC, but not when cells are treated with Fulv in 2D or even when cells were grown 

on liver hydrogels without other components of the tumor microenvironment (ECM) (Fig. 

5B).  Because we observed major metabolic and gene expression changes in glucose 

metabolism and an increased dependence on and utilization of glucose in models of 
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liver metastasis, we next tested the impact of different diets with varying carbohydrate 

contents in our MCF7-ESR1Y537S xenograft model. Animals were provided with a 

Control diet, HFD, and FMD, which enabled us to examine impact of varying glucose or 

fat levels in the diet (Table S1). Metastatic burden was measured over 4 weeks (Fig. 

5C and 5D). At the end of the experiment, livers from animals who consumed the FMD 

looked healthier and had less visible liver metastasis nodules (Fig. 5E). Throughout the 

study we also monitored animal weight and caloric intake. Using this data, we 

performed a correlation analysis using all the data we obtained from these 

measurements and diet composition data, which revealed that metastatic burden is 

positively correlated with carbohydrate levels, particularly with di- and polysaccharides, 

in the diet (Fig. 5F). This finding is consistent with our observation that there was an 

increased dependence on glucose metabolism in liver metastatic tumors (Fig. 3). We 

found that metastatic burden negatively correlated with fat intake levels, while no 

correlation was observed for protein levels in the diet (Fig. 5F, Table S4). Interestingly, 

PAS staining for glycogen revealed that in animals who were fed a control diet or HFD, 

glycogen deposition was primarily in tumors (Fig. 5G).    

Targeting glycogen deposition using dietary approaches improve Fulv 

response of liver metastatic tumors 

Because we observed major metabolic and gene expression changes in glucose 

and glycogen metabolism genes, and an increased dependence on and utilization of 

glucose in models of liver metastasis, we next tested the impact of an FMD on MCF7-

ESR1Y537S xenograft model. FMD prevents glycogen accumulation in the liver and thus 

blocks a glucose surge and resultant insulin release from the pancreas. In addition, a 
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recent study combining FMD with Fulv showed a reduced time to endocrine resistance 

in primary ER+/HER2- mouse tumors and achieved complete response or stable 

disease in human patients [49]. To determine whether reducing glucose metabolism 

using an FMD might synergize with Fulv treatment in our in vivo liver metastasis model, 

we delivered MCF7-ESR1Y537S cells through tail vein injection in NSG mice. Consuming 

FMD synergized with Fulv treatment to reduce metastatic burden in mice with 

metastatic tumors (Fig. 6A and 6B) and decreased the number of visible metastatic 

nodules in the liver (Fig. 6C and 6D). Fulv treatment increased glycogen deposition in 

tumors (Fig. 6E, column 3, and row 2). These data provide proof of concept that 

combining a dietary intervention targeting glucose metabolism and glycogen deposition 

in liver provided a durable response to Fulv.  

Discussion 

Metastatic tumor phenotypes and responses to treatment reflect key aspects of 

the tumor microenvironment [50]. Here, we investigated tumor-intrinsic metabolic 

mechanisms that arise specifically in the liver metastatic niche. Using a combination of 

models, spatial and molecular data, and analytical methods, our findings reveal a key 

mechanism of endocrine resistance in liver MBC: niche-related metabolic plasticity in 

MBC cells that alters the response to ER-targeted therapies. This metastatic niche 

displays specific metabolic changes that provide a mechanistic basis for the poor 

success of Fulv treatment on survival of patients with ER+ liver MBC. Yet, these 

changes also unveiled a unique metabolic vulnerability that could be exploited through 

dietary intervention to improve Fulv response. 
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Treatment of MBC in the clinic focuses on targeting mechanisms that underlie 

increased activity of selective cellular pathways. Indeed, interrogating and targeting 

