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Abstract

Proteogenomics aims at identifying variant or unknown proteins in bottom-up proteomics,

searching  transcriptome-  or  genome-derived  custom  protein  databases.  However,

empirical observations reported that the large size of these proteogenomic databases is

associated to lower sensitivity of peptide identifications. Various strategies were proposed

to  avoid  this,  including  the  generation  of  reduced  transcriptome-informed  protein

databases  (i.e.,  built  from  reference  protein  databases  only  retaining  proteins  with

expressed transcript in the sample-matched transcriptome), which were found to increase

peptide identification sensitivity.  In  this  work,  we propose a detailed evaluation of  this

approach. First, we establish that the increased sensitivity in peptide identification is in fact

a statistical artefact, which directly results from the limited capability of TDC to accurately

model  incorrect  target  matches with  excessively  small  databases.  As anti-conservative

FDRs likely hamper the robustness of the resulting biological conclusions, we advocate for

alternative FDR control  methods that  are less sensitive to  database size.  Second, we

show that despite not  increasing sensitivity,  reduced transcriptome-informed databases

are  useful,  as  they  allow  reducing  ambiguity  of  protein  identifications,  yielding  fewer

shared peptides.  Furthermore, we illustrate that searching the reference database and

subsequently  filtering  proteins  with  unexpressed  transcript  similarly  reduces  protein
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identification ambiguity, while representing a more transparent and reproducible strategy.

To summarize, using reduced transcriptome-informed databases is an interesting strategy

that  has  not  been  promoted  for  the  good  reason  (an  artifactual  peptide  identification

sensitivity increment instead of a protein identification ambiguity decrement).

Keywords: proteogenomics, proteomics, transcriptome-informed protein databases, 

peptide identification sensitivity, protein identification ambiguity, FDR control, target-decoy 

competition

BACKGROUND

The term “proteogenomics” originally referred to the use of proteomics to enhance

genome annotation, by inferring coding genomic regions based on evidence from mass

spectrometry-based  proteomics1.  Nowadays,  it   more  broadly  indicates  the  combined

analysis of genomics and/or transcriptomics together with proteomics in a large spectrum

of applications: from the study of gene expression regulation at transcript and protein level,

to the identification of specific protein variants expressed in cancer2,3.  Most importantly,

proteogenomics  represents  an  attractive  strategy  to  enhance  proteomics  in  two  main

ways:  i. improving  protein  inference;  ii.  improving  database  searches  for  peptide

identification.

Protein inference is a central  issue in proteomics, given the presence of shared

peptides.  This  nominates peptides  that  might  originate  from  different  proteins  sharing

homology;  or  from  different  proteoforms  due  to  alternative  mRNA  splicing,  post-

translational modifications, proteolytic cleavages, and/or allelic variants. Indeed, in bottom-

up  mass  spectrometry-based  proteomics,  the  most  widely  used  proteomic  approach,
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peptide-protein connectivity is lost for experimental reasons and protein identifications are

to be inferred from peptide identifications. Traditionally, the issue of protein inference was

addressed using simple heuristics, such as the two-peptide rule (only proteins identified by

at least two peptides are retained) or the parsimonious principle (the smallest subset of

proteins  which  can explain  most  or  all  peptides is  retained)4,5.  Later  on,  more  refined

probability-based approaches were developed, which model shared peptide mappings to

their parent proteins6–9. Most commonly, when proteins cannot be discriminated based on

peptide  identifications  (i.e., they  are  identified  by  the  same set  of  peptides)  they  are

reported  as  a  protein  group,  which  complicates  comparisons  between  different

experiments and protein quantification. In this context,  proteogenomics can aid protein

inference  using  evidence  from  transcript  expression:  in  particular,  some  Bayesian

approaches were developed based on this strategy10–12.  The other main contribution of

proteogenomics to proteomics relates to the refinement of  reference protein databases

used for peptide identification. Classically, peptides resulting from bottom-up analyses are

identified  by  matching  their  experimentally  measured mass  spectra  against  theoretical

spectra of all  candidate peptides from a user-selected reference protein database.  The

underlying assumption is that such a database exhaustively and accurately describes all

protein  sequences  present  in  the  sample.  However,  this  may  be  unrealistic  for  two

reasons. First, reference databases only contain canonical -- experimentally validated or

predicted -- protein sequences, while other variants or isoforms may be present, especially

in tumour samples. Second, a reference protein database may simply be lacking for less

studied  organisms  with  scarce  or  no  genomic  annotations.  In  the  first  case,  more

exhaustive  protein  databases  including  undocumented  or  variant  peptides  can  be

generated by appending to the reference database variant sequences from public genomic

repositories  (i.e.,  COSMIC  or  dbSNP)13–15 or  sample-specific  variants  identified  from
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matched  transcriptomes  or  genomes.  In  the  second  case,  protein  databases  can  be

generated  by  6-frame  translation  of  the  genome  or  of  the  sample-matched

transcriptome16,17. A major downfall of these proteogenomic databases is represented by

their  typically  large  size.  Searching  very  large  databases  represents  a  considerable

computational  load  and  complicates  the  task  of  discriminating  between  correct  and

incorrect  matches.  In  particular,  various  works  showed  that  when  using  target-decoy

competition  (TDC)  for  FDR  control  on  large  database  searches,  fewer  peptides  are

identified at the same FDR level, which stands in stark contrast with the initial motivation of

proteogenomics18–20. To avoid this, it was proposed to perform separate FDR validation of

canonical and novel peptides and to apply post-search filters or machine learning methods

to  increase  confidence  in  the  newly  identified  peptides13–15,21,22. Additionally,  various

strategies  were  adopted  to  limit  the  size  of  databases  generated  by  proteogenomics.

