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Summary
Hippocampal neurons encode a cognitive map for spatial navigation1. When they fire at 

specific locations in the environment, they are known as place cells2. In the dorsal 

hippocampus place cells accumulate at current navigational goals, such as learned reward

locations3–6. In the intermediate-to-ventral hippocampus (here collectively referred to as 

ventral hippocampus), neurons fire across larger place fields7–10 and regulate reward-

seeking behavior11–16, but little is known about their involvement in reward-directed 

navigation. Here, we compared the encoding of learned reward locations in the dorsal and 

ventral hippocampus during spatial navigation. We used calcium imaging with a head-

mounted microscope to track the activity of CA1 cells over multiple days during which mice

learned different reward locations. In dorsal CA1 (dCA1), the overall number of active 

place cells increased in anticipation of reward but the recruited cells changed with the 

reward location. In ventral CA1 (vCA1), the activity of the same cells anticipated the 

reward locations. Our results support a model in which the dCA1 cognitive map 

incorporates a changing population of cells to encode reward proximity through increased 

population activity, while the vCA1 provides a reward-predictive code in the activity of a 

specific subpopulation of cells. Both of these location-invariant codes persisted over time, 

and together they provide a dual hippocampal reward-location code, assisting goal-

directed navigation17,18.
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Results
To track the activity of the same dCA1 and vCA1 cells when mice learned different reward 

locations, we imaged over multiple days calcium fluorescence of excitatory cells in Thy1-

GCaMP6f mice19 with a head-mounted, miniature fluorescent microscope20,21 (Figure 1A–C,

S1A). We imaged daily 170 ± 19 dCA1 cells from seven animals and 70 ± 11 vCA1 cells 

from six animals and matched the identity of active cells between days (Figure S1B). The 

matched cells had low displacement (mean distance 1.9 µm, IQR: 1.1–3.1 µm) and highly 

correlated regions of interest (median 0.72, IQR: 0.66–0.77, Figure S4C–D). 

dCA1 and vCA1 encoded comparable spatial information but 
the vCA1 fields were larger

First, to confirm that calcium signals yield similar place cell properties to those previously 

reported using tetrode recordings, we characterized dCA1 and vCA1 place-specific 

neuronal responses during foraging on the same maze as that used later during learning 

of reward locations (Figure 1D, Video S1–2). Because ventral hippocampal lesions 

increase the mobility of mice22, we confirmed that the surgical procedures did not lead to 

differences in mobility between the dCA1 and vCA1 implanted mice. The two groups were 

running in a similar fraction of the trials (linear mixed-effects model: F(1, 11) = 10-4, p = 0.99; 

BF10 = 0.22; Figure S1E) and with similar speed (log-linear mixed-effects model: F (1, 11) = 

0.13, p = 0.73; BF10 = 0.28; Figure S1F). 

We identified 46 ± 3% of the dCA1 and 43 ± 4% of the vCA1 cells as place cells 

(see Methods; inconclusive evidence for difference: BF10 = 0.45, CI = [-15%, 11%]; Figure 

1E; Table S1). In agreement with reports using tetrode recordings in the CA17–10, the vCA1 

place fields were larger than dCA1 place fields (strong evidence: BF10 = 12, CI = [24%, 

204%]; Figure 1F; Table S1). Nearly half of the place cells were active in more than a 

single location, resulting in multiple place fields. The mean count of place fields per place 

cell was similar in dCA1 and vCA1 (inconclusive evidence for difference: BF10 = 0.80, CI = 

[-16%, 4%]; Figure 1G; Table S1). Studies using tetrode recordings reported that vCA1 

place cells contained less spatial information per spike7,8,10. Here, their spatial information 

normalized by the cell‘s mean activity did not differ (moderate evidence for the lack of 

difference: BF10 = 0.25, CI = [-31%, 65%]; Figure 1H; Table S1). However, one-photon 

calcium imaging could be less sensitive to individual spikes23, thus failing to capture the full

spatial information. Stability did not differ between dCA1 and vCA1 place fields (moderate 
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evidence for the lack of difference in correlation between same-day early and late trials: 

