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Abstract | Whole-brain neural communication is typically estimated from statistical associations
among electromagnetic or haemodynamic time-series. The relationship between functional network
architectures recovered from these two types of neural activity remains unknown. Here we map elec-
tromagnetic networks (measured using magnetoencephalography; MEG) to haemodynamic networks
(measured using functional magnetic resonance imaging; fMRI). We find that the relationship between
the two modalities is regionally heterogeneous and systematically follows the cortical hierarchy, with
close correspondence in unimodal cortex and poor correspondence in transmodal cortex. Comparison
with the BigBrain histological atlas reveals that electromagnetic-haemodynamic coupling is driven by
laminar differentiation and neuron density, suggesting that the mapping between the two modalities
can be explained by cytoarchitectural variation. Importantly, haemodynamic connectivity cannot be
explained by electromagnetic activity in a single frequency band, but rather arises from the mixing of
multiple neurophysiological rhythms. Correspondence between the two is largely driven by MEG func-
tional connectivity at the beta (15-29 Hz) frequency band. Collectively, these findings demonstrate
highly organized but only partly overlapping patterns of connectivity in MEG and fMRI functional
networks, opening fundamentally new avenues for studying the relationship between cortical micro-
architecture and multi-modal connectivity patterns.

INTRODUCTION

The structural wiring of the brain imparts a distinct sig-
nature on neuronal co-activation patterns. Inter-regional
projections promote signaling and synchrony among dis-
tant neuronal populations, giving rise to coherent neu-
ral dynamics, measured as regional time series of elec-
tromagnetic or hemodynamic neural activity [46]. Sys-
tematic co-activation among pairs of regions can be used
to map functional connectivity networks. Over the past
decade, these dynamics are increasingly recorded with-
out task instruction or stimulation; the resulting “intrin-
sic” functional connectivity is thought to reflect sponta-
neous neural activity.

The macro-scale functional architecture of the brain
is commonly inferred from electromagnetic or haemo-
dynamic activity. The former can be measured using
electroencephalography (EEG) or magnetoencephalog-
raphy (MEG), while the latter is measured using func-
tional magnetic resonance imaging (fMRI). Numerous
studies – using both MEG and fMRI – have reported
evidence of intrinsic functional patterns that are highly
organized [6, 12, 16, 19, 33, 107, 135, 148], repro-
ducible [17, 29, 54, 101] and comparable to task-driven
co-activation patterns [17, 30, 129].

How do electromagnetic and haemodynamic networks
relate to one another? Although both modalities at-
tempt to capture the same underlying biological process
(neural activity), they are sensitive to different physio-
logical mechanisms and ultimately reflect neural activ-
ity at fundamentally different time scales [5, 57, 62,
112, 113]. Emerging theories emphasize a hierarchy
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of time scales of intrinsic fluctuations across the cortex
[50, 98, 110, 124], where unimodal cortex is more sen-
sitive to immediate changes in the sensory environment,
while transmodal cortex is more sensitive to prior context
[7, 25, 26, 63, 72, 76]. This raises the possibility that the
alignment between the relatively slower functional archi-
tecture captured by fMRI and faster functional architec-
ture captured by MEG may systematically vary across the
cortex.

Previous reports have found some, but not complete,
global overlap between the two modalities. Multiple
MEG and fMRI independent components – represent-
ing spatiotemporal signatures of resting-state intrinsic
networks – show similar spatial topography, particularly
the visual, somatomotor and default mode components
[6, 16, 19, 70]. The spatial overlap between large-scale
networks has also been reported in task-based studies
and with networks recovered from other modalities, such
as EEG and intracranial EEG [32, 45, 81, 91, 99]. More-
over, fMRI and MEG/EEG yield comparable fingerprint-
ing accuracy, suggesting that they encode common infor-
mation [31, 36, 44, 117]. Finally, global edge-wise com-
parisons between fMRI networks and electrocorticogra-
phy (ECoG) [15], EEG [35, 146, 147] and MEG [51, 71,
134] also yield moderate correlations. Although global
comparisons are more common when different modali-
ties are studied, regional and network-level relationships
have also been explored using electrophysiological and
intracranial EGG recordings [32, 83, 97] as well as EEG
and MEG recordings [71, 126, 131]. Regional compar-
isons of electrophysiological and fMRI recordings also
suggest that the relationship between the two may be
affected by distinct cytoarchitecture and laminar struc-
ture of brain regions, particularly in visual and frontal
cortex [8, 10, 22, 84, 85, 120, 121, 127]. How the cou-
pling between fMRI and MEG connectivity profiles varies
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Figure 1. Relating haemodynamic and electromagnetic connectivity | (a) A multi-linear regression model was applied to
predict resting state fMRI connectivity patterns from band-limited MEG functional connectivity (amplitude envelope correlation;
AEC [20]). The model is specified for each brain region separately, attempting to predict a region’s haemodynamic connectivity
profile from its electromagnetic connectivity profile. (b) The overall relationship between fMRI and MEG functional connectivity
is estimated by correlating the upper triangle of fMRI FC (i.e. above diagonal) with the upper triangles of band-limited MEG FC,
suggesting moderate relationship between the two across frequency bands. (c) Regional multi-linear model shown in panel (a) is
used to predict fMRI FC from band-limited MEG FC for each brain region (i.e. row) separately. The empirical and predicted fMRI
FC are depicted side-by-side for the regional model. The whole-brain edge-wise relationship between the empirical and predicted
values is shown in the scatter plot. Each grey dot represents an edge (pairwise functional connection) from the upper triangles of
empirical and predicted fMRI FC matrices. (d) A global multi-linear model is used to predict the entire upper triangle of fMRI FC
from the upper triangles of the MEG FC matrices. The empirical and predicted fMRI FC are depicted side-by-side for the global
model. The whole-brain edge-wise relationship between the empirical and predicted values is shown in the scatter plot. Each grey
dot represents en edge from the upper triangles of empirical and predicted fMRI FC matrices. (e) The distribution of regional model
fit quantified by R2 is shown for regional model (grey histogram plot). The global model fit is also depicted for comparison (pink
line). The data and code needed to generate this figure can be found in https://github.com/netneurolab/shafiei_megfmrimapping
and https://zenodo.org/record/6728338.

from region to region, and how this coupling reflects
cytoarchitecture, is still not fully understood. Further-
more, previous studies have mostly assessed the associ-
ation between haemodynamic and electromagnetic net-
works for separate frequency bands, investigating inde-
pendent contributions of individual rhythms to haemo-
dynamic connectivity. This effectively precludes the pos-
sibility that superposition and mixing of elementary elec-
tromagnetic rhythms manifests as patterns of haemody-
namic connectivity [71, 86, 134].

How regional connectivity profiles of MEG and fMRI
functional networks are associated across the cortex and
how their correspondence relates to the underlying cy-
toarchitecture, remains an exciting open question. Here,

we use a linear multi-factor model that allows to repre-
sent the haemodynamic functional connectivity profile of
a given brain region as a linear combination of its electro-
magnetic functional connectivity in multiple frequency
bands. We then explore how the two modalities align
across the neocortex and investigate the contribution of
cytoarchitectonic variations to their alignment.