When possible, genome 6-frame translation was replaced by translating candidate ORFs

identified  by  gene  prediction  algorithms;  sample-specific  variants  from  matched

sequencing  were  preferentially  added  to  the  reference  database  rather  than  variant

sequences  from. COSMIC  or  dbSNP23–25;  in  some  studies,  after  appending  variants

identified from sequencing data, the reference database was reduced to only proteins with

transcript expressed according to transcriptomics, since according to the “central dogma of

biology”, there can be no protein without corresponding transcript26–28. It was also proposed

to  generate  reduced  transcriptome-informed protein  databases  by  barely  reducing  the

reference  database  to  proteins  with  expressed  transcript,  without  including  any  novel

sequence, with the only declared objective of increasing sensitivity in the identification of

known sequences26,28,29. These works claim that searching such reduced transcriptome-

informed databases allows increasing the number of valid identifications. A strategy was

also  proposed  to  optimize  the  balance  between  lost  identifications  due  to  the
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incompleteness  of  an  excessively  reduced  database  and  additional  identifications

observed from searching reduced transcriptome-informed databases, so as to maximize

the number of valid identifications30.  However:  i. Only limited attention was given to the

mechanistic explanation of the increased number of  identified peptides with respect to

database  size;  ii. Little  is  known about  the  impact  of  reduced  transcriptome-informed

database searches on protein inference, in terms of ambiguity of protein identification and

shared peptide assignments. Therefore, in this work, we investigated the use of reduced

transcriptome-informed  sample-specific  protein  databases,  focusing  on  these  two

methodological aspects. Our investigations result into three conclusions. First, the reported

increment  of  the  number  of  identifications  obtained  searching  reduced  transcriptome-

informed databases  is  a  statistical  artifact:  it  is  only  the  spurious  consequence  of  an

underestimated FDR, which results from the TDC sensitivity to the database size (also

reported in 31). In other words, reducing the search database to increase sensitivity broadly

amounts to validate peptide identifications at an FDR that is larger than reported, hereby

questioning the validity of peptides only identified thanks to a reduced database search

and comparability  between studies.  Second,  searching reduced transcriptome-informed

protein databases followed by accurate FDR control remains nonetheless of interest, for it

decreases  ambiguity  of  protein  identifications  by  reducing  the  proportion  of  shared

peptides and the size of protein groups. Finally, searches against the reference database

followed by post-hoc filtering of proteins with no evidence of transcript expression provides

comparable proteomic identifications to searches against the reduced transcriptome-based

database, while guaranteeing more transparency and comparability between studies. We

therefore provided an R code to  perform post-hoc filtering on proteomic identifications

based on transcript evidence and to manually inspect protein identifications and shared
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peptide assignments within protein groups of interest together with transcript expression

information.

RESULTS

Reduced transcriptome-informed database search does not increase 

sensitivity if FDR is accurately controlled 

To investigate the impact of reduced transcriptome-informed protein databases on

proteomic identifications, we used two human samples (hereafter referred to as Jurkat and

Lung)  for  which  matched  transcriptome  and  proteome  were  publicly  available  (Supp.

Table 1).  For each of them, we built  a sample-specific reduced transcriptome-informed

protein database, in the following way. First,  we processed transcriptome datasets and

identified  the  set  of  transcripts  expressed in  each sample  using  StringTie,  a  common

transcriptome  assembly  method  (see  “Transcriptome  analysis”  in  Methods).  Then,  we

generated reduced databases for MS/MS search by retaining from the Ensembl human

protein  database  only  those  proteins  whose  transcript  was  expressed  in  the  sample-

matched  transcriptome  (see  “Construction  of  reduced  transcriptome-informed  protein

databases for MS/MS search” in Methods) (Figure 1A-B). We compared valid peptide-

spectrum matches (PSMs) obtained from the MS/MS search against the Ensembl human

database  (referred  to  as  the  “full  database”)  or  against  the  sample-specific  reduced

database (referred to as the “reduced database”) at 1% FDR, as estimated by TDC. In

agreement with previous studies26,28,30, we found that a few spectra and peptides identified

in the full database were lost in the reduced database search (“lost in reduced DB”), while

others were only identified in the reduced database search (“additional in reduced DB”)
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(Figure 1C). Lost identifications originate from reduced database incompleteness. Indeed,

even more identifications were lost when using a further reduced protein database, as the

one  generated  on  the  basis  of  the  smaller  set  of  expressed  transcripts  identified  by

Cufflinks,  an  alternative  method  of  transcriptome  assembly  (Supp.  Fig.  1).  Additional

identifications,  instead,  are  commonly  attributed  to  an  increased  sensitivity  of  MS/MS

searches  against  smaller  databases,  such  as  reduced  transcriptome-informed  protein

databases26,28,30.  In  this  work,  we investigated more  thoroughly  the  origin  of  additional

identifications  obtained  from  searching  these  reduced  transcriptome-informed  protein

databases. To this end, we performed a detailed comparison of all (target or decoy) PSMs

retained from the full and reduced database searches, after validation prefilters ( i.e., single

best scoring PSM per spectrum, minimum peptide length of 7 amino acids), but prior to

filtering for 1% FDR control (Figure 1A). Since we built the reduced database as a simple

subset of the Ensembl human database and considered only a single best scoring peptide

per spectrum (see “Proteome analysis” in Methods), we could easily map each spectrum

match  between  the  two  searches.  Two  interesting  observations  emerged  from  this

comparison. First, several spectra are reallocated in the reduced database (i.e., assigned

in the reduced database search to a different match from that of the full database), which

occurs when the peptide match from the full  database is  not  included in  the reduced

database. However, the PSM score is never higher in the reduced database: at best, it is

equal (data points on the diagonal,  Figure 2A, Supp. Fig. 2A) to the score in the full

database,  but  for  the  most  part  it  is  smaller  (Figure  2B,  Supp.  Fig.  2B).  Therefore,

additional identifications in the reduced database do not come from an improved search

score. For sake of clarity, those few spectra with a match only in the reduced database

(indicated as “no match, target” or “no match, decoy” in Figure 2A, Supp. Fig. 2A, 3A, 4

and  5)  do  not  contradict  this  observation;  they  are  all  explained  by  reallocation  and

7

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2021. ; https://doi.org/10.1101/2021.09.07.459229doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459229
http://creativecommons.org/licenses/by-nc-nd/4.0/


prefilters used for validation (Supp. Fig. 3B,  see Supplementary Note 1  for a detailed

explanation). Similarly, we also verified all cases of pretty rank (PSMs with score difference

> 0.1, which are considered of equal score, see “Proteome analysis” section in Methods)

and again confirmed that the maximum PSM score in the reduced database in no case is

higher than in the full database search (Supp. Fig. 3C-D, see also Supplementary Note

1). The second main observation was that the score cutoff estimated by TDC at 1% FDR