BF10 = 0.22, CI = [-0.12, 0.19]; Figure 1I; Table S1), and activity of both the dCA1 and 

vCA1 cell population could be used to decode the animal‘s position with similar accuracy 

(inconclusive evidence for difference in median decoding error: BF10 = 0.8, CI = [-14 cm, 3 

cm]; Figure 1J; see Methods).

dCA1 but not vCA1 place cells accumulated at reward 
locations
We next compared how the activity of dCA1 and vCA1 place cells changed as a result of 

learning3,4,6,10,24–26. Mice learned sets of two fixed reward locations in daily sessions. The 

learning period spanned five days for the first set of locations and two days each for 

subsequent sets, each with one reward translocated, for a total of three or four sets 

(Figure 2A). Mice took progressively shorter paths to find the rewards (Figure 2B, Video 

S3–4). Their memory was tested in unbaited test trials on the day after learning each set 

(Figure 2C). Mice crossed the reward zones (20-cm-radius disks centered on the learned 

reward locations) 64 ± 7% more times in the first 120 s of the unbaited test trials compared

to the same zones during foraging (linear mixed-effects model, effect of learning: F(1, 61) = 

105, p = 10-14; BF10 = 6 * 1010, CI = [45%, 85%]; Figure 2D). Performance of the dCA1 and 

vCA1 implanted mice did not differ (linear mixed-effects model: F(1, 16) = 0.03, p = 0.87; 

moderate evidence for the lack of difference: BF10 = 0.18, CI = [-13%, 11%], Figure 2D).

To investigate how the memory of the reward location and the goal-directed 

behavior affected spatial coding, we compared place fields during unbaited test trials after 

learning with the foraging trials before learning (Figure 2E,G). The dCA1 but not vCA1 

place fields shifted towards the learned reward locations and gained reward fields, defined 

as fields within 20 cm of one of the reward locations (linear mixed-effects model on the 

proportion of cells with reward field, trial-type × recording site interaction: F(1, 13) = 16.2, p = 

0.001). After learning, the proportion of place cells with a reward field in the dCA1 

increased by 65 ± 11% (t(12.1) = 4.8, p = 0.002, BF10 = 42850, CI = [34%, 96%]; Figure 2F);   

whereas it did not change significantly in the vCA1 (inconclusive evidence: t(13.2) = 1.27, p =

0.65, BF10 = 0.37, CI = [-18%, 65%]; Figure 2H). 

We verified that increased sampling of the reward locations did not account for the 

increase in dCA1 place cell density. A downsampling procedure that randomly selected an 

equal count of samples per spatial bin from the foraging and test sessions (see Methods) 

confirmed the differential effect on place fields in dCA1 and vCA1 (F(1, 12)  = 14, p = 0.003; 
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Figure S2). The proportion of place cells with a reward field increased in the dCA1 (t(1, 11) = 

4.9, p = 0.002, BF10 = 4836, CI = [24%, 71%]), whereas no such change was seen in the 

vCA1 (moderate evidence for the lack of effect: t(1, 13) = 0.7, p = 1.0, BF10 = 0.26, CI = [-

19%, 37%]). It is possible that while the center of mass did not move, the vCA1 place 

fields could have enlarged towards the rewards. This was not the case, however, as their 

size decreased from foraging to test trials (log-linear mixed-effects model; F(1, 973) = 35, p = 

10-8; BF10 = 106, CI= [-31%, -17%]).

dCA1 place cells increased their population activity in 
anticipation of reward
To gain insight into how memory of reward location affects the population activity, we 

analyzed dCA1 and vCA1 activity as mice approached the reward. In late learning trials 

(last day of learning a set of reward locations), the mean dCA1 activity increased by 0.09 ±

0.01 s.d. when mice approached the reward (log-linear mixed-effects model comparing 

activity at 4–5 s and 0–1 s before the reward, learning stage × reward proximity 

interaction: F(2, 1525) = 25, p = 10-11; late learning increase: t(1526) = 7.8, p = 10-13, BF10 = 1011, 

CI = [0.08, 0.13] s.d.; Figure 3A,B left, Figure S3A,C). The effect was absent on the first 

day of learning (early learning, t(1525) = 0.6, p = 1.0, BF10 = 0.18, CI = [-0.03, 0.05] s.d.). 