RESULTS

Data were derived using task-free MEG and fMRI
recordings in the same unrelated participants from the
Human Connectome Project (HCP [140]; n = 33). We
first develop a simple regression-based model to map re-
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Figure 2. Regional model fit | (a) Spatial organization of fMRI-MEG correspondence is depicted for the regional model fit (95%
interval). The cross-modal correspondence of connectivity profiles of brain regions is distributed heterogeneously across the cortex,
representing regions with low or high correspondence. Strong cross-modal correspondence is observed in sensory areas whereas
poor correspondence is observed for higher order regions. (b) Spatial organization of the cross-modal correspondence is compared
with the functional hierarchical organization of cerebral cortex [87]. The two are significantly anti-correlated, confirming poor
fMRI-MEG correspondence in connectivity profile of higher-order, transmodal areas compared to strong correspondence for sensory,
unimodal regions. (c) Regions are stratified by their affiliation with macro-scale intrinsic networks [148]. The distribution of R2

is depicted for each network, displaying a systematic gradient of cross-modal correspondence with the highest correspondence in
the visual network and lowest correspondence in the default mode network. (d) The model fit is related to the cytoarchitectural
variation of the cortex, estimated from the cell staining intensity profiles at various cortical depths obtained from the BigBrain
histological atlas [2, 104]. Bigger circles denote statistically significant associations after correction for multiple comparisons
by controlling the false discovery rate (FDR) at 5% alpha [13]. The peak association between cross-modal correspondence and
cytoarchitecture is observed approximately at cortical layer IV that has high density of granule cells. Staining intensity profiles
are depicted across the cortex for the most pial, the middle and the white matter surfaces. (e) Microarray gene expression of
vasoconstrictive NPY1R (Neuropeptide Y Receptor Y1) was estimated from the Allen Human Brain Atlas (AHBA; [69]). The
MEG-fMRI cross-modal correspondence R2 map (i.e. regional model fit) is compared with NPY1R gene expression. rs denotes
Spearman rank correlation. Intrinsic networks: vis = visual; sm = somatomotor; da = dorsal attention; va = ventral attention;
lim = limbic; fp = frontoparietal; dmn = default mode. The data and code needed to generate this figure can be found in
https://github.com/netneurolab/shafiei_megfmrimapping and https://zenodo.org/record/6728338.

gional MEG connectivity to regional fMRI connectivity
using group-average data. We then investigate how re-
gionally heterogeneous the correspondence between the
two is, and how different rhythms contribute to this re-
gional heterogeneity. Finally, we conduct extensive sen-
sitivity testing to demonstrate that the results are robust
to multiple methodological choices.

Relating haemodynamic and electromagnetic connectivity

To relate fMRI and MEG functional connectivity pat-
terns, we apply a multi-linear regression model [142]
(Fig. 1). The model is specified for each brain region sep-
arately, attempting to predict a region’s haemodynamic
connectivity profile from its electromagnetic connectivity
profile. The dependent variable is a row of the fMRI func-
tional connectivity (FC) matrix and the independent vari-

ables are the corresponding rows of MEG FC matrices for
six canonical electrophysiological bands, estimated using
amplitude envelope correlation (AEC [20]) with spatial
leakage correction (See “Methods” for more details). For
a model fitted for a given node i, the observations in the
model are the connections of node i to the other j ̸= i
regions (Fig. 1a). The model predicts the fMRI FC pro-
file of node i (i.e. i-th row) from a linear combination of
MEG FC profiles of node i in the six frequency bands (i.e.
i-th rows of MEG FC matrices). Collectively, the model
embodies the idea that multiple rhythms could be super-
imposed to give rise to regionally heterogeneous haemo-
dynamic connectivity.

Indeed, we find that the relationship between haemo-
dynamic and electromagnetic connectivity is highly het-
erogeneous. Band-limited MEG connectivity matrices are
moderately correlated with fMRI connectivity, ranging
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Figure 3. Dominance analysis | Dominance analysis is performed for each regional multi-linear model to quantify how MEG
connectivity at different rhythms contribute to regional patterns of cross-modal correspondence [4, 21]. (a) The overall contribu-
tion of each frequency band is depicted for the regional model (box plots). Beta band connectivity, followed by theta and alpha
bands, contribute the most to the model fit whereas low and high gamma bands contribute the least. (b) The mean contribution
of different rhythms is estimated for the intrinsic networks. Consistent with the overall contributions depicted in panel (a), the
greatest contribution is associated with beta band connectivity. (c) The most dominant predictor (frequency band) is depicted
for each brain region, confirming overall higher contributions from beta band across the cortex. (d) Frequency band contri-
bution to the regional cross-modal correspondence is shown separately for different rhythms across the cortex (95% intervals).
The data and code needed to generate this figure can be found in https://github.com/netneurolab/shafiei_megfmrimapping and
https://zenodo.org/record/6728338.

from r = −0.06 to r = 0.36 (Fig. 1b; r denotes Pear-
son correlation coefficient). The regional multi-linear
model fits range from adjusted-R2 = −0.002 to adjusted-
R2 = 0.72 (R2 denotes coefficient of determination;
hereafter we refer to adjusted-R2 as R2), suggesting a
close correspondence in some regions and poor corre-
spondence in others (Fig. 1c,e). Band-specific regional
model fits are depicted in Fig. S1, where each band-
specific MEG connectivity is separately used as a single
predictor in the model. For comparison, a single global
model is fitted to the data, predicting the entire upper
triangle of the fMRI FC matrix (i.e. all values above the
diagonal) from a linear combination of the upper trian-
gles of six MEG FC matrices (i.e. all values above the
diagonal)(See “Methods” for more detail). The global
model, which simultaneously relates whole-brain fMRI
FC to the whole-brain MEG FC, yields an R2 = 0.15
(Fig. 1d,e). Importantly, the global model clearly ob-
scures the wide range of correspondences, which can be
considerably greater or smaller for individual regions.

Hierarchical organization of cross-modal correspondence

We next consider the spatial organization of fMRI-MEG
correspondence. Fig. 2a shows the spatial distribution of
regional R2 values, representing regions with low or high
correspondence. Regions with strong cross-modal corre-
spondence include the visual, somato-motor and audi-
tory cortex. Regions with low cross-modal correspon-
dence include the posterior cingulate, lateral temporal
and medial prefrontal cortex.

Collectively, the spatial layout of cross-modal cor-
respondence bears a resemblance to the unimodal-
transmodal cortical hierarchy observed in large-scale
functional and microstructural organization of the cere-
bral cortex [76]. To assess this hypothesis, we first
compared the cross-modal R2 map with the principal
functional hierarchical organization of the cortex, esti-
mated using diffusion map embedding [80, 87] (Fig. 2b;
see “Methods” for more details). The two are signifi-
cantly anti-correlated (Spearman rank correlation coef-
ficient rs = −0.69, pspin = 0.0001), suggesting strong
cross-modal correspondence in unimodal sensory cortex
and poor correspondence in transmodal cortex. We then
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stratify regions by their affiliation with macro-scale in-
trinsic networks and computed the mean R2 in each
network [148] (Fig. 2c). Here we also observe a sys-
tematic gradient of cross-modal correspondence, with
the strongest correspondence in the visual network and
poorest correspondence in the default mode network.

We relate the cross-modal R2 map to the cytoarchitec-
tural variation of the cortex (Fig. 2d). We use the Big-
Brain histological atlas to estimate granular cell density
at multiple cortical depths [2, 104]. Cell-staining inten-
sity profiles were sampled across 50 equivolumetric sur-
faces from the pial surface to the white matter surface to
estimate laminar variation in neuronal density and soma
size. Fig. 2d shows the correlation between MEG-fMRI
correspondence and cell density (y-axis) at different cor-
tical depths (x-axis). Interestingly, the model fit is asso-
ciated with cytoarchitectural variation of the cortex, with
the peak association observed approximately at cortical
layer IV that has high density of granular cells and sep-
arates supra- and infra-granular layers [102, 103, 144].
Layer IV predominately receives feedforward projections
and has high vascular density [39, 61, 122]. We fur-
ther assess the relationship between MEG-fMRI cross-
modal correspondence and vascular attributes. We ob-
tain the microarray gene expression of the vasoconstric-
tive NPY1R (Neuropeptide Y Receptor Y1) from Allen
Human Brain Atlas (AHBA; [69]; see “Methods” for more
details), given previous reports that the BOLD response is
associated with the vasoconstrictive mechanism of Neu-
ropeptide Y (NPY) acting on Y1 receptors [138]. We then
compare the cross-modal association map with the ex-
pression of NPY1R and identify a significant association
between the two (Fig. 2e; rs = −0.60, pspin = 0.0023).
This demonstrates that regions with low cross-modal cor-
respondence are enriched for NPY1R whereas areas with
high cross-modal associations have less NPY-dependent
vasoconstriction. Altogether, the results suggest that the
greater coupling in unimodal cortex may be driven by
the underlying cytoarchitecture, reflecting higher density
of granular cells and distinct vascularization of cortical
layer IV.