(i.e., the score defining the set of accepted PSMs, while respecting the constraint that less

than 1% of them are expected to be a false discoveries) is lower for the reduced database

than for the full  database search (Figure 2A, Supp. Fig. 2A). Consequently, for a few

spectra their match is not validated after FDR control in the full database while, at lower or

equal score at best, it is validated in the reduced database search (pointed out by the

arrow in  Figure 2A and Supp. Fig. 2A). This is clearly the reason why these PSMs are

accounted  for  as  additional  identifications  in  the  reduced  database  search.  We  also

observed a few reallocations, which can likewise yield additional spectra and/or peptide

identifications in the reduced database search. They are, in particular, reallocations from

non-target matches in the full database to target matches in the reduced database search

(2.9% and 1.9% of all spectra in Jurkat and lung respectively) and reallocations between

different target matches (3.2% and 2.7% of all  spectra in Jurkat and lung respectively)

(Figure  2A,C  and  Supp.  Fig.  2A,C).  However,  only  a  minority  of  them  are  valid

identifications at  1% FDR control  (i.e.,  pass the score cutoff  for  FDR control  from the

reduced database search)  (Figure 2C,  Supp. Fig.  2C, Supp.  Table  4).  Further,  even

fewer of them would pass the cutoff obtained from the full database search and they are

hereafter  named  as  “pure  reallocations”  to  indicate  that  additional  identifications  from

these PSMs uniquely originate from reallocation and not from additionally validated PSMs

due to the the lower cutoff at 1% FDR validation in the reduced database (Figure 2C,
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Supp. Fig. 2C and 6A, Supp. Table 4). Additional peptide identifications originating from

either lower cutoff for FDR control or from pure reallocations present inferior PSM scores

compared to peptide identifications obtained from both database searches (Supp. Fig.

6B). For pure reallocations, the difference in score between the full and reduced database

match can be quite important, especially for target PSMs in the full database, reallocated

in  the  reduced  database  search  (Supp.  Fig.  6C).  Furthermore,  additional  peptide

identifications only allow obtaining 6 and 8 additional protein identifications ( i.e., protein

groups whose protein members are not identified in the full database search) in the Jurkat

and lung sample, respectively (Supp. Table 5). Thus, these additional identifications are of

lower quality and provide little benefit to protein identification. Overall, only few additional

identifications come from pure reallocations, while the main origin is the lower cutoff for

FDR control in the reduced database, explaining  98.6% (n=3,147) and 95.2% (n=1,875)

additional  spectral  identifications and 96.5% (n=5,560)  and 77.5% (n=1,524)  additional

peptide identifications for the Jurkat and lung samples, respectively (Figure 2D-E, Supp.

Fig. 2D-E). Therefore, we investigated the reasons why lower cutoffs were observed at a

same FDR threshold in the reduced databases. To do so, we first simulated what would

occur if it were instead equal to that of the full database (Figure 3A, Supp. Fig. 7A). We

observed  that  the  proportion  of  valid  decoys  in  the  reduced  database  search  would

considerably decrease compared to the full database, with a net loss of 38.4% and 27.1%

of valid decoys in the Jurkat (Figure 3B) and lung sample (Supp. Fig. 7B), respectively.

Indeed, an important fraction of spectra matching valid decoys in the full  database are

assigned  to  invalid  or  non-decoy  matches  in  the  reduced  database  and  not

counterbalanced  by  reallocations  in  the  other  direction  ( i.e., from  invalid/non-decoy

matches to  valid  decoys)  (Figure 3C,  Supp.  Fig.  7C,  4  and 5).  On the contrary,  the

majority of spectra matching valid targets in the full database match the same valid target
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in the reduced database, so that their loss is quite limited (Figure 3C, Supp. Fig. 7C).

While  spectra  matching  valid  decoys  in  the  full  database  are  reallocated  much  more

frequently in the reduced database than spectra matching valid targets, upon reallocation

they behave similarly:  only  few reallocations result  in  a  valid  match  of  the same type

(Figure 3C,  Supp. Fig. 7C) and the score difference between full and reduced database

matches is comparable (Supp. Fig. 8A). Hence, the proportion of valid decoys lost in the

reduced database is higher than that of targets, simply because a higher proportion of

them is reallocated. This is easily explained by how the reduced database is generated:

only proteins whose transcript  is expressed, thus those more likely to be present,  are

retained from the canonical full protein database. Therefore, all valid targets from the full

database are in theory still present in the reduced database, while this is not the case for

decoys that represent by definition random matches (Supp. Fig. 8B).  The lower cutoff

obtained by TDC for the reduced database allows to validate a few more decoys and thus

recover the proportion of valid decoys required to declare a nominal  FDR level  of  1%

(Figure 3B, Supp. Fig.  7B).  We claim that  additional  identifications validated using a

lower cutoff in the reduced database represent a byproduct of the known influence of the

database size on TDC31, rather than an effect of increased sensitivity in reduced database

searches. Naturally, in absence of a benchmark, it is impossible to determine whether they

represent correct  matches,  missed in the full  database due to FDR overestimation,  or

incorrect  matches,  accepted  in  the  reduced  database  due  to  FDR  underestimation.

However, three main observations indicate that they should be at least considered with

caution. First, they are accepted in the reduced database at quite low scores, meaning

that, in any case, they represent low quality spectra and cannot be identified with very high

confidence.  Second,  it  could  be  assumed that  additional  identifications  stem from the

removal,  in the reduced database, of  high-scoring decoys out-competing correct target
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matches, thus lowering sensitivity. However, in our study, most additional identifications do

not  represent  reallocations from decoys to  targets;  they  consist,  instead,  in  the  same

PSMs, accepted at 1% FDR only in the reduced database because of a lower score cutoff

(Figure  2D-E;  Supp.  Fig.  2D-E).  Third  and  most  importantly,  the  artifactual  origin  of

additional  identifications,  given  TDC  sensitivity  to  database  size,  is  supported  by  the

comparison between the behavior of TDC and of the Benjamini-Hochberg (BH) procedure

for FDR control32. BH is known to be a conservative and stable FDR control procedure,

and it has recently been successfully applied to peptide identification31. In particular, TDC

was found to be less conservative and less stable than BH with respect to preliminary

filters on precursor mass accuracy: at narrower mass tolerance, fewer decoys were fair

competitors for incorrect random matches, artificially lowering cutoffs. Therefore, reducing

database  size  can  similarly  result  into  an  insufficient  number  of  decoys  to  accurately

simulate incorrect target matches and lead to the observed lower cutoffs. To confirm this,

we applied the BH procedure on target-only database searches (see “Proteome analysis”

section in Methods) and obtained more conservative score cutoffs and, most importantly,

more stable with respect to database size, compared to TDC (Figure 3D, Supp. Fig. 7D,

Supp. Fig. 9A-B). Consistently, a much more limited number of additional identifications

was validated in reduced database searches using BH-based FDR control (Supp. Fig.