Also, it was not a direct result of changes in running speed: the effect was absent when 

the mice stopped at non-rewarded locations (t(1414) = 1.6, p = 1.0, BF10 = 0.16, CI = [-0.03, 

0.01] s.d.), and it preceded the drop in speed before the reward (Figure S3A). The fraction 

of active place cells (activity exceeding z-score of 0.5) increased by 33 ± 4%, and of other 

cells by 15 ± 3% (linear mixed-effects model, cell-type × reward proximity interaction: F(1, 

1085) = 10.5, p = 0.001; increase in place cells: t(1086) = 8.0, p = 10-14, BF10 = 1010, CI = [21%, 

46%]; increase in other cells: t(1086) = 3.5, p = 0.001, BF10 = 168, CI = [6%, 22%]; Figure 3B 

middle). The increase in the fraction of active place cells was also visible when plotted as 

a function of distance to the reward (Figure S3E Left), and it correlated with day-mean 

performance (linear mixed-effects: F(1, 66) = 10, p = 0.002, BF10 = 7.2, slope: CI = [0.8, 7.2]; 

Figure 3C). In contrast, there was no significant correlation of the fraction of active other 

cells with performance (inconclusive evidence: F(1, 36) = 2.4, p = 0.13; BF10 = 0.63, slope CI 

= [-0.8, 3.1]).

The higher number of active place cells was not caused by reward-associated 

olfactory cues, as it persisted in the unbaited test trials. When the mice were running the 

closest to the learned reward location, the fraction of dCA1 active place cells increased by 
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19 ± 11% while it did not change in other cells (linear mixed-effects model, cell-type × 

reward location proximity interaction: F(1, 840) = 9, p = 0.003; increase in place cells: t(840) = 

3.7, p = 0.001, BF10 = 7.4, CI = [6%, 33%]; strong evidence for the lack of change in other 

cells: t(85) = -0.23, p = 0.82, BF10 = 0.09, CI = [-9%, 5%]; Figure 3B right, Figure S3F).

vCA1 non-place cells decreased their activity in anticipation of 
reward
Changes in vCA1 population activity contrasted with those in dCA1. In late learning trials, 

the mean vCA1 activity decreased by 0.09 ± 0.01 s.d. when mice approached the reward 

(log-linear mixed-effects model, learning stage × reward proximity interaction: F(2, 1188) = 7.3,

p = 10-3; late learning decrease: t(1189) = -4.2, p = 10-4
, BF10 = 39, CI = [-0.15, -0.4] s.d.; 

Figure 3D,E left, Figure S3B–C). This effect was absent in early learning trials (t(1183) = 

0.82, p = 1.0, BF10 = 0.21, CI = [-0.11, 0.5] s.d.) and when mice stopped at non-rewarded 

locations (t(1186) = -1.0, p = 1.0, BF10 = 0.11, CI = [-0.02, 0.05]). The fraction of active place 

cells did not change but the fraction of active other cells decreased by 32 ± 3% (linear 

mixed-effects model cell-type × reward proximity interaction: F(1, 865) = 8.8, p = 0.003; no 

change in place cells: t(865) =  0.3, p = 0.98, BF10 = 0.08, CI = [-15%, 23%]; decrease in 

other cells: t(865) = 4.0, p = 10-4, BF10 = 106 , CI = [-44%, -21%]; Figure 3E middle, Figure 

S3D). The decrease was also visible when plotted as a function of distance to the reward 

(Figure S3E right), and it correlated with day-mean performance (linear mixed-effects: F (1, 

55) = 8, p = 0.005, BF10 = 7.0, slope CI = [-10.5, -1.2]; Figure 3F), whereas there was no 

correlation between the fraction of active vCA1 place cells and performance (linear mixed-

effects: F(1, 49) = 0.9, p = 0.77; BF10 = 0.31, slope CI = [-5.4, 6.6]).