signaling cascades in tumors has been fruitful in promoting the development of 

endocrine-based therapies combining CDK4/6 inhibitors, PI3K inhibitors, or mTOR 

pathway inhibitors with endocrine agents for ER+ MBC [13]. Yet, none of these 

therapies is metastatic site-specific, and tumors can still develop resistance to 

combination therapies. In such cases, the cancer that develops is considerably more 

aggressive due to hyperactivation of compensatory pathways [51]. In contrast, we 

focused on inhibiting dynamic metabolic mechanisms enabling survival and therapy 

resistance in liver metastatic niches. Targeting metastatic site-specific metabolic 

vulnerabilities in ER+ MBC is a novel approach and the impact of metabolic 

interventions on endocrine therapy effectiveness is underexplored.  

To characterize ER antagonist responses of MBC cells and test potential efficacy 

of combination therapies, we previously used decellularized tissue-specific ECM 

hydrogels from different metastatic tissues [19]. Hydrogels constitute compatible niches 

to support ER+ MBC growth and provide an opportunity to recapitulate metastatic site 

environment and analyze drug responses and metastasis-associated phenotypes in 

vitro. These commercial hydrogels are obtained from decellularized porcine tissues. 

Characterization of hydrogel composition by mass spectrometry and quantitative 

biochemical and biophysical assays showed that hydrogels retain tissue-characteristic 

ECM proteins as well as growth factors [19, 52, 53]. Scanning electron microscopy 

analysis revealed structural similarity to human tissues, and rheometry analysis showed 

conservation of biophysical properties of the hydrogels, such as stiffness and resistance 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 7, 2021. ; https://doi.org/10.1101/2021.09.07.458711doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.458711


to deformation, as well as response of cancer cells grown in these matrices to drugs 

[19, 54]. We found that, consistent with the clinical observation, MBC cells grown on 

liver hydrogels were less responsive to Fulv compared to cells grown on Matrigel or 

lung or bone hydrogels. Supporting our observations in the hydrogel systems, an in vitro 

study reported reduced Fulv response when MCF7-ESR1Y537S were cultured with 

human hepatocytes [55].    

We observed altered ERα activity and recruitment in different tissue-specific 

ECM hydrogels. Since ERα expression is the same in different hydrogels, the altered 

ER recruitment pattern likely does not result from altered ER expression. Epigenetic 

marks are well established as a mechanism that dictates ERα recruitment to chromatin, 

target gene regulation, and response to ER antagonists [56-58]. Histone 3 displays 

altered acetylation at lysine 4, 9, and 27 in breast cancer cells that fail to respond to ER 

antagonists [58-60]. These results suggest an altered ERα activity in MBC cells residing 

in the liver microenvironment, and a role for metabolic and epigenetic enzymes to 

interact with ER in a Fulv-dependent manner to locally change epigenetic marks, which 

would lead to altered response to ERα antagonists. Future studies are needed to 

uncover these epigenetic differences based on metastatic sites.  

Additionally, metastatic site adaptation [61, 62] and metabolic alterations in MBC 

cells result in epigenetic reprogramming due to changes in the availability of substrates 

for epigenetic enzymes [63-65]. Local acetyl-CoA production via recruitment of 

metabolic enzymes to chromatin enables coordination of environmental cues with 

histone acetylation and gene transcription, thus increasing fitness and survival of cancer 

cells in different metastatic tissues. Acetyl-CoA can be synthesized in the nucleus from 
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pyruvate by the pyruvate dehydrogenase complex (PDC) [66, 67], from acetate by 

acetyl-CoA synthetase 2 (ACSS2) [68, 69], or from citrate by ATP-citrate lyase (ACLY) 

[70]. Intriguingly, all these enzymes are upregulated in ER+ liver metastatic tumors upon 

Fulv treatment, supporting a role for altered metabolism in changing tumors’ epigenetic 

landscape. 