9C). We also employed the BH procedure for FDR control on concatenated target-decoy

database  searches;  while  doing  so  is  a  nonsense  from  a  practical  data  processing

viewpoint,  yet  from  a  statistical  methodology  viewpoint,  it  simplifies  comparative

evaluations of BH and TDC stabilities. As expected, we obtained more conservative and

stable score cutoffs with BH (Supp. Fig. 9A-B).

Transcriptome information aids to reduce ambiguity of protein identifications
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While  not  enhancing sensitivity  of  peptide identifications,  reduced transcriptome-

informed databases can still benefit proteomics at the protein inference step, by lowering

ambiguity in protein identifications. These databases include fewer proteins – only those

proteins  which  are  most  likely  present  given  their  transcript  expression  –  and  it  is

reasonable to  assume that  with fewer possible  protein matches,  we may obtain  fewer

shared peptides and smaller protein groups. This decrement in protein group size has

already been observed, but either not discussed33 or attributed to an additional number of

identifiable  peptides  available  for  parsimony-based  protein  inference26.  We  already

illustrated  how  additional  identifications  from  searching  reduced  databases  actually

represent a flaw of TDC with respect to reduced database size, and how they can be

largely avoided using alternative procedures for FDR control, such as, for instance, BH.

We will now show that plain searches against reduced databases followed by BH-based

FDR  control  nonetheless  yield  smaller  protein  groups  and  less  ambiguous  protein

identifications, thus regardless of additional identifications or protein inference methods.

Concretely,  we  compared  identifications  obtained  from  the  full  or  reduced  database

searches followed by BH-based FDR control. The total number of identifications, at the

spectrum, peptide and protein level, is comparable (Figure 4A). As number of protein-level

identifications, we used the number of protein groups, as defined by the Proline software,

which  include  both  the  unambiguous  identification  of  a  single  protein  (single-protein

groups) and groups of indiscernible proteins identified by the same sets of peptides (multi-

protein  groups)  (see  “Proteome  analysis”  in  Methods).  Interestingly,  the  proportion  of

single-protein  groups  is  considerably  higher  for  the  reduced  database  (Figure  4B),

meaning that protein identifications are less ambiguous. 

We further characterized ambiguity of protein identifications using the graph’s connected

components. Briefly, we first represented peptide-to-protein mappings via bipartite graphs,
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with  peptides  and  proteins  as  vertices  and  with  edges  featuring  peptide  to  protein

membership: this allows an easy picturing of the complex structures generated by shared

peptides,  as  well  as  their  processing  by  means of  graph theory.  Then,  we calculated

connected components (CCs),  i.e., the largest subgraphs in which any two vertices are

connected to each other by a path and not connected to any other of the vertices in the

supergraph. Proteins sharing one or more peptides are thus gathered in the same CC

(multi-protein CCs), while unambiguous protein identifications are represented by CCs with

a  single  protein  vertex  (single-protein  CCs)  (Figure  4C).  As  such,  CCs  constitute  a

peptide-centric strategy to represent ambiguous protein identifications and their  shared

peptides, not to be confused with the classical protein-centric strategy of protein grouping.

It  presents  two  main  advantages.  First, it  provides  a  non-redundant  representation  of

shared  peptides,  which  can  instead  be  duplicated  between  different  protein  groups.

Second, it is independent from the different existing strategies of protein inference and

protein grouping, making it widely applicable, reproducible and transparent. We observed

that, while the total number of obtained CCs is comparable, there is a considerably higher

proportion of single-protein CCs in the graph derived from the reduced database search

results.  After the reduction of the protein group size, this is the second evidence of a

decreased ambiguity of protein identifications (Figure 4D). Consistently, we also observed

a  greater proportion  of  specific  peptides  –  and  a  correspondingly  lower  proportion  of

shared peptides--  from the reduced database search (Figure 4D).  Within  multi-protein

CCs, the ratio between the number of protein members and the corresponding number of

their encoding genes is also inferior for the reduced database, suggesting that at least part

of the solved ambiguity occurred between proteins encoded by different genes (Figure 4E,

Supp. Table 6).  As a side note, we additionally observed that searches against reduced

databases are associated with  inferior  ambiguity  at  the PSM level,  although to  a less
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extent. In the peptide identification step, it is common to only consider the best peptide

match for each spectrum (i.e., the rank 1 PSM, according to the search engine score) but it

can occur that a spectrum matches different peptides equally well (or almost equally). This

complicates  the  analysis  and  no  consensus  exists  on  how  to  treat  these  cases.

Interestingly, we observed that a smaller proportion of spectra with multiple best matches

occur in the reduced database search (Supp. Fig. 10A); likewise, fewer best matches are

in general found per spectrum (Supp. Fig. 10B).

At  last,  we  adopted  an  alternative  strategy  to  enhance  proteomics  by

transcriptomics, which consists in an MS/MS search against the full database, followed by

post-hoc filtering of proteins with no expressed transcript and no specific peptide (Figure

5A,  Supp.  Fig.  11).  The  driving  principle  is  indeed  to  remove  ambiguous  protein

identifications not supported by specific peptides or by transcriptomics and thus reduce

ambiguity  due  to  shared  peptides.  Overall,  we  observed  similar  results  from reduced

transcriptome-informed database  searches  and  post-hoc  filtering.  First,  they  provide  a

similar  number  of  spectra  and  peptide  identifications,  comparable  to  that  of  the  full

database search (Figure 5B); secondly, they yield a similarly higher proportion of single-

protein CCs and specific peptides than full database searches (Figure 5C), indicating less

ambiguous  protein  identifications.  Post-hoc  filtering  is  a  transparent  and  easily

interpretable approach and we believe that it is most suitable to studies aiming to enhance

protein inference. While a few software tools already exist to generate reduced protein

databases, we provide here a specific toolbox of R scripts to perform the aforementioned

post-hoc filtering.  The toolbox additionally  allows very efficient  calculation of  the CCs,

which  we  have  proposed  as  a  means  to  quantify  and  compare  ambiguity  of  protein

identifications, to visualize CCs of interest and manually inspect them before and after

post-hoc filtering.
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DISCUSSION