In the unbaited test trials, the fraction of active vCA1 place cells and other cells did 

not change when mice approached learned reward locations (linear mixed-effects model 

cell-type × reward location proximity interaction: F(1, 859) = 0.7 p = 0.41, reward location 

effect: F(1, 859) = 1.9, p = 0.16; strong evidence for the absence of change in  place cells: 

BF10 = 0.08, CI = [-18%, 12%]; moderate evidence for the absence of change in other 

cells: BF10 = 0.24, CI = [-26%, 3%]; Figure 3E right, Figure S3F). Because the decrease in 

the fraction of active other cells correlated with the performance only in the baited trials, it 

is likely that it was related to the reward-associated olfactory stimulus.
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A subpopulation of vCA1 but not dCA1 cells tracked reward 
location
To investigate whether some cells signaled location-independent anticipation of reward5,27, 

we compared their activity between test trials performed after the mice learned different 

reward locations. Of the cells active on the first test trial, 60 ± 6% were active again on the 

second and 50 ± 5% on the third test trial (Figure S4A). We followed the remapping of 

place fields between subsequent test trials (Figure 4A). Of the 89 dCA1 place cells with a 

reward field at the previous reward location, 25% retained their place field, and 31% 

remapped to either of the current reward locations. However, their place fields were not 

closer to the current reward locations than those of cells previously without a reward field 

(log-linear mixed-effects model comparing distances to the closer reward: F(1, 378) = 0.94, p 

= 0.33, moderate evidence for the lack of difference : BF10 = 0.16, CI = [-6 cm, 2 cm]; 

Figure 4B left). 

In contrast, the place fields of the vCA1 cells that had a reward field at the previous 

reward location were subsequently closer to the current reward locations than those of 

cells previously without a reward field (log-linear mixed-effects model comparing distances

from place field to the closer of the two rewards: F(1, 90) = 17, p = 0.0001; strong evidence: 

BF10 = 122, CI = [6 cm, 19 cm]; Figure 4B right). The effect was not due to different place 

field sizes in the two groups of vCA1 place cells (linear mixed-effects model for mean field 

size: F(1, 89) = 1.2, p = 0.29; moderate evidence for the lack of difference BF10 = 0.32, CI = [-

2.5%, 1.0%]).

The subpopulations of vCA1 place cells with zero or multiple reward fields were 

larger than expected by chance, suggesting they form two distinct subpopulations – one 

remapped avoiding and the other remapped tracking reward locations. Of 106 vCA1 place 

cells, 47.1% had zero reward fields, and 4.7% had reward fields at more than half of 

reward locations, exceeding the count in 99% and 96% of 1000 cell identity shuffles, 

respectively (generated by shuffling cell identities assigned to test trial place maps and 

summing cells‘ reward fields; Figure 4E right). In comparison, of 423 dCA1 place cells, 

33.8% had zero reward fields, and 2.1% had reward fields at more than half of reward 

locations – fractions similar to the respective 34.1% and 2.5% of cells expected by chance 

(Figure 4E left).

To investigate whether cells with reward fields during test trials were active in 

anticipation of reward, we analyzed their activity as the mice approached either of the two 
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reward locations during the previous learning day. dCA1 and vCA1 reward-active cells 

from test trials had higher activity than the other cells as the mice approached reward (log-

linear mixed effect models on activity -1–0 s from the reward, dCA1: F(1, 2134) = 20, p = 10-5; 

BF10 = 498, CI = [0.1, 0.2] s.d.; vCA1: F(1, 591) = 19, p = 10-5; BF10 = 224, CI = [0.1, 0.4] s.d.; 

Figure 4D, S4B–C). The difference between the population activity of the reward-active 

cells and the other cells increased as mice approached the reward in vCA1 but not in 

dCA1, suggesting that reward-active cells in vCA1 form a distinct cell population (log-linear

mixed-effects model comparing the difference at 4–5 s and 0–1 s before reward, recording

site × reward proximity interaction: F(1, 456)  = 5.9, p = 0.016; strong evidence for no change 

in dCA1: t(455) = -0.2, p = 0.90, BF10 = 0.10, CI = [-0.1, 0.1] s.d.; strong evidence for change 

in vCA1: t(456) = -3.3, p = 0.006, BF10 = 21.2, CI = [0.1, 0.4] s.d.).