Accumulating data indicate that practical clinical dietary intervention during cancer 

treatment has a profound impact in improving the efficacy of anticancer therapy, 

especially the FMD [71]. This diet is generally high-fat, moderate-protein, and very-low-

carbohydrate, leading to a process known as ketogenesis [72]. Lipolysis-induced fatty 

acids are metabolized to acetoacetate, which is later converted to β-hydroxybutyrate (β-

OHB) and acetone [73]. β-OHB is the most abundant ketone body derived from β-

oxidation in the liver, and it replaces glucose as a primary source of energy [73]. 

Considering the impact of carbohydrates in promoting breast cancer cell proliferation, 

the FMD has the potential to limit or control tumor growth. Some animal studies support 

that an FMD inhibits not only the progression of the primary tumor but also systemic 

metastasis [74, 75]. By providing a low-glucose microenvironment, the FMD enhances 

the cancer cell therapeutic response through selective metabolic oxidative stress [76]. 

Recent evidence indicates that the combination of FMD with Fulv results in increased 

time to endocrine resistance in primary ER+/HER2- mouse tumors and in complete 

response or stable disease in human patients [49]. This important study focused on the 

impact of FMD on circulating factors and signaling pathways; we instead focus on the 

impact of FMD on metabolic state of tumor cells. Recently, suppression of insulin 

feedback after PI3K inhibition using a FMD was proposed [77]. Our findings further 
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support use of this diet to improve endocrine therapy responses for MBC patients with 

liver metastasis.  

 In summary, our studies established metastatic-niche specific metabolic 

vulnerabilities as a novel target by uncovering the potential of FMD to improve Fulv 

response in ER+ liver MBC. We envision that metabolism-based therapies in 

combination with standard endocrine-based therapies may be effective in exploiting 

metastatic site-specific metabolic dependencies of cancer cells, and in eliciting durable 

responses. Given the need for better strategies to treat liver metastatic tumors, our work 

offers both novel metabolic insights and a more complete understanding of the basic 

molecular mechanisms that underlie drug resistance. This novel understanding will 

enable us and others to exploit these new vulnerabilities to improve therapy response of 

MBCs, and reduce morbidity and mortality associated with liver metastasis. 
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Figure legends 

Figure 1: Patients with liver metastatic breast tumors experience poor response 

to Fulv. MD Anderson Cancer Center cohort study involved 1832 patients without liver 

MBC and 1556 with liver MBC. Number of dead and alive patients with and without liver 

MBC were compared using Fisher's exact test A, B) Patients with ER+/HER2- liver 

metastatic tumors have shorter overall survival when treated with Fulv therapies, both 

monotherapy and combined treatment with CDK4/6 inhibitor, PI3K inhibitor, or mTOR 

inhibitor. Log-rank test was used to compare survival curves. C) Colony formation assay 

for MCF7-ESR1Y537S cells in Matrigel or decellularized hydrogels from different 

metastatic tissues and D) and efficacy of 1 µM Fulv to reduce colony number. Colonies 

were treated for 3 weeks. Unpaired t-test, P-values are indicated. 

Figure 2: ER+ MBC cells display distinct transcriptomes and ER cistromes when 

grown in different hydrogels. A) Hierarchical clustering of RNASeq data of MCF7-

ESR1Y537S cells grown on 2D (plastic), bone, liver, or lung Native Coat ECMs for 24 

hours. Total RNA was isolated, and sequencing was performed using three samples 
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from each treatment group. Differentially expressed genes were determined with P 

<0.05 and expression fold change >2. B) Principal component analysis of gene 

expression data using differentially expressed genes list from A, which shows distinct 

gene expression profiles associated with different hydrogels. C) Gene-set enrichment 

analysis of gene sets that were enriched in related genes as classical targets of ERα 

action dataset. D) ERα protein expression was examined using western blotting. Β-actin 

was used as a loading control. E) ERα ChIP-Seq in MCF7-ESR1Y537S cells grown on 

plastic (2D), bone, liver, or lung hydrogels. ERα–DNA complexes were pulled down 

using ERα antibodies. Three biological replicates were pooled and sequenced. 