We also relate cross-modal R2 map to the variation of
structure-function coupling across the cortex, which has
also been shown to follow the unimodal-transmodal hi-
erarchy [11, 108, 132, 142, 150]. We estimate structure-
function coupling as the Spearman rank correlation be-
tween regional structural and functional connectivity
profiles [11] (Fig. S2; see “Methods” for more details).
We then correlate the identified map with the regional
model fit, identifying a significant association between
the two (Fig. S2; rs = 0.40, pspin = 0.0025). This is
consistent with the notion that both haemodynamic and
electromagnetic neural activity are constrained by the
anatomical pathways and the underlying structural or-
ganization [24, 118, 130].

Heterogeneous contributions of multiple rhythms

How do different rhythms contribute to regional pat-
terns of cross-modal correspondence? To address this
question and to assess the effects of cross-correlation
between MEG connectivity at different frequency bands
(Fig. S5), we perform a dominance analysis for every
regional multi-linear model [4, 21]. Specifically, domi-
nance analysis is used to examine the separate effects of
each band-limited MEG functional connectivity, as well
as the effects of all other possible combinations of band-
limited MEG FC, on the regional model fit. This tech-
nique estimates the relative importance of predictors by
constructing all possible combinations of predictors and
re-fitting the multi-linear model for each combination.
The possible combinations of predictors include sets of
single predictors, all possible pairs of predictors, all pos-
sible combinations with 3 predictors, and so on. To as-
sess the influence of each band on the model fit, dom-
inance analysis re-fits the model for each combination
and quantifies the relative contribution of each predic-
tor as the increase in variance explained after adding
that predictor to the models (i.e. gain in adjusted-R2).
Fig. 3a shows the global dominance of each frequency
band, where dominance is quantified as “percent relative
importance” or “contribution percentage” of each band.
Overall, we observe the greatest contributions from MEG
connectivity at beta band, followed by theta and alpha
bands, and smallest contributions from low and high
gamma bands.

Zooming in on individual regions and intrinsic net-
works, we find that the dominance pattern is also re-
gionally heterogeneous. Namely, the make-up and con-
tribution of specific MEG frequencies to a region’s fMRI
connectivity profile varies from region to region. Fig. 3b
shows the dominance of specific rhythms in each intrin-
sic network. Fig. 3c shows the most dominant predictor
for every brain region. We find that beta band contri-
bution is highest in occipital and lateral frontal cortices.
Sensorimotor cortex has high contributions from com-
binations of beta, alpha, and theta bands. Parietal and
temporal areas are mostly dominated by delta and theta
bands as well as some contribution from alpha band. Me-
dial frontal cortex shows contributions from the alpha
band, while low and high gamma bands contribute to
posterior cingulate cortex and precuneus. Fig. 3d shows
the dominance of specific rhythms separately for each
region. Overall, we observe that beta connectivity has
the highest contribution percentage (95% confidence in-
terval: [2% 66%]), largely contributing to model pre-
diction across the cortex. These findings are consis-
tent with previous reports, demonstrating that haemo-
dynamic connectivity is related to the superposition of
band-limited electromagnetic connectivity and that band
contributions vary across the cortex [71, 134].

Finally, we used Analysis of Variance (ANOVA) to
quantitatively assess the differences in band-specific con-
tributions to the cross-modal correspondence map (Ta-
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Figure 4. Sensitivity analysis | (a) A regional cross-validation was performed by pseudorandomly splitting the connectivity profile
of a given region into train and test sets based on spatial separation (See “Methods” for more details). The multi-linear model
is then fitted on the train set and is used to predict the connection strength of the test set for each region and each split. The
mean regional model performance across splits is depicted for train and test sets, displaying consistent results between the two
(scatter plot). The out-of-sample model performance is stronger in the sensory, unimodal areas compared to transmodal areas,
consistent with original findings (Fig. 2). (b) A subject-level cross-validation was performed using a leave-one-out approach.
The regional multi-linear model is trained using data from n − 1 subjects and is tested on the held-out subject for each region
separately. The mean regional model performance is shown for train and test sets, displaying consistent results between the two
(scatter plot). The out-of-sample model performance is stronger in the sensory, unimodal areas compared to transmodal areas,
consistent with original findings (Fig. 2). The analysis is also repeated for various processing choices: (c) after regressing out inter-
regional Euclidean distance from connectivity matrices, (d) using MEG connectivity data without spatial leakage correction, (e)
using another MEG source reconstruction method (standardized low resolution brain electromagnetic tomography; sLoreta [105]),
(f) using a phase-based MEG connectivity measure (phase-locking value; PLV [79, 96]), and (g) at a low resolution parcellation
(Schaefer-200 atlas [119]). The results are consistent across all control analyses, identifying similar cross-modal correspondence
maps as the original analysis (Fig. 2a). All brain maps are shown at 95% intervals. rs denotes Spearman rank correlation.
The data and code needed to generate this figure can be found in https://github.com/netneurolab/shafiei_megfmrimapping and
https://zenodo.org/record/6728338.
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ble. S1). Specifically, we assessed the significance and
effect size of differences in band-specific contributions
for all possible pairs of frequency bands. We identify two
main findings (for full results see Table. S1): (1) Over-
all, the variability of band-specific contributions is sig-
nificantly larger between groups (i.e. bands) compared
to the variability within groups (F (5, 2394) = 117.31;
p < 0.0001). (2) Band-specific contributions are signif-
icantly different from each other and are ranked in the
same order as depicted in Fig. 3a. Specifically, contribu-
tion of beta band is significantly larger than contribution
of alpha band (difference of the means = 8.65, t-value
= 9.46, p-value < 0.0001, Cohen’s d = 0.69) and theta
band (difference of the means = 7.56, t-value = 8.27,
p-value < 0.0001, Cohen’s d = 0.58). Also, the con-
tribution from the delta band is significantly lower than
beta (difference of the means = 12.37, t-value = 13.53,
p-value < 0.0001, Cohen’s d = 0.96), alpha (difference
of the means = 3.72, t-value = 4.07, p-value = 0.0007,
Cohen’s d = 0.29), and theta (difference of the means
= 4.81, t-value = 5.26, p-value < 0.0001, Cohen’s d =
0.37). Note that although the difference between alpha
and theta band contributions is not significant, both their
contributions are significantly lower than beta band and
larger than delta band. Moreover, delta band contribu-
tion is significantly larger than contribution of lo-gamma
(difference of the means = 3.78, t-value = 4.14, p-value
= 0.0005, Cohen’s d = 0.29) and lo-gamma contribu-
tion is significantly larger than hi-gamma (difference of
the means = 3.72, t-value = 4.07, p-value = 0.0007,
Cohen’s d = 0.29). Note that the values reported here
are the absolute values for difference of the means, t-
values, p-values and Cohen’s d (effect size). All p-values
are corrected for multiple comparisons using Bonferroni
correction.

Sensitivity analysis

Finally, we note that the present report goes through
several decision points that have equally-justified alter-
natives. Here we explore the other possible choices.
First, rather than framing the report from an explana-
tory perspective (focusing on model fit), we instead de-
rive an equivalent set of results using a predictive per-
spective (focusing on out-of-sample prediction). We per-
form cross-validation at both the region- and subject-
level (Fig. 4a,b). For region-level cross-validation, we
pseudorandomly split the connectivity profile of a given
region into train and test sets based on spatial separa-
tion (inter-regional Euclidean distance), such that 75%
of the closest regions to a random region are selected as
the train set and the remaining 25% of the regions are
selected as test set (399 repetitions; see “Methods” for
more details) [59]. We then train the multi-linear model
using the train set and predict the connection strength of
the test set for each region and each split. The mean re-
gional model performance across splits is consistent for
train and test sets (Fig. 4a; r = 0.78, pspin = 0.0001). For

subject-level cross-validation, we use leave-one-out-cross
validation, wherein we train the regional multi-linear
models using data from n− 1 subjects and test each one
on the held-out subject. The mean regional model per-
formance is consistent for train and test sets (Fig. 4b;
r = 0.90, pspin = 0.0001). Altogether, both analyses
give similar, highly concordant results with the simpler
model fit-based analysis, identifying strong cross-modal
correspondence in unimodal sensory regions and poor
correspondence in transmodal areas.