The vCA1 cell activity and dCA1 population-mean activity 
predicted reward location with stable and location-independent
code
Finally, we wanted to assess to what extent the hippocampus encodes proximity to 

remembered reward irrespective of its location. We found that hippocampal activity 

predicted learned reward locations using a code that was shared across different reward 

locations. To demonstrate that, we first created a binary decoder predicting from dCA1 or 

vCA1 cell population activity whether the mice were running inside a reward zone during 

unbaited test trials (Figure 4F). When tested on the same training dataset, decoding from 

dCA1 and vCA1 had accuracies of respectively 31 ± 2% and 30 ± 3% above that of 

random predictions based on reward zone occupancy probability (Figure S4D). To show 

that the activity generalizes to changed reward locations, we evaluated the decoders at 

one new and one of the previous reward locations from another test trial (Figure 4F). 

Decoding from the vCA1 had an accuracy of 10 ± 3% above that of the random 

predictions. This was significantly higher than decoding from the dCA1 which had an 

accuracy of 11 ± 4% below that of the random predictions (F(1, 20) = 12, p = 0.002, BF10 = 

7.1, CI = [3%, 33%]; Figure 4G). The dCA1 decoder gave the same prediction as in the 

training data even though the reward location was moved, which means it decoded the 

mouse location rather than reward proximity.

However, because the number of active dCA1 cells ramped up when mice 

approached the learned reward location (Figure 3A–C), we  tested another decoder based 

on the dCA1 population-mean activity. The decoder used two inputs representing the 
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population activity: the fraction of active place cells and the fraction of active non-place 

cells. Decoding performed with an accuracy of 10 ± 4% above chance (t(13) = 2.7, p = 0.02, 

BF10 = 3, CI = [1%, 16%]; Figure 4I). Thus, the ramping up of dCA1 activity encoded 

reward proximity while allowing place cells to encode spatial location.
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Discussion
We found that both dCA1 and vCA1 activity predicts reward location; however, they do so 

using different codes: (1) The dCA1 anticipated the reward with increased population 

activity the strength of which correlated with learning performance. The activity engaged 

changing place cells, allowing independent reward and spatial coding. (2) In vCA1 the 

same cells were active in anticipation of the reward. No cell was active at all rewards, but 

their population provided a code for learned reward location that persisted across reward 

locations and time.

Comparison of reward location coding in the dCA1 and vCA1

Consistent with previous reports, dCA1 place cells accumulated at the learned reward 

locations3,4,6,25,26 (Figure 2F) and, as mice approached the reward, the number of active 

place cells ramped up (Figure 3B). Ramping dCA1 activity was previously reported during 

reward anticipation in immobile animals28,29. Therefore, it can predict the reward location 

independently of the spatial representations encoded during movement.

Our findings suggest that the dCA1 place cells that are active at reward locations 

are part of a flexible place code network rather than a fixed population dedicated to 

signaling reward locations. We found evidence against the hypothesis that dCA1 cells with

place fields close to reward remapped to track the translocated reward better than the 

other cells (Figure 4D). Thus, rather than a set of neurons specialized for encoding reward 

locations5, a random subset of place cells accumulating at reward locations accounted for 

the total number of observed place fields at reward per dCA1 place cell (Figure 4E). This 

evidence suggests that cells are attracted to the reward stochastically, although with 

probabilities that might differ between them30–32.