Clustering of ERα-binding sites in hydrogels was done using seqMINER software. The 

ERα-binding sites were separated into four clusters of characteristic patterns: C1, C2, 

C3, and C4.  F) Example histogram showing ERα recruitment to GREB1 binding sites in 

cells grown in different hydrogels. G) Feature distribution of binding sites. 

Figure 3: Glucose dependency is increased in MCF7-ESR1Y537S cells cultured in 

liver hydrogels with Fulv treatment. A) Cell metabolic phenotype assay using the 

Seahorse Cell Energy Phenotype Kit. Cells cultured in plates coated with bone, liver, 

and lung hydrogels for 24 hours were tested for the energy phenotype. Each experiment 

was replicated twice with three technical replicates. Results from a representative 

experiment are shown. B) Whole metabolite profiling using GC/MS analysis of extracts 

from MCF7-ESR1Y537S grown on plastic (Ctrl), bone, lung, and liver hydrogels. Scores 

plot showing distinct metabolite abundance patterns on different hydrogels. C) Heatmap 

of metabolite profiling analysis of pathway changes induced by different hydrogels. D) 

Cell phenotype assays were performed to dissect the specific fuel dependency on 
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different hydrogels, which showed that liver hydrogels but not bone or lung hydrogels 

increased glycolytic respiration in the presence of full media, or media with glucose or 

pyruvate compared to cells that were grown on plastic. Two-way ANOVA, Dunn’s test, 

*p<0.05. E) Liver ECM led to an increase in oxidative respiration only when cells were 

supplemented with full media. F) Cell metabolic phenotype assay showed that MBC 

cells grown on liver ECM in media with glucose increased in glycolytic potential. G) 

Whole-metabolite profiling in MBC cells grown on plates coated with liver ECM and 

treated with vehicle (Veh) or 1 µM Fulv for 24 hours.  

Figure 4: ER+ Liver metastatic xenograft tumors do not respond to Fulv. A) MCF7-

ESR1Y537S cells were grafted intravenously (tail vein), and mice were treated with 

placebo or Fulv. Metastatic burden was measured using IVIS to detect 

bioluminescence. N=6, metastatic tumor luciferase signal from each mouse is plotted. 

No statistically significant difference was detected in metastatic burden with Fulv using a 

two-way ANOVA for Fulv effect over time. B) Imaging of luciferase signal indicating 

metastatic outgrowth in the livers, lungs, and bones. C) RNA was isolated from the liver 

tumors. mRNA expression of ERα target genes GREB1 and PgR, and cell cycle-related 

genes PCNA and Ki67 were measured by qRT-PCR. Unpaired t-test, p values are 

indicated. D) Spatial scSeq of 2 Veh and 2 Fulv tumors. UMAP plots E) 22 clusters were 

identified F) Level of human transcripts identified in xenograft tumors G) Spatial 

expression of genes of interest.  

Figure 5: Metastatic burden increases with increasing carbohydrate percentage in 

the diet. A) RNA was isolated from the liver metastatic tumors of MCF7-ESR1Y537S 

xenografts and RNASeq was performed using 6 samples from each treatment group. 
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Fulv significantly increased glycolysis and glycogenesis metabolism pathways, as well 

as lipid metabolism. Pink-labeled genes are upregulated, and blue-labeled genes are 

downregulated. B) Comparison of glycolysis, glycogenesis, and lipid metabolism-related 

genes in the MCF7-ESR1Y537S liver tumors, mouse transcripts identified in these tumors, 

in MCF7-ESR1Y537S cells grown plastic re treated with Veh or 1µM Fulv, Palb or 4OHT, 

and MCF7-ESR1Y537S cells grown on plates coated with different hydrogels. Fold 

change relative to Veh-treated samples is plotted in each dataset. C) NGS mice with 