In  this  work,  we  provide  guidance  for  a  mindful  use  of  reduced  transcriptome-

informed protein databases for MS/MS search. This type of reduced databases stems from

the attempt to counter excessive database inflation in proteogenomic studies, when adding

variant or novel proteoforms identified from sequencing data. Indeed, increased database

size complicates the task of discriminating between correct and incorrect matches. When

using TDC-based FDR control, inflated target databases come with an inflated number of

decoys and consequently higher probability to get high-scoring decoy matches. This has

mainly  been  thought  to  reduce  sensitivity  of  identifications  in  two  ways.  First,  decoy

matches may score better than correct target matches and outcompete them in spectrum-

peptide  assignment  (“outcompeting  decoys”),  so  that  the  number  of  obtained

identifications decreases. Second, decoys may have higher probability to be matched than

incorrect  targets,  which violates  the Equal  Chance assumption of  TDC procedure and

provides an overestimated FDR, again decreasing the number of identifications. As the

main raison d’être of proteogenomics is to maximize the number of identifiable peptides,

including variants  or  non-canonical  ones,  many  efforts  were  made  to  avoid  loss  of

sensitivity from excessively large databases, for example by reducing their size. While

issues coming from use of excessively large databases have been abundantly discussed,

fewer works pointed out that also excessively small databases may be problematic, as

they also affect TDC estimations31,34,35. With excessively small databases, TDC provides

inaccurate  FDR  estimates,  since  these  estimates  can  only  be  asymptotically

accurate34,36,37.  Further,  with  too  few  (high-scoring)  decoys,  the  probability  to  match  a
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decoy may be lower than the probability to match an incorrect target, which violates again

the Equal Chance assumption of TDC, leading this time to FDR underestimation and to an

artifactual  increase  of  identifications. In  this  work,  we  showed  that  the  increment  of

identifications obtained by searching reduced transcriptome-informed protein databases is

likely  to  represent  a  statistical  artifact  from  employing  TDC  on  excessively  small

databases. We illustrated how TDC estimates a lower score cutoff for 1% FDR control on

the reduced databases compared to the full database search results, causing some invalid

PSMs in  the full  database to  be retained as valid additional  identifications only  in the

reduced database. We confirmed this observation at various levels of FDR control (0.5%,

1%, 5%) and in two different human-derived samples – a tissue (lung) and a cell  line

(Jurkat)  – with a different level of proteomic complexity and number of spectra. Fewer

spectra are available for the Jurkat  sample,  which,  interestingly,  also presents a more

important difference in score cutoffs between full and reduced database. Indeed, not only

reduced database sizes but also a lower number of spectra is believed to affect TDC ability

to accurately estimate FDR34. We claim that additional identifications obtained from such

reduced  databases  are  at  least  doubtful  and  that  it  is  unwise  to  employ  reduced

transcriptome-informed  protein  databases  with  the  aim  of  increasing  the  number  of

identifications. Indeed, the obtained additional identifications have quite low scores and do

not stem from removal of out-competing decoys, a known cause of missed identifications

in excessively large databases; instead, they rather represent PSMs identical in the two

database searches but only accepted in the reduced database due to a lower score cutoff

for the same level of FDR control. Most importantly, only a negligible number of additional

identifications is generated from the reduced database search when using a method for

FDR control known to be stable with respect to database size, such as BH. Indeed, using

BH, score cutoffs estimated for the full and reduced database searches, at the same level
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of  FDR  control,  are  almost  identical.  As  is,  BH  procedure  constitutes  an  interesting

alternative to TDC for stable FDR control irrespective of the database size. However, many

alternative  approaches  have  been  recently  developed  to  cope  for  the  weaknesses  of

classical  TDC38–43.  It  is  important  that  proteogenomics  researchers  use  them to  avoid

risking statistical artifacts in their data. In doing so, they will not benefit any longer from the

so far hypothesized sensitivity increment,  but this seems to be the necessary cost for

rigorous control of the FDR.

Reduced  transcriptome-informed  protein  databases  are  nonetheless  useful  in

bottom-up proteomics to reduce ambiguity of protein identifications, which comes from the

presence  of  shared  peptides.  In  particular,  we  showed  that  searching  these  reduced

databases yields a higher proportion of specific peptides and unambiguously identified

proteins (i.e., single-protein CCs). Furthermore, the higher proportion of specific peptides

and correspondingly  lower proportion of  shared peptides positively  affects  precision in

relative  protein  quantification.  Indeed,  in  relative  protein  quantification,  where  peptide

abundances  are  used  as  a  proxy  for  the  abundance  of  their  parent  protein,  shared

peptides  are  difficult  to  handle:  since  their  relative  abundance  may  depend  on  the

contribution of multiple proteins they are frequently discarded. As a downside, this heavily

restricts the number of remaining quantifiable proteins, which is reduced to proteins with at

least  one  specific  peptide,  and  the  amount  of  information  available  to  estimate

abundances, corresponding to the number of specific peptides only. Therefore, a lower

proportion of shared peptides represents more information available for quantification.

Finally,  we showed that full  database searches followed by  post-hoc filtering  of

proteins  with  no  expressed  transcript  provide  proteomic  identifications  comparable  to

reduced  database  searches  and  similarly  reduces  ambiguity  of  protein  identifications,

while being more transparent and interpretable. We provided an R code to implement such
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post-hoc  filtering  strategy.  The  code  allows  the  user  to  visualize  ambiguous  protein

identifications and their peptides via bipartite graphs, to prune them according to transcript

expression  and  to  manually  inspect  how  this  transcriptome-based  post-hoc  filtering

strategy  reduces  ambiguity.  Ambiguous  protein  identifications  are  represented  and

quantified  using  graph  connected  components,  which  constitute  here  subgraphs  of

proteins  connected  by  shared  peptides.  This  representation  comes  with  the  following

advantages: it is transparent, interpretable, non-redundant with respect to shared peptides

and  independent  from  the  variety  of  different  strategies  developed  to  define  protein

groups.