To consider the effect of spatial proximity on the find-
ings, we remove the exponential inter-regional Euclidean
distance trend from all connectivity matrices before fit-
ting any model. The results are consistent with and with-
out distance correction (Fig. 4c; correlation with func-
tional hierarchy: rs = −0.53, pspin = 0.0001; correlation
with original R2: rs = 0.67, pspin = 0.0001). We also
obtain consistent findings when we repeat the analysis
without accounting for spatial leakage effect in estimat-
ing MEG connectivity with AEC (Fig. 4d; correlation with
functional hierarchy: rs = −0.60, pspin = 0.0001; corre-
lation with original R2: rs = 0.84, pspin = 0.0001). Next,
we use another source reconstruction method (standard-
ized low resolution brain electromagnetic tomography;
sLoreta [105]) instead of LCMV beamformers, as previ-
ous reports suggest that sLoreta improves source local-
ization accuracy [65, 67]. We then estimate MEG con-
nectivity with AEC and repeat the multi-linear model
analysis, identifying similar results as before (Fig. 4e;
correlation with functional hierarchy: rs = −0.80,
pspin = 0.0001; correlation with original R2: rs = 0.85,
pspin = 0.0002). Next, we compute MEG connectiv-
ity using an alternative, phase-based connectivity mea-
sure (phase locking value; PLV [79, 96]), rather than
the AEC. The two FC measures yield similar cross-modal
correspondence maps (Fig. 4f; correlation with func-
tional hierarchy: rs = −0.53, pspin = 0.0022; correlation
with original R2: rs = 0.66, pspin = 0.0001). We also
repeat the analysis using a low resolution parcellation
(Schaefer-200 atlas [119]) to ensure that the findings are
independent from the choice of parcellation. As before,
the results demonstrate similar cross-modal correspon-
dence map (Fig. 4g; correlation with functional hierar-
chy: rs = −0.70, pspin = 0.0001). To assess the extent to
which the results are influenced by MEG source localiza-
tion error, we compare the cross-modal correspondence
pattern to peak localization error estimated using cross-
talk function (CTF) [64, 65, 67, 82, 95]. No significant
association is observed between R2 pattern and CTF for
LCMV (Fig. S3a; rs = −0.14, pspin = 0.6) and sLoreta
(Fig. S3b; rs = −0.04, pspin = 0.9) source reconstruction
solutions. Finally, to confirm that the cross-modal cor-
respondence pattern is independent from signal-to-noise
ratio (SNR), we compare the regional model fit with the
SNR map of the reconstructed sources, identifying no sig-
nificant association between the two (Fig. S4; rs = 0.32,
pspin = 0.25)(See “Methods” for more details).
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DISCUSSION

In the present report we map electromagnetic func-
tional networks to haemodynamic functional networks
in the human brain. We find two principal results. First,
the relationship between the two modalities is regionally
heterogeneous but systematic, reflecting the unimodal-
transmodal cortical hierarchy and cytoarchitectural vari-
ation. Second, haemodynamic connectivity cannot be ex-
plained by electromagnetic connectivity in a single band,
but rather reflects mixing and superposition of multiple
rhythms.

The fact that the association between the two modali-
ties follows a gradient from unimodal to transmodal cor-
tex resonates with emerging work on cortical hierarchies
[76, 87, 93]. Indeed, similar spatial variations are ob-
served for multiple micro-architectural features, such as
gene expression [23, 49, 59], T1w/T2w ratio [75], lam-
inar differentiation [144] and neurotransmitter receptor
profiles [47, 55, 60]. Collectively, these studies point to
a natural axis of cortical organization that encompasses
variations in both structure and function across micro-,
meso- and macro-scopic spatial scales.

Interestingly, we find the closest correspondence be-
tween fMRI and MEG functional connectivity in uni-
modal cortex (including the visual and somatomotor net-
works) and the poorest correspondence in transmodal
cortex (default mode, limbic, fronto-parietal and ventral
attention networks). In other words, the functional ar-
chitectures of the two modalities are consistent early in
the cortical hierarchy, presumably reflecting activity re-
lated to instantaneous changes in the external environ-
ment. Conversely, as we move up the hierarchy, there is
a gradual separation between the two architectures, sug-
gesting that they are differently modulated by endoge-
nous inputs and contextual information. How the two
types of functional connectivity are related to ongoing
task demand is an exciting question for future research.

Why is there systematic divergence between the two
modalities? Our findings suggest that topographic vari-
ation in MEG-fMRI coupling is due to variation in cy-
toarchitecture and neurovascular coupling. First, we ob-
serve greater MEG-fMRI coupling in regions with promi-
nent granular layer IV. This result may reflect varia-
tion of microvascular density at different cortical layers
[40, 120, 122]. Namely, cortical layer IV is the most vas-
cularized, and this is particularly prominent in primary
sensory areas [122]. The BOLD response mainly reflects
local field potentials arising from synaptic currents of
feedforward input signals to cortical layer IV [39, 61];
as a result, the BOLD response is more sensitive to corti-
cal layer IV with high vascular density [139]. Therefore,
electromagnetic neuronal activity originating from layer
IV should be accompanied by a faster and more promi-
nent BOLD response. This is consistent with our finding
that brain regions with more prominent granular layer
IV (i.e. unimodal cortex) have greater correspondence
between electromagnetic and haemodynamic functional

architectures. In other words, heterogeneous cortical
patterning of MEG-fMRI coupling may reflect heteroge-
neous patterning of underlying neurovascular coupling.

Second, we observe prominent anticorrelations be-
tween vasoconstrictive NPY1R-expressing neurons and
MEG-fMRI coupling. Multiple studies of vasodilator and
vasoconstrictor mechanisms involved in neural signaling
have demonstrated links between microvasculature and
the BOLD signal [40, 138]. For example, an optoge-
netic and 2-photon mouse imaging study found that task-
related negative BOLD signal is mainly associated with
vasoconstrictive mechanism of Neuropeptide Y (NPY)
acting on Y1 receptors, suggesting that neurovascular
coupling is cell specific [138]. Interestingly, by compar-
ing the cortical expression of NPY1R (Neuropeptide Y
Receptor Y1) in the human brain with MEG-fMRI corre-
spondence pattern identified here, we find that regions
with low cross-modal correspondence are enriched for
NPY1R whereas areas with high cross-modal associations
have less NPY-dependent vasoconstriction. Collectively,
these results suggest that MEG-fMRI correspondence is
at least partly due to regional variation in cytoarchitec-
ture and neurovascular coupling.

More generally, numerous studies have investigated
the laminar origin of cortical rhythms. For example, an-
imal electrophysiological recordings demonstrated that
visual and frontal cortex gamma activity can be local-
ized to superficial cortical layers (supragranular layers I-
III and granular layer IV), whereas alpha and beta activ-
ity are localized to deep infragranular layers (layers V-IV)
[8, 10, 22, 84, 85, 127]. Similar findings have been re-
ported in humans using EEG and laminar-resolved BOLD
recordings, demonstrating that gamma and beta band
EEG power are associated with superficial and deep layer
BOLD response, respectively, whereas alpha band EEG
power is associated with BOLD response in both super-
ficial and deep layers [121]. Laminar specificity of cor-
tical rhythms is increasingly emphasized in contempo-
rary accounts of predictive processing [9]. In the pre-
dictive coding framework, transmodal regions generate
predictive signals that modulate the activity of sensory
unimodal regions depending on context [38]. These top-
down signals are relatively slow, as they evolve with the
context of exogenous (stimulation) inputs. The conse-
quence on unimodal areas is a boost of their encoding
gain, reflected in stronger, faster activity that tracks in-
coming stimuli. They in turn generate error signals that
are slower and reflect the discrepancy between the pre-
dictions received and the actual external input. These
slower error signals are then registered by higher-order
transmodal regions. Specific cortical layers and rhythms
contribute to this predictive coding [9]. For example, an
unfamiliar, unpredicted stimulus is associated with in-
creased gamma power that is fed forward up the cor-
tical hierarchy (i.e. bottom-up from sensory to associ-
ation cortices) through the superficial layers to transfer
the prediction errors. This in turn results in low top-
down, feedback predictions through deep cortical lay-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.09.07.458941doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.458941
http://creativecommons.org/licenses/by/4.0/


9

ers via alpha and beta rhythms. Conversely, predicted
stimuli are associated with stronger feedback alpha and
beta rhythms via deep layers, inhibiting the gamma activ-
ity for expected exogenous inputs [9]. This hierarchical
predictive processing framework is also thought to un-
derlie conscious perception by top-down transfer of per-
ceptual predictions via alpha and beta rhythms through
deep layers and bottom-up transfer of prediction errors
via gamma rhythm through superficial layers, minimiz-
ing predictions errors [9, 114, 123]. Our results, linking
cytoarchitecture with rhythm-specific connectivity may
help to further refine and develop this emerging frame-
work.