In contrast, the distribution of vCA1 place fields was unaffected by the memory of 

reward location. In a study where mice alternated between two marked reward locations, 

the intermediate CA1 place cells accumulated at the reward locations and were sensitive 

to the reward value10. Possibly, the intermediate CA1 place cells accumulate at reward 

during a stereotypic running; or in some form of value association. Heterogeneity among 

vCA1 cells27,33 could be another factor contributing to the difference. In our study, while the 

non-place cells decreased their activity as the mice approached the learned reward 

location, a subpopulation of place cells increased their activity and remapped to track the 
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changing reward locations (Figure 3E, 4D–E), similar to the specialized goal-encoding 

cells that have been suggested to exist in dCA15. 

Function of reward-predictive encoding

Both dCA1 and vCA1 predicted learned reward location using time and location invariant 

codes (Figure 4G–I). Such population-wide representations might be more reliable than 

single-function goal cells. Their signal might direct the animal during navigation by 

increasing their activity in the proximity of a goal17, or by signaling reward expectation18.

The different encoding of reward-anticipation in dCA1 and vCA1 affects how the 

signal can be relayed downstream. vCA1 neurons have divergent outputs33. The reward-

anticipatory subpopulation could target neurons controlling expression of appetitive 

memory11,12,14,34–36, while avoiding those controlling aversion or fear27,35,37,38. In dCA1, the 

ramping-up of population activity in reward-anticipation resembles that seen in the 

dopaminergic system39. Such signal could indiscriminately excite the downstream targets 

of the dCA1, including nucleus accumbens-projecting neurons that enable conditioned 

place preference40.

Further studies will be required to determine how the reward-anticipatory signals in 

dCA1 and vCA1 affect activity downstream of the hippocampus. The hippocampal reward-

predictive signals could be important for learning and choosing appropriate actions during 

reward-guided navigation as they are in reinforcement learning models18,41.
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Methods

Animals 

Thirteen adult male Thy1 - GCaMP6f transgenic mice were used in this study19 (Jax: 

024276). Mice were housed with 2-4 cage-mates in cages with running wheels in a 12:12 

h reverse light cycle. All animal experiments were performed under the Animals (Scientific 

Procedures) Act 1986 Amendment Regulations 2012 following ethical review by the 

University of Cambridge Animal Welfare and Ethical Review Body (AWERB) under 

personal and project licenses held by the authors.

Surgery

Mice underwent two surgeries: the first one to implant a GRIN lens directly above the cells 

of interest, and the other to fix an aluminum baseplate above the GRIN lens for later 

attachment of the miniature microscope. The procedures followed the protocol as 

described in ref 42.

Surgeries were carried out following minimal standard for aseptic surgery. 

Meloxicam (2 mg.kg-1 intraperitoneal) was administered as analgesic 30 min prior to 

surgery initiation. Mice were anesthetized with isoflurane (5% induction, 1-2% 

maintenance, Abbott Ltd, Maidenhead, UK) mixed with oxygen as carrier gas (flow rate 

1.0-2.0 L.min-1) and placed in a stereotaxic frame (David Kopf Instruments, Tujunga, CA, 

USA). The skull was exposed after skin incision and Bregma and Lambda were aligned 

horizontally. A craniotomy was drilled above the implantation site. For the dCA1, the 

craniotomy was 1.5–2 mm in diameter. The cortical tissue and 2 layers of corpus callosum 

fibers above the hippocampal implantation site were aspirated. Saline was applied 

throughout the aspiration to prevent desiccation of the tissue. A GRIN lens (1 mm 

diameter, 4.3 mm length, 0.4 pitch, 0.50 numerical aperture, Grintech) was stereotaxically 

lowered at coordinates -1.75 AP, 1.75 ML, 1.35–1.40 DV (in mm from Bregma) and fixed to

the skull surface with ultraviolet-light curable glue (Loctite 4305) and further fixed with 

dental adhesive (Metabond, Sun Medical) and dental acrylic cement (Simplex Rapid, 

Kemdent). A metal head bar was attached to the cranium using dental acrylic cement for 

head-fixing the animal during the microscope mounting. For the vCA1 implanted mice, a 