Results  from  this  work  are  of  interest  also  beyond  proteogenomics.  Indeed,

database reduction is widely pleaded in proteomics, while little attention is being paid to

the  limitations  of  TDC when  using  excessively  small  databases.  It  was  proposed  for

example, to limit database size based on peptide detectability30 and it was more generally

claimed that “mass spectrometrists should only search for peptides they care about”44. The

observed TDC statistical artifacts with excessively small databases is an issue similarly

concerning  multi-step  search  strategies  implemented  by  some  proteomics  search

engines45 or  developed  in  metaproteomics46,47.  Furthermore,  the  observation  that

transcriptome  information  can  aid  to  decrease  ambiguity  in  protein  identification  is  of

general  relevance in  classical  proteomics and even more in  metaproteomics,  which is

confronted with an additional source of protein ambiguity, namely the presence of multiple

organisms in the same sample.
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METHODS

Proteogenomic datasets description

We analysed two samples for which matched transcriptome and proteome were

publicly available: a healthy lung tissue and a Jurkat cell line. The lung sample comes from

a dataset by Wang et al.33, which includes 29 histologically healthy human tissues and was

meant to describe mRNA and protein expression levels across human body.  The lung

transcriptome dataset was obtained by paired-end RNA sequencing on an Illumina HiSeq

2000/2500 system generating 2×100 bases long reads. Its matched proteome dataset was

obtained  by  quantitative  label-free  LC-MS/MS  using  an  on-line  nanoflow  liquid

chromatography system coupled to a Q Exactive Plus mass spectrometer, operating in

data-dependent  mode.  Sample  preparation  included  peptide  fractionation  via  hSAX

(hydrophylic strong anion) chromatography. Transcriptome and proteome raw data were

downloaded from the EBI SRA (ArrayExpress accession: E-MTAB-2836; run accession:

ERR315346)  and  the  ProteomeExchange  (dataset  identifier:  PXD010154;  sample

identifier: P013163) repositories, respectively.

The  Jurkat  cell  line  dataset  comes  from  a  study  by  Sheynkman  et  al.24.  The  Jurkat

transcriptome dataset was obtained by paired-end RNA sequencing on an Illumina HiSeq

2000 system generating 2×200 bases long reads. The matched proteome dataset was

obtained  by  quantitative  label-free  LC-MS/MS  using  nanoAquity  LC  system

chromatography system coupled to a Velos-Orbitrap mass spectrometer, operating in data-

dependent  mode.  Sample  preparation  included  peptide  fractionation  via  high  pH  LC

separation.  Transcriptome  and  proteome  raw  data  were  downloaded  from the  NCBI's
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Gene  Expression  Omnibus  (GEO)  and  the  PeptideAtlas  repositories  with  accession

GSE45428 and PASS00215, respectively.

Transcriptome analysis

Raw reads were downloaded from public repositories and processed on the Galaxy

platform  available  at  https://usegalaxy.org/48 using  common  workflows  of  read

preprocessing and alignment for transcript identification (Supp. Table 3). First, sequencing

adapters and low quality (Phred score < 20) read ends were trimmed off using TrimGalore

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/)  and reads shorter than

20 bp after trimming were discarded. Then, preprocessed reads were aligned against the

human reference  genome  (assembly  GRCh38)  by  the  splice-aware  STAR aligner 49 in

default mode, using the Ensembl reference gene model for splice junctions. Only reads

mapped  in  a  proper  pair,  passing  platform  quality  checks  were  retained.  Reads

corresponding to optical or PCR duplicates were removed, as well as non-primary and

supplementary alignments. We initially employed two common strategies of transcriptome

assembly and quantification: StringTie50 and Cufflinks51. Both programs were run looking

for reference transcripts only (no novel transcripts were searched) and they yielded two

comparable set of expressed transcripts. Unless otherwise specified, StringTie output was

used for downstream analyses.

Construction of reduced transcriptome-informed protein databases for 

MS/MS search 

For each sample, we built  sample-specific protein databases for MS/MS search,

containing  only  those  protein  sequences  for  which  the  corresponding  transcript  is
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expressed in the sample. Briefly, we first processed sample-matched transcriptomes as

described above and identified the subsets of transcripts expressed at FPKM>1 according

to the StringTie or Cufflinks algorithms of transcript assembly and quantification. Then, we

filtered the human GRCh38 Ensembl protein database, only keeping those proteins whose

corresponding transcript is expressed in the sample. For each sample, we obtained two

sample-specific  reduced  versions  of  the  Ensembl  database,  based  on  expressed

transcripts  from  either  StringTie  or  Cufflinks  transcript  quantification  (Supp.  Fig.  1A).

Unless otherwise specified, all downstream analyses were performed using the reduced

transcriptome-informed  database  built  according  to  expressed  transcripts  identified  by

StringTie, which  is more recent than Cufflinks.

Proteome analysis 

Raw  spectra  were  downloaded  from  public  repositories  and  processed

automatically  using  Mascot  Distiller  software  (version  2.7,  Matrix  Science).  Peptide

spectrum matches were identified using Mascot search (version 2.6) against two different

concatenated target-decoy databases: either the original human GRCh38 Ensembl protein

database (release 98, September 2019) or a reduced version of it containing only proteins

whose transcript is expressed (as described in the “Construction of reduced transcriptome-

based protein  databases for  MS/MS search”).  In  both cases an equivalent  number  of

decoy sequences was appended, as well as a custom database of common contaminant

sequences (n=500) (and the corresponding number of decoys). Decoy sequences were

generated by reversing target sequences with the perl  script  provided with the Mascot

software. The parameters used for Mascot search on the lung and Jurkat samples are

reported in Supp. Table 2.
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The  Proline  software52 was  used  for  post-search  PSM  validation  with  the  following

prefilters:  i. PSMs  with  score  difference  <  0.1  were  considered  of  equal  score  and

assigned to the same rank (pretty rank);  ii. only a single best-scoring PSM is retained per

query (single PSM per rank);  iii. minimum peptide length >= 7 amino acids. Prefiltered

PSMs  were  then  filtered  at  the  score  cutoff  estimated  for  1%  FDR  control.  Unless

otherwise  specified,  the  score  cutoff  for  FDR  control  was  estimated  by  target-decoy

competition53.  No  protein  inference  was  performed  but  for  each  peptide,  all  possible

protein matches were considered. Protein identifications were reported as protein groups,

as  defined  in  the  Proline  software.  Protein  groups  include  both  the  unambiguous

identification  of  a  single  protein  (single-protein  groups)  and  groups  of  undiscernible

proteins identified by the same sets of peptides (multi-protein groups).