MCF7-ESR1Y537S xenografts were fed a control diet, HFD, or FMD. Metastatic burden 

was measured using IVIS to detect bioluminescence. D) Mean Luminescence intensity 

of tumors was plotted to determine metastatic burden. N=3, Two-way ANOVA, Tukey’s 

post hoc test, * p <0.05, ***p <0.001, **** p <0.0001. Bars represent SEM. E) Livers 

from corresponding animals in A. F) Pearson correlations and p-values showing 

correlation between metastatic burden and carbohydrate content of the diets. G) 

Histological analysis of tumors from (A). HE, ERα, PAS, and PAS-D IHC staining were 

performed.  

Figure 6: FMD diet synergizes with Fulv to reduce MCF7-ESR1Y537S liver 

metastatic burden and number of nodules. A, B) NGS mice with MCF7-ESR1Y537S 

xenografts were fed control diet or FMD. Mice were treated with Veh or Fulv. 

Bioluminescence imaging of tumors was measured by IVIS. C) Representative images 

of livers from mice in different treatment groups. D) Liver metastatic nodules were 

counted at necropsy. One-way ANOVA, Dunn’s multiple comparison test, *p<0.05. E) 

Histological analysis of tumors from (A). HE, ERα, PAS, and PAS-D IHC staining were 

performed.    
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Control Diet High Fat Diet Fasting Mimicking Diet

Calories (kcal/gr) 3.93 kcal/gr 5.51 kcal/gr 7.24 kcal/gr

% Carbohydrate 61.6 36.2 3.2

%Fat 7.2 36 75.1

%Protein 20.5 20.5 8.6

2

Supplementary Table 1
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  P (two-tailed) Pearson r   R squared   P value summary

Calories(kcal/r) 0.0492 -0.997 0.994 *

Caloric Intake (kcal/Body weight) 0.946 -0.08474 0.007181 ns

Body weight 0.213 0.9445 0.8922 ns

% Carbohydrate 0.0244 0.9993 0.9985 *

% Fat 0.0103 -0.9999 0.9997 *

% Protein 0.2675 0.913 0.8336 ns

Carb. cal (kcal/g) 0.0233 0.9993 0.9987 *

Fat (kcal/g) 0.0108 -0.9999 0.9997 *

Prot. (kcal/g) 0.2675 0.913 0.8336 ns

Monosaccharides 0.2039 -0.9492 0.9009 ns

Disaccharides 0.0253 0.9992 0.9984 *

Polysaccharides 0.0339 0.9986 0.9972 *

18:2 Linoleic acid 0.097 -0.9884 0.9769 ns

18:3 Linoleic acid 0.0536 -0.9965 0.9929 ns

Total saturated fat 0.0022 -1 1 **

Total monounsaturated fat 0.0716 -0.9937 0.9874 ns

Total polyunsaturated fat 0.0899 -0.99 0.9802 ns

Ala 0.2675 0.913 0.8336 ns

Arg 0.2675 0.913 0.8336 ns

Asp 0.2675 0.913 0.8336 ns

Cys 0.2675 0.913 0.8336 ns

Glutamate 0.2675 0.913 0.8336 ns

Glycine 0.2675 0.913 0.8336 ns

Hist 0.2675 0.913 0.8336 ns

Iso 0.2675 0.913 0.8336 ns

Leu 0.2675 0.913 0.8336 ns

Lys 0.2675 0.913 0.8336 ns

Methionine 0.2675 0.913 0.8336 ns

Phen 0.2675 0.913 0.8336 ns

Prot cal 0.2675 0.913 0.8336 ns

Ser 0.2675 0.913 0.8336 ns

Thr 0.2675 0.913 0.8336 ns

Tryp 0.2675 0.913 0.8336 ns

Tyr 0.2675 0.913 0.8336 ns

Val 0.2675 0.913 0.8336 ns

Supplementary Table 4
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