Altogether, our findings suggest that the systemic di-
vergence between MEG and fMRI connectivity patterns
may reflect variations in cortical cytoarchitecture and
vascular density of cortical layers. However, note that
due to the low spatial resolution of fMRI and MEG data,
haemodynamic and electromagnetic connectivity is not
resolved at the level of cortical layers. Rather, compar-
isons with cytoarchitecture are made via proxy datasets,
such as the BigBrain histological atlas [2] and the Allen
Human Brain Atlas [69]. Future work is required to
assess the laminar-specificity of the cross-modal asso-
ciation in a more direct and comprehensive manner
[41, 42, 73, 74].

Throughout the present report, we find that fMRI net-
works are best explained as arising from the superposi-
tion of multiple band-limited MEG networks. Although
previous work has focused on directly correlating fMRI
with MEG/EEG networks in specific bands, we show that
synchronized oscillations in multiple bands could poten-
tially combine to give rise to the well studied fMRI func-
tional networks. Indeed, and as expected, the correlation
between any individual band-specific MEG network and
fMRI is substantially smaller than the multi-linear model
that takes into account all bands simultaneously. Pre-
vious work on cross-frequency interactions [43] and on
multi-layer MEG network organization [18] has sought
to characterize the participation of individual brain re-
gions within and between multiple frequency networks.
Our findings build on this literature, showing that the su-
perimposed representation may additionally help to un-
lock the link between MEG and fMRI networks.

It is noteworthy that the greatest contributions to the
link between the two modalities came from beta band
connectivity. Multiple authors have reported that – since
it captures slow haemodynamic co-activation – fMRI net-
work connectivity would be mainly driven by slower
rhythms [19, 35, 43, 81, 86, 112]. Our findings demon-
strate that although all frequency bands contribute to the
emergence of fMRI networks, the greatest contributions
come from beta band connectivity, followed by theta and
alpha connectivity.

The present results raise two important questions for
future work. First, how does structural connectivity
shape fMRI and MEG functional networks [24, 132,
147]? We find that cross-modal correspondence between

MEG and fMRI functional networks is associated with
structure-function coupling measured from MRI func-
tional and structural connectivity networks, suggesting
that the cross-modal map may be constrained by struc-
tural connectivity. Previous reports demonstrate that uni-
modal, sensory regions have lower neural flexibility com-
pared to transmodal, association areas and are more sta-
ble during development and evolution [115, 124, 149].
This suggests that the underlying anatomical network
constrains neural activity and functional flexibility in a
nonuniform manner across the cortex, resulting in higher
degrees of freedom in structure-function coupling in re-
gions related to highly flexible cognitive processes. How-
ever, given that MEG and fMRI capture distinct neu-
rophysiological mechanisms, it is possible that haemo-
dynamic and electromagnetic architectures have a dif-
ferent relationship with structural connectivity and this
could potentially explain why they systematically diverge
through the cortical hierarchy [11, 108, 132, 142, 150].
Second, the present results show how the two modalities
are related in a task-free resting state, but what is the
relationship between fMRI and MEG connectivity during
cognitive tasks [78]? Given that the two modalities be-
come less correlated in transmodal cortex in the resting
state, the relationship between them during task may
depend on demand and cognitive functions required to
complete the task.

Finally, the present results should be interpreted in
light of several methodological considerations. First, al-
though we conduct extensive sensitivity testing, includ-
ing multiple ways of defining functional connectivity,
there exist many more ways in the literature to estimate
both fMRI and MEG connectivity [100, 143]. Second,
to ensure that the analyses were performed in the same
participants using both resting state fMRI and MEG, and
that the participants have no familial relationships, we
utilized a reduced version of the HCP sample. Third, in
order to directly compare the contributions of multiple
frequency bands, all were entered into the same model.
As a result however, the observations in the linear models
(network edges) are not independent, violating a basic
assumption of these statistical models. For this reason,
we only use model fits and dominance values to com-
pare the correspondence of fMRI and MEG across a set of
nodes, each of which is estimated under the same condi-
tions. Finally, to ensure that the findings are independent
from sensitivity of MEG to neural activity from different
regions, we compared the cross-modal correspondence
map with MEG signal-to-noise ratio and source localiza-
tion error, where no significant associations were identi-
fied. However, MEG is still susceptible to such artifacts
given that regions with lower signal-to-noise ratio (e.g.
Sylvian fissure) are the ones where source reconstruction
solutions have higher source localization errors [53, 66].

Despite complementary strengths to image spatiotem-
poral brain dynamics, the links between MEG and fMRI
are not fully understood and the two fields have di-
verged. The present report bridges the two disciplines by
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comprehensively mapping haemodynamic and electro-
magnetic network architectures. By considering the con-
tributions of the canonical frequency bands simultane-
ously, we show that the superposition and mixing of MEG
neurophysiological rhythms manifests as highly struc-
tured patterns of fMRI functional connectivity. System-
atic convergence and divergence among the two modal-
ities in different brain regions opens fundamentally new
questions about the relationship between cortical hierar-
chies and multi-modal functional networks.

METHODS

Dataset: Human Connectome Project (HCP)

Resting state magnetoencephalography (MEG) data of
a set of healthy young adults (n = 33; age range 22-35
years) with no familial relationships were obtained from
Human Connectome Project (HCP; S900 release [140]).
The data includes resting state scans of about 6 minutes
long (sampling rate = 2034.5 Hz; anti-aliasing filter low-
pass filter at 400 Hz) and noise recordings for all par-
ticipants. MEG anatomical data and 3T structural mag-
netic resonance imaging (MRI) data of all participants
were also obtained for MEG pre-processing. Finally, we
obtained functional MRI data of the same n = 33 in-
dividuals from HCP dataset. All four resting state fMRI
scans (two scans with R/L and L/R phase encoding direc-
tions on day 1 and day 2, each about 15 minutes long;
TR = 720 ms) were available for all participants.

HCP Data Processing

Resting state magnetoencephalography (MEG)

Resting state MEG data was analyzed using Brainstorm
software, which is documented and freely available for
download online under the GNU general public license
([133]; http://neuroimage.usc.edu/brainstorm). The
MEG recordings were registered to the structural MRI
scan of each individual using the anatomical transforma-
tion matrix provided by HCP for co-registration, follow-
ing the procedure described in Brainstorm’s online tuto-
rials for the HCP dataset (https://neuroimage.usc.edu/
brainstorm/Tutorials/HCP-MEG). The pre-processing
was performed by applying notch filters at 60, 120,
180, 240, and 300 Hz, and was followed by a high-
pass filter at 0.3 Hz to remove slow-wave and DC-
offset artifacts. Bad channels were marked based on
the information obtained through the data management
platform of HCP for MEG data (ConnectomeDB; https:
//db.humanconnectome.org/). The artifacts (including
heartbeats, eye blinks, saccades, muscle movements, and
noisy segments) were then removed from the record-
ings using automatic procedures as proposed by Brain-
storm. More specifically, electrocardiogram (ECG) and
electrooculogram (EOG) recordings were used to detect
heartbeats and blinks, respectively. We then used Signal-

Space Projections (SSP) to automatically remove the de-
tected artifacts. We also used SSP to remove saccades
and muscle activity as low-frequency (1-7 Hz) and high-
frequency (40-240 Hz) components, respectively.