Further  analyses  were  performed  using  the  Benjamini-Hochberg procedure  for  FDR

control32,  in  alternative to  TDC (see results  section “Transcriptome information aids to

reduce ambiguity of protein identififcations”). For these analyses, we used PSMs obtained

from  target-only  protein  databases,  appended  with  the  same  database  of  common

contaminant sequences, and searched with the same Mascot parameters as before.

Peptide-protein bipartite graphs and connected components

We represented proteomic identifications using bipartite graphs with two types of

nodes --  i.  identified  peptides; ii.  all  their  possible proteins  of  origin  --  to  more  easily

analyze and visualize groups of ambiguous protein identifications connected by shared

peptides. Indeed, peptide assignments to proteins may be very complex in presence of

shared peptides, but are easily represented using bipartite graphs.  We then employed

graph connected components (CCs), defined as the largest subgraphs in which any two
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vertices are connected to each other by a path and not connected to any other of the

vertices in the supergraph, to quantify and visualize ambiguity of protein identifications. 

To  build  bipartite  graphs  of  proteomic  identifications,  we  first  generated  a  tab-

separated file containing for each identified peptide all proteins it matches to (one per line),

based on the output of PSM validation by the Proline software. We then converted it into

an incidence matrix, with proteins along the columns and peptides along the rows, using

the  crosstab  function  from  the  GNU  datamash  program

(http://www.gnu.org/software/datamash).  By  cross-product  of  the  incidence  matrix,  we

obtained  the  corresponding  adjacency  matrix,  which  describes  protein-to-protein

connections, based on shared peptides. Finally, we calculated CCs, using the connComp()

function of the “graph” R package on the adjacency matrix. There are two types of CCs: i.

those containing one single protein (single-protein CCs), with only specific peptides, which

constitute  unambiguous  protein  identifications;  ii. those  containing  multiple  proteins

sharing peptides (multi-protein CCs), which represent ambiguous protein identifications.

Ambiguous protein identifications can be visually inspected by taking the CC of interest,

extracting from the incidence matrix all specific and shared peptides mapping on the CC

protein members and plotting peptide-to-protein mappings as bipartite graphs, using the

“igraph” R package.

To  decrease  the  computational  cost  in  case  of  very  large  datasets  or  scarce

computational  resources, we also developed an alternative strategy of CCs calculation

(Supp. Fig. 12). First the incidence matrix is reduced by removing all proteins not sharing

peptides and all  peptides unique to these proteins. Then the corresponding adjacency

matrix is generated by cross-product of the incidence matrix and connected components

can  be  more  rapidly  calculated  on  this  reduced  adjacency  matrix.  In  this  case,  we

exclusively  obtain  multi-protein  CCs,  since  protein  identifications  with  only  specific
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peptides, which correspond to single-protein CCs, were first removed from the incidence

matrix. While multi-protein CCs are those of interest when investigating ambiguous protein

identifications from shared peptides, single-protein CCs can still be easily retrieved from

the original incidence matrix if required.

A companion R code is  provided.  It  implements  all  the  above described steps,

including:  i. generating the adjacency matrix;  iii. calculating connected components;  iii.

visualizing CCs as bipartite graphs.

Transcriptome-informed post-hoc filtering

As  an  alternative  to  searching  a  reduced  transcriptome-informed  database,  we

tested a transcriptome-informed post-hoc filtering strategy, which works as follows. First,

peptide  identifications  are  obtained  searching  the  full  reference  protein  database  and

validated using the Proline software, as already described in “Proteome analysis” section

in Methods. An incidence matrix is generated to encode peptide-to-protein mappings (see

“Peptide-protein bipartite graphs and connected components” section). Then, the sample-

matched transcriptome is analysed to identify the set of expressed transcripts. Finally, the

peptide-to-protein incidence matrix is filtered by removal of proteins with no expressed

transcript and no specific peptide. This allows to reduce ambiguity of protein identifications

without  loosing  any  peptide  identification.  The  one-to-one  transcript-to-protein

correspondence is guaranteed by the adoption of Ensembl as reference protein database

in proteomics and as genome annotation in transcriptomics. The filtered incidence matrix

is then converted to an adjacency matrix to calculate CCs, as previously described (see

“Peptide-protein bipartite graphs and connected components” section).
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In this work, we employed the post-hoc filtering strategy on PSMs obtained from

searching the target-only full Ensembl protein database followed by Benjamini-Hochberg

procedure  for  FDR  control,  for  comparability  with  the  approach  searching  target-only

reduced  transcriptome-informed  protein  databases,  followed  by  Benjamini-Hochberg

procedure for FDR control. Indeed, Benjamini-Hochberg procedure was used in alternative

to  TDC  after  searching  reduced  transcriptome-informed  protein  databases  to  obtain

accurate  FDR  control,  as  explained  in  the  result  section  (see  section  “Reduced

transcriptome-informed database search does not increase sensitivity if FDR is accurately

controlled”).  However,  in other contexts,  post-hoc filtering can be equally well  adopted

using  PSMs  from  concatenated  target-decoy  searches  followed  by  TDC-based  FDR

control. An R code implementing this post-hoc filtering strategy is also provided. In addition

to filtering, the code allows visualizing the CCs of interest both before and after post-hoc

filtering.

ABBREVIATIONS

BH Benjamini-Hochberg procedure

CC connected component

DB database

FDR false discovery rate

MS/MS tandem mass spectrometry

PSM peptide-sepctrum match

TDC target-decoy competition
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FIGURE LEGENDS

Figure 1. Comparison of proteomic identifications from the full reference database

or  the  transcriptome-informed  reduced  database  searches.  A.  Graphical

representation of the two MS/MS search strategies we compared. MS/MS searches were

performed using Mascot against either the reference human Ensembl protein database

(full  protein DB) or a subset of the reference database, generated based on transcript

expression (reduced protein DB). PSMs were first validated using Proline software with the

following prefilters: i. PSMs with score difference < 0.1 were considered of equal score and

assigned to the same rank (pretty rank);  ii. only a single best-scoring PSM is retained per

query (single PSM per rank); iii. minimum peptide length >= 7 amino acids ; then they were

filtered at the score cutoff estimated by target-decoy competition for 1% FDR control.  B.

Size and overlap of the reference human Ensembl protein database (full protein DB) and

the sample-specific reduced transcriptome-informed protein databases (reduced protein

DB). C. Number of spectra (on the left) or peptides (on the right) exclusively identified in

the reduced database (“additional in reduced DB” in blue) or exclusively identified in the

full database (“lost in reduced DB” in red) searches. The net difference between additional

and lost identifications in the reduced database is also reported on top of each bar (“net”).