0.9 mm diameter hole was drilled, and no tissue was aspirated. The GRIN lens (0.6 mm 

diameter, 4.95 mm length, 1.0 pitch, 0.5 numerical aperture, Grintech) was lowered inside 

a 21 gauge needle using a custom-made stereotaxic guide that allowed a precise 
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placement of the lens. The lens was placed at coordinates -3.16 AP, 3.6–3.8 ML, 3.40–

3.70 DV and the needle guide was retracted allowing for fixation of the lens to the skull 

surface. After the surgery, the mice were monitored daily for 5 days and given oral 

Meloxicam as analgesic.

If the GCaMP6f expression was visible in the implanted mice, 4 weeks later the 

animals were anesthetized for the purpose of attaching a baseplate for the microscope 

above the top of the GRIN lens. The baseplate was cemented into place and the 

miniscope was unlocked and detached from the baseplate.

Histological processing 

Following the behavioral experiments, animals were terminally anesthetized by intra-

peritoneal injection of pentobarbital (533 mg.kg-1) and then transcardially perfused with 

phosphate-buffered saline (PBS) followed by 4% paraformaldehyde (PFA). Brains were 

removed and post-fixed for 24–48 hours, then rinsed and subsequently cryoprotected 

overnight in 30% (w/v) sucrose dissolved in phosphate-buffered saline (PBS). Coronal 

sections of the hippocampus were cut using a microtome (Leica) with 80–100 μm m 

thickness. 

After rinsing in PBS, the sections were mounted in Fluoroshield with DAPI (Sigma). 

Sections were examined with a Leica Microsystems SP8 confocal microscope using the 

10× and 20× magnification objectives.

Cheeseboard maze task

The mice performed a rewarded spatial navigation task on a 120 cm diameter 

cheeseboard maze3 with 177 evenly spaced wells. The rewarded wells were baited with 

~100 μm L of condensed milk mixed 1:1 with water.

For the first three days, the mice foraged for rewards baited in randomly selected 

wells. The mice explored the cheeseboard in three or four trials for a total of 30 minutes 

per day. A different, random set of wells was baited in each trial.

Next, we performed a spatial learning task. The mice had to learn two locations with

baited wells. The baited wells had fixed locations that were at least 40 cm apart chosen 

pseudorandomly for each mouse. Mice started the trial in one of three locations on the 

maze: south, east or west. The maze was rotated and wiped with a disinfectant (Dettol) in-

between the trials to discourage the use of intra-maze cues. Landmarks of black and white

cues were installed on the walls surrounding the maze. The trials were terminated once 
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the mice had consumed both rewards or after 300 s, whichever was sooner. Each learning

day consisted of 8 trials with 2–4-minute-long breaks between the trials.

After the first 5-day-long learning period, memory retention was tested on the next 

day in a 4-to-5-minute-long unbaited trial. The trial was started from a previously unused 

starting position (north). The performance was measured by the number of reward zone 

crossings counted when the mouse crossed a circular zone within 20 cm from either of the

reward locations. The number of crossings was normalised by the total travelled distance.

Following the learning sessions and memory retention test for the first set of 

locations, one of the two reward locations was translocated. The new location was 

pseudorandomly chosen to be at least 40 cm away from the current and previous reward 

locations. The learning of the new sets of locations was performed over two days and 

tested in an unbaited trial the following day as described above.

The trials were recorded with an overhead webcam video camera. The video was 

recorded at 24 Hz frame rate. The mouse body location was tracked with DeepLabCut 

software43, and custom-written software was written to map the mouse coordinates to 

relative location on the maze. The extracted tracks were smoothed by applying locally 

weighted scatterplot smoothing (LOWESS) which used moving average of coordinates in 

15 video frames. Periods of running were identified when the running speed smoothed 

with a moving average 0.5 s window exceeded 4 cm/s.

Calcium imaging

Calcium imaging was acquired using Miniscope – a head-mounted microscope20 (v3

and v4 Miniscope). Microscope