The pre-processed sensor-level data was then used to
obtain a source estimation on HCP’s fsLR4k cortex sur-
face for each participant. Head models were computed
using overlapping spheres and the data and noise co-
variance matrices were estimated from the resting state
MEG and noise recordings. Linearly constrained mini-
mum variance (LCMV) beamformers method from Brain-
storm was then used to obtain the source activity for each
participant. We performed data covariance regulariza-
tion and normalized the estimated source variance by the
noise covariance matrix to reduce the effect of variable
source depth. The L2 matrix norm (i.e. regularization
parameter) of data covariance matrix is usually defined
as the largest eigenvalue of its eigenspectrum. However,
the eigenspectrum of MEG data covariance can be ill-
conditioned, such that the eigenvalues may span many
decades where larger eigenvalues are overestimated and
smaller eigenvalues are underestimated. In other words,
the L2 norm of the data covariance matrix can be many
times larger than the majority of eigenvalues, making it
difficult to select a conventional regularization param-
eter. Following guidelines from Brainstorm [133], we
used the “median eigenvalue” method to regularize the
data covariance matrix, where the eigenvalues smaller
than the median eigenvalue are replaced with the me-
dian eigenvalue itself (i.e. flattening the tail of eigen-
values spectrum to the median). The covariance matrix
is then reconstructed using the modified eigenspectrum.
This helps to avoid the instability of data covariance in-
version caused by the smallest eigenvalues and regu-
larizes the data covariance matrix. Source orientations
were constrained to be normal to the cortical surface at
each of the 8,000 vertex locations on the fsLR4k surface.
Source-level time-series were then parcellated into 400
regions using the Schaefer-400 atlas [119], such that a
given parcel’s time series was estimated as the first prin-
cipal component of its constituting sources’ time series.

Parcellated time-series were then used to estimate
functional connectivity with an amplitude-based connec-
tivity measure from Brainstorm (amplitude envelope cor-
relation; AEC [20]). An orthogonalization process was
applied to correct for the spatial leakage effect by remov-
ing all shared zero-lag signals [28]. AEC functional con-
nectivity were derived for each participant at six canon-
ical electrophysiological bands (i.e., delta (δ: 2-4 Hz),
theta (θ: 5-7 Hz), alpha (α: 8-12 Hz), beta (β: 15-29
Hz), low gamma (lo-γ: 30-59 Hz), and high gamma (hi-
γ: 60-90Hz)). Group-average MEG functional connec-
tivity matrices were constructed as the mean functional
connectivity across all individuals for each frequency
band. For comparison, band-limited group-average AEC
matrices were also estimated without correcting for spa-
tial leakage effect.

We also processed the MEG data using additional
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methodological choices. First, the LCMV source recon-
structed and parcellated time-series were used to esti-
mate functional connectivity with an alternative, phase-
based connectivity measure (phase locking value; PLV
[79, 96]) for each frequency band. Second, another
source reconstruction method (standardized low resolu-
tion brain electromagnetic tomography; sLoreta [105])
was used instead of LCMV beamformers to obtain source-
level time-series, given that previous reports suggest that
sLoreta improves source localization accuracy [65, 67].
Source-level time-series, obtained by sLoreta, were then
parcellated into 400 regions and were used to estimate
AEC matrices with spatial leakage correction for the six
frequency bands. Third, to ensure that the findings are
independent from choice of parcellation, a low resolu-
tion atlas (Schaefer-200 [119]) was used to parcellate
the original LCMV source-level time-series to 200 cor-
tical regions and obtain spatial leakage corrected AEC
connectivity matrices. Finally, we estimated MEG source
localization errors for LCMV and sLoreta source recon-
struction solutions using cross-talk functions (CTF) [64–
67, 82, 95]. CTF of a given source i is a measure of how
activity from all other sources contributes to the activ-
ity estimated for the i-th source. Following guidelines
from Brainstorm [133] and MNE-Python software pack-
ages [56], we used CTF to calculate peak localization er-
ror of a given source i as the Euclidean distance between
the peak location estimated for source i and the true
source location i on the surface model [65, 95]. Source-
level CTF was then parcellated using the Schaefer-400
atlas. We also estimated source-level signal-to-noise ra-
tio (SNR) for LCMV source reconstruction solution as fol-
lows [53, 106]:

SNR = 10log10(
a2

N

N∑
k=1

b2k
s2k

) (1)

where a is the source amplitude (i.e. typical strength
of a dipole, which is 10 nAm [58]), N is the number
of sensors, bk is the signal at sensor k estimated by the
forward model for a source with unit amplitude, and s2k is
the noise variance at sensor k. SNR was first calculated
at the source level and was then parcellated using the
Schaefer-400 atlas.

Resting state functional MRI

The functional MRI data were pre-processed using
HCP minimal pre-processing pipelines [52, 140]. De-
tailed information regarding data acquisition and pre-
processing is available elsewhere [52, 140]. Briefly, all
3T functional MRI time-series (voxel resolution of 2 mm
isotropic) were corrected for gradient nonlinearity, head
motion using a rigid body transformation, and geometric
distortions using scan pairs with opposite phase encod-
ing directions (R/L, L/R) [34]. Further pre-processing

steps include co-registration of the corrected images to
the T1w structural MR images, brain extraction, normal-
ization of whole brain intensity, high-pass filtering (>
2000s FWHM; to correct for scanner drifts), and remov-
ing additional noise using the ICA-FIX process [34, 116].
The pre-processed time-series were then parcellated into
400 cortical areas using Schaefer-400 parcellation [119].
The parcellated time-series were used to construct func-
tional connectivity matrices as Pearson correlation coef-
ficients between pairs of regional time-series for each of
the four scans and each participant. A group-average
functional connectivity matrix was constructed as the
mean functional connectivity across all individuals and
scans.

Diffusion weighted imaging (DWI)

Diffusion weighted imaging (DWI) data was obtained
for the same individuals from the HCP dataset. MRtrix3
package [137] (https://www.mrtrix.org/) was used to
pre-process the DWI data as described elsewhere [124].
In brief, multi-shell multi-tissue constrained spherical de-
convolution algorithm from MRtrix was applied to gener-
ate fiber orientation distributions [37, 77]. Probabilistic
streamline tractography based on the generated fiber ori-
entation distributions was used to reconstruct white mat-
ter edges [136]. The tract weights were optimized by es-
timating an appropriate cross-section multiplier for each
streamline following the procedure proposed by Smith
and colleagues [128]. Structural connectivity matrices
were then reconstructed for each participant using the
Schaefer-400 atlas [119]. Finally, a binary group-level
structural connectivity matrix was constructed using a
consensus approach that preserves the edge length dis-
tribution in individual participants [14, 94]. The binary
consensus structural connectivity matrix was weighted
by the average structural connectivity across individuals
to obtain a weighted structural connectivity matrix.

BigBrain histological data

To characterize the cytoarchitectural variation across
the cortex, cell-staining intensity profile data were ob-
tained from the BigBrain atlas [2, 104]. The BigBrain
is a high-resolution (20 µm) histological atlas of a post
mortem human brain and includes cell-staining inten-
sities that are sampled at each vertex across 50 equiv-
olumetric surfaces from the pial to the white matter
surface using the Merker staining technique [2, 92].
The staining intensity profile data represent neuronal
density and soma size at varying cortical depths, cap-
turing the regional differentiation of cytoarchitecture
[2, 103, 104, 144, 145]. Intensity profiles at various
cortical depths can be used to approximately identify
boundaries of cortical layers that separate supragranular
(cortical layers I-III), granular (cortical layer IV), and in-
fragranular (cortical layers V-VI) layers [104, 144, 145].
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The data were obtained on fsaverage surface (164k ver-
tices) from the BigBrainWarp toolbox [104] and were
parcellated into 400 cortical regions using the Schaefer-
400 atlas [119].