Figure  2.  Additional  identifications  from  the  reduced  database  search  mainly

originate from a lower cutoff  for  1% FDR control  (Jurkat  sample).  A.  Scatter  plot

comparing PSMs obtained from the full or reduced database searches. Each data point

represents a spectrum: its corresponding PSM score in the full  and reduced database

searches is reported on the x and y coordinates, respectively. A color code is used to

32

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2021. ; https://doi.org/10.1101/2021.09.07.459229doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459229
http://creativecommons.org/licenses/by-nc-nd/4.0/


represent the type of match (“target”, “decoy”, or “no match”) for each spectrum in the two

searches. Score cutoffs obtained by TDC at 1% FDR are also shown as red and blue lines

for the full and reduced database searches, respectively. The up-right insert zooms in on

PSMs accepted at 1% FDR only in the reduced database, due to lower score cutoff at 1%

FDR (black arrow pointing on the dash circle). B. Number of reallocated spectra whose

score in the reduced database search is equal to that in the full database or lower. The

score from searching the reduced database is never observed to be higher than the score

from the full database. C. Stripchart reporting the PSM score in the reduced database for

spectra  undergoing  reallocations.  Only  reallocations  to  target  matches  in  the  reduced

database are shown. Reallocations are grouped based on the type of match for the same

spectrum in the full and reduced database searches (<match full DB>_<match reduced

DB>). The number and percentage of all spectra in each group is reported on the left. The

number of reallocations passing the reduced database cutoff for 1% FDR control is shown

in  blue:  they  represent  valid  reallocations  in  the  reduced  database  (“nb  valid

reallocations”). The number of reallocations which would pass the full database cutoff for

1% FDR control is shown in red: they represent additional valid identifications exclusively

generated by reallocation, independent from the lower score cutoff, and are thus referred

to as pure reallocations (“nb valid pure reallocations”). D. Bar plot representing the number

of spectra (on the left)  or the number of spectra identifying additional peptides (on the

right) exclusively identified in the reduced database search due to: i. lower score cutoff at

1% FDR control in the reduced database search compared to the full database;  ii. pure

reallocation. The former are additional identifications from PSMs only passing the cutoff

from the reduced database search and which would not be accepted based on the full

database cutoff. It includes cases of identical PSMs in both searches (no reallocation, in

black) and cases of reallocation from decoy (orange), target (gray) or no match (magenta)
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in  the  full  database  search  to  target  matches  in  the  reduced  database.  Additional

identifications  from  pure  reallocation,  instead,  are  those  exclusively  originated  by

reallocation, which would also pass the full  database cutoff (i.e., independent from the

lower  score  cutoff  effect).  The  Venn  diagram on  top  of  the  additional  peptides  graph

illustrates the corresponding non-redundant number of additional peptides ( i.e., peptides

not identified in the full database search) identified from these spectra.

Figure 3. Lower cutoff  for FDR control  in the reduced database to recover valid

decoys (Jurkat sample). A. Comparison of valid identifications obtained at 1% FDR from

the full database (horizontal red arrow) or reduced database search (vertical blue arrow)

and  simulation  of  the  valid  identifications  which  would  be  obtained  from the  reduced

database search if the score cutoff at 1% FDR were equal to that for the full database

(dashed  red  arrow).  B.  Number  of  valid  targets  and  decoys  from the  full  or  reduced

database obtained at  1% FDR using  the  cutoffs  estimated by  TDC on the  respective

database  search  results  (first  and  last  rows).  The  second  row  instead  simulates  the

number of valid targets and decoys which would be obtained from the reduced database if

the  estimated  cutoff  were  the  same as  for  the  full  database.  Variations  expressed  in

percentages are shown in gray. The associated nominal FDR level is reported (calculated

as (d+1)/t, with  d and t being the number of valid decoys and targets).   C. Match in the

reduced database search for spectra matching valid targets or valid decoys in the full

database. D. Score cutoffs obtained by TDC or by BH procedure for FDR control for the

full or reduced database searches at various FDR levels (0.5%, 1% and 5%). The variation

of score cutoff between full and reduced database searches is reported in percentage.

34

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2021. ; https://doi.org/10.1101/2021.09.07.459229doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459229
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. Transcriptome-informed reduced databases yield less ambiguous protein

identifications. A. Number of valid identifications obtained from the full (red) or reduced

(blue) target-only database searches, followed by BH procedure for 1% FDR control. The

number of valid spectra, peptide and protein identifications are reported. Protein groups,

as defined by the Proline software, represent here protein identifications and they include:

i. proteins  unambiguously  identified  by  only  specific  peptides  (single-protein  protein

groups); ii. groups of proteins identified by the same set of shared peptides (multi-protein

protein groups). B. Percentage of single-protein groups. C. Bipartite graph representation

of peptide-to-protein mappings and usage of graph connected components to visualize

and quantify ambiguity of protein identifications. Unambiguous protein identifications are

represented  by  CCs  with  a  single  protein  vertex  (single-protein  CCs),  while  proteins

sharing peptides are gathered in the same CC (multi-protein CCs) D.  Upper panel: total

number of connected components. Lower panel: percentage of specific peptides and of

single-protein  CCs.  E.  Genes  encoding  proteins  from  the  full  and  reduced  database

searches. Upper panel: total number of genes associated to protein matches from the two

searches. Lower panel: ratio between the number of protein members in each multi-protein

CC and the number of their encoding genes.

Figure 5. Transcriptome-informed post-hoc filtering and reduced database search

strategies  similarly  reduce  protein  identification  ambiguity.  A.  Illustration  of  the

transcriptome-informed post-hoc filtering strategy. First, an MS/MS search was performed

against  the  full  canonical  protein  database.  Then,  proteins  with  no  corresponding

expressed transcript in the sample-matched transcriptome and with no specific peptide

(both conditions required) are removed, as well as peptides only mapping to that set of

proteins.  B. Number of valid spectra and peptide identifications obtained from the full or
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reduced target-only database search (red and blue) or from the post-hoc filtering strategy

(orange), after 1% FDR control by BH procedure. C. Quantification of protein ambiguity for

the full  or  reduced database search (red and blue)  or  the post-hoc filtering strategies

(orange). Upper panel: total number of obtained CCs. Lower panel: percentage of specific

peptides and single-protein CCs.
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