The cross-modal correspondence map, estimated as
adjusted-R2 (See “Multi-linear model” for more details),
was then compared with the parcellated cell-staining in-
tensity data. Specifically, the regional model fit was cor-
related with cell-staining profiles at each cortical depth
using Spearman rank correlation (rs). 10,000 spatial-
autocorrelation preserving nulls were used to construct a
null distribution of correlation at each cortical depth (See
“Null model” for more details on spatial-autocorrelation
preserving nulls). Significance of the associations were
estimated by comparing the empirical Spearman rank
correlation with the distribution of null correlations at
each cortical depth, identifying the number of null cor-
relations that were equal to or greater than the em-
pirical correlation (two-tailed test). Finally, Benjamini-
Hochberg procedure [13] was used to correct for mul-
tiple comparisons by controlling the false discovery rate
(FDR) at 5% across all 50 comparisons.

Allen Human Brain Atlas (AHBA)

Regional microarray expression data were obtained
from 6 post-mortem brains (1 female, ages 24.0–57.0,
42.50 ± 13.38) provided by the Allen Human Brain At-
las (AHBA, https://human.brain-map.org; [69]). Data
were processed with the abagen toolbox (version 0.1.3-
doc; https://github.com/rmarkello/abagen; [88]) using
the Schaefer-400 volumetric atlas in MNI space [119].

First, microarray probes were reannotated using data
provided by [3]; probes not matched to a valid Entrez
ID were discarded. Next, probes were filtered based on
their expression intensity relative to background noise
[109], such that probes with intensity less than the back-
ground in ≥ 50.00% of samples across donors were dis-
carded. When multiple probes indexed the expression
of the same gene, we selected and used the probe with
the most consistent pattern of regional variation across
donors (i.e., differential stability; [68]), calculated with:

∆S(p) =
1(
N
2

) N−1∑
i=1

N∑
j=i+1

ρ[Bi(p), Bj(p)]

where ρ is Spearman’s rank correlation of the expression
of a single probe, p, across regions in two donors Bi and
Bj , and N is the total number of donors. Here, regions
correspond to the structural designations provided in the
ontology from the AHBA.

The MNI coordinates of tissue samples were updated
to those generated via non-linear registration using the
Advanced Normalization Tools (ANTs; https://github.
com/chrisfilo/alleninf). To increase spatial coverage, tis-
sue samples were mirrored bilaterally across the left and
right hemispheres [111]. Samples were assigned to brain

regions in the provided atlas if their MNI coordinates
were within 2 mm of a given parcel. If a brain region
was not assigned a tissue sample based on the above
procedure, every voxel in the region was mapped to the
nearest tissue sample from the donor in order to gener-
ate a dense, interpolated expression map. The average
of these expression values was taken across all voxels in
the region, weighted by the distance between each voxel
and the sample mapped to it, in order to obtain an esti-
mate of the parcellated expression values for the missing
region. All tissue samples not assigned to a brain region
in the provided atlas were discarded.

Inter-subject variation was addressed by normalizing
tissue sample expression values across genes using a ro-
bust sigmoid function [48]:

xnorm =
1

1 + exp(− (x−⟨x⟩)
IQRx

)

where ⟨x⟩ is the median and IQRx is the normalized in-
terquartile range of the expression of a single tissue sam-
ple across genes. Normalized expression values were
then rescaled to the unit interval:

xscaled =
xnorm −min(xnorm)

max(xnorm)−min(xnorm)

Gene expression values were then normalized across
tissue samples using an identical procedure. Samples
assigned to the same brain region were averaged sep-
arately for each donor and then across donors, yield-
ing a regional expression matrix of 15,633 genes. Ex-
pression of NPY1R (Neuropeptide Y Receptor Y1) was
extracted from the regional expression matrix and was
related to the cross-modal correspondence map, esti-
mated as adjusted-R2 (See “Multi-linear model” for more
details), using 10,000 spatial-autocorrelation preserving
nulls (See “Null models” for more details).

Multi-linear model

Regional model

A multiple linear regression model was used to
assess regional associations between haemodynamic
(fMRI) and electromagnetic (MEG) functional connec-
tivity (Fig. 1 [142]). A separate multi-linear model is
applied for each brain region from the parcellated data,
predicting the region’s fMRI functional connectivity pro-
file from its band-limited MEG functional connectivity.
The dependent variable is a row of the fMRI connectiv-
ity matrix and the independent variables (predictors) are
the corresponding rows of MEG connectivity for the six
canonical electrophysiological bands. The linear regres-
sion model for each brain region i is constructed as fol-
lows:
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FCi =b1 × FC(δ)i + b2 × FC(θ)i+

b3 × FC(α)i + b4 × FC(β)i+

b5 × FC(lo,γ)i + b6 × FC(hi,γ)i + b0

(2)

where the dependant variable FCi is the set of fMRI con-
nections of node i to the other j ̸= i regions and the
predictors are sets of MEG connections of node i to the
other j ̸= i regions for the six frequency bands (FC(δ)i,
FC(θ)i, FC(α)i, FC(β)i, FC(lo,γ)i, FC(hi,γ)i). The
regression coefficients b1, ..., b6 and the intercept b0 are
then optimized to yield maximum correlation between
empirical and predicted fMRI connectivity for each brain
region. Goodness of fit for each regional model is quan-
tified using adjusted-R2 (coefficient of determination).

Global model

For comparison with the regional model, a single
global model was fitted to the data, predicting the whole-
brain fMRI functional connectivity from the whole-brain
band-limited MEG functional connectivity (Fig. 1d).
Specifically, rather than applying a multi-linear model
for each region (i.e. each row) separately, we fit a sin-
gle multi-linear model using the upper triangle of band-
limited MEG connectivity (i.e. all values above the diago-
nal of MEG connectivity matrices) as predictors and pre-
dict the upper triangle of fMRI connectivity. The equa-
tion below describes the multi-linear global model:

FCUT =b1 × FC(δ)UT + b2 × FC(θ)UT+

b3 × FC(α)UT + b4 × FC(β)UT+

b5 × FC(lo,γ)UT + b6 × FC(hi,γ)UT + b0

(3)

where the dependent variable FCUT is the vectorized
upper triangle of fMRI functional connectivity (i.e. above
diagonal values) and the predictors are the vectorized
upper triangles of MEG functional connectivity for the
six frequency bands. The regression coefficients b1, ..., b6
and the intercept b0 are then optimized to yield maxi-
mum correlation between empirical and predicted fMRI
connectivity. Similar to the regional model, the goodness
of fit for the global model is quantified using adjusted-R2

(coefficient of determination).

Region-level cross-validation

Region-level cross-validation was performed to assess
out-of-sample model performance. Given the spatial au-
tocorrelation inherent to the data, random splits of brain
regions into train and test sets may result in out-of-
sample correlations that are inflated due to spatial prox-
imity [90]. To take this into account, we used a distance-
dependant cross-validation approach where we pseudo-
randomly split the connectivity profile of a given region

(e.g. node i) into train and test sets based on spatial
separation [59]. We used inter-regional Euclidean dis-
tance to select 75% of the closest regions to a randomly
selected source region as the train set and the remaining
25% of the regions as test set. The random source re-
gion can be any of the 399 regions connected to node i;
hence, the connectivity profile of node i is split into 399
unique train and test sets. We then train the multi-linear
model using the train set and predict functional connec-
tivity of the test set for each region and each split. Fi-
nally, the model performance is quantified using Pearson
correlation coefficient between empirical and predicted
values. The cross-validated regional model performance
is then estimated as the mean correlation coefficient be-
tween empirical and predicted values across splits for
each brain region.

Subject-level cross-validation

Leave-one-out cross-validation was performed to as-
sess model performance on held-out subjects. Briefly, the
regional multi-linear model is trained using the group-
average data from n − 1 subjects. The trained model is
then used to predict fMRI connectivity profile of each re-
gion on the held-out subject (test set). The model perfor-
mance is quantified as the Pearson correlation coefficient
between empirical and predicted connectivity of each re-
gion. The analysis is repeated for all subjects and the
regional model performance is averaged across individu-
als.

Diffusion map embedding

Diffusion map embedding was used to identify the
principal axis of variation in functional organization of
the cortex (diffusion map embedding and alignment
package; https://github.com/satra/mapalign) [80, 87].
Diffusion map embedding is a nonlinear dimensional-
ity reduction technique that generates a low-dimensional
representation of high-dimensional data by projecting it
into an embedding space, such that the areas with sim-
ilar connectivity profiles will be closer in distance in the
new common space compared to the areas with dissim-
ilar connectivity profiles [27, 80, 87]. In brief, follow-
ing the procedure described by Margulies and colleagues
[87], each row of the group-average fMRI functional
connectivity was thresholded at 90%, such that only the
top 10% of functional connections was retained in the
matrix. Next, a cosine-similarity matrix was estimated
based on the remaining functional connections, where
the resulting pairwise cosine distances represent the sim-
ilarity between the connectivity profiles of cortical re-
gions according to their strongest connections. Finally,
the diffusion map embedding was applied to the result-
ing positive affinity matrix. This identifies the principal
axis of variation in functional connectivity, along which
cortical regions are ordered based on the similarity of
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their connectivity profiles. The identified functional gra-
dient or hierarchy spans the unimodal-transmodal axis,
separating primary sensory-motor cortices from associa-
tion cortex. The functional gradient map is also available
as part of the neuromaps toolbox [89]. The functional
gradient was used as a metric of hierarchical organiza-
tion of the cortex and was compared with the regional
model fit (Fig. 2).

Structure-function coupling

Structure-function coupling was estimated following
the procedure described by Baum and colleagues [11].
Structural and functional connectivity profiles of each
brain region (i.e. each row of the connectivity matri-
ces) were extracted from the weighted group-level struc-
tural and functional connectivity matrices. Structure-
function coupling of a given region was then estimated
as the Spearman rank correlation between non-zero val-
ues of that region’s structural and functional connectiv-
ity profiles. Finally, the resulting whole-brain structure-
function coupling map was compared with the cross-
modal correspondence map (i.e. R2 map from the
regional model). Significance of the association be-
tween the two maps was assessed using 10,000 spatial-
autocorrelation preserving nulls (See “Null model” for
more details).

Dominance analysis

Dominance Analysis was used to quantify the dis-
tinct contributions of resting state MEG connectiv-
ity at different frequency bands to the prediction
of resting state fMRI connectivity in the multi-linear
model [4, 21] (https://github.com/dominance-analysis/
dominance-analysis). Dominance analysis estimates the
relative importance of predictors by constructing all pos-
sible combinations of predictors and re-fitting the multi-
linear model for each combination (a model with p pre-
dictors will have 2p − 1 models for all possible combi-
nations of predictors). The relative contribution of each
predictor is then quantified as increase in variance ex-
plained by adding that predictor to the models (i.e. gain
in adjusted-R2). Here we first constructed a multiple lin-
ear regression model for each region with MEG connec-
tivity profile of that region at six frequency bands as inde-
pendent variables (predictors) and fMRI connectivity of
the region as the dependent variable to quantify the dis-
tinct contribution of each factor using dominance analy-
sis. The relative importance of each factor is estimated as
“percent relative importance”, which is a summary mea-
sure that quantifies the percent value of the additional
contribution of that predictor to all subset models.

Null model

To make inferences about the topographic correlations
between any two brain maps, we implement a null model

that systematically disrupts the relationship between two
topographic maps but preserves their spatial autocor-
relation [1, 90]. We used the Schaefer-400 atlas in
the HCP’s fsLR32k grayordinate space [119, 140]. The
spherical projection of the fsLR32k surface was used to
define spatial coordinates for each parcel by selecting
the vertex closest to the center-of-mass of each parcel
[125, 141, 142]. The resulting spatial coordinates were
used to generate null models by applying randomly-
sampled rotations and reassigning node values based on
the closest resulting parcel (10,000 repetitions). The ro-
tation was applied to one hemisphere and then mirrored
to the other hemisphere.

Code and data availability

Code used to conduct the reported analyses is
available on GitHub (https://github.com/netneurolab/
shafiei_megfmrimapping). Data used in this study were
obtained from the Human Connectome Project (HCP)
database (available at https://db.humanconnectome.
org/). The data and code needed to generate all main
and supplementary figures can be found in https://
github.com/netneurolab/shafiei_megfmrimapping and
https://https://zenodo.org/record/6728338.
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Band A Band B mean(A) mean(B) difference t-value p-value Cohen’s d
delta theta 15.06 19.87 -4.81 -5.26 <0.0001 -0.37
delta alpha 15.06 18.79 -3.72 -4.07 0.00073 -0.29
delta beta 15.06 27.44 -12.37 -13.53 <0.0001 -0.96
delta lo-gamma 15.06 11.28 3.78 4.14 0.00055 0.29
delta hi-gamma 15.06 7.56 7.51 8.21 <0.0001 0.58
theta alpha 19.87 18.79 1.08 1.19 1 0.08
theta beta 19.87 27.44 -7.56 -8.27 <0.0001 -0.58
theta lo-gamma 19.87 11.28 8.59 9.39 <0.0001 0.66
theta hi-gamma 19.87 7.56 12.32 13.46 <0.0001 0.95
alpha beta 18.79 27.44 -8.65 -9.46 <0.0001 -0.69
alpha lo-gamma 18.79 11.28 7.51 8.21 <0.0001 0.58
alpha hi-gamma 18.79 7.56 11.23 12.28 <0.0001 0.87
beta lo-gamma 27.44 11.28 16.16 17.66 <0.0001 1.25
beta hi-gamma 27.44 7.56 19.88 21.73 <0.0001 1.54
lo-gamma hi-gamma 11.28 7.56 3.72 4.07 0.00072 0.29

Table S1. Analysis of Variance (ANOVA) for dominance analysis | To quantitatively assess the differences in band-specific
contributions to the cross-modal correspondence map, contributions estimated from dominance analysis were compared for all
possible pairs of frequency bands using Analysis of Variance (ANOVA). All reported p-values are from two-tailed tests and are
corrected for multiple comparisons using Bonferroni correction. Cohen’s d denotes effect size.

Figure S1. Band-specific regional model fit | Separate regional regression models were applied to map MEG functional connec-
tivity (AEC) to fMRI functional connectivity at each frequency band. Distributions of adjusted-R2 are depicted for band-specific
regional model fits and for the multiband model fit obtained by the original analysis. The multi-linear regional model that combines
MEG connectivity at multiple rhythms to predict regional fMRI connectivity profiles performs better than the band-specific models.
The data and code needed to generate this figure can be found in https://github.com/netneurolab/shafiei_megfmrimapping and
https://zenodo.org/record/6728338.
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Figure S2. Structure-function coupling | Structure-function coupling was estimated as the Spearman rank correlation (rs)
between regional structural and functional connectivity profiles [11]. The cross-modal R2 map (i.e. regional model fit) is then
compared with the structure-function coupling across the cortex. The data and code needed to generate this figure can be found
in https://github.com/netneurolab/shafiei_megfmrimapping and https://zenodo.org/record/6728338.

Figure S3. Source localization error | MEG source localization error is estimated for (a) LCMV and (b) sLoreta source re-
construction solutions using cross-talk functions (CTF) [64, 65, 67, 82, 95]. CTF is used to calculate peak localization er-
ror of a given source i as the Euclidean distance between the peak location estimated for source i and the true source lo-
cation i on the surface model [65, 95]. No significant association is observed between the cross-modal correspondence R2

map and peak localization error for LCMV and sLoreta. The data and code needed to generate this figure can be found in
https://github.com/netneurolab/shafiei_megfmrimapping and https://zenodo.org/record/6728338.
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Figure S4. Signal-to-noise ratio | MEG signal-to-noise ratio (SNR) was estimated at the source level. Parcellated, group-average
SNR map is depicted across the cortex. The cross-modal correspondence R2 map (i.e. regional model fit) is then compared
with the SNR map. The data and code needed to generate this figure can be found in https://github.com/netneurolab/shafiei_
megfmrimapping and https://zenodo.org/record/6728338.

Figure S5. Pairwise similarity of band-limited MEG functional connectivity | Pearson correlation coefficient is calculated
between upper triangles (i.e. values above diagonal) of band-limited MEG AEC functional connectivity to assess the pairwise
similarity between MEG connectivity maps. The data and code needed to generate this figure can be found in https://github.com/
netneurolab/shafiei_megfmrimapping and https://zenodo.org/record/6728338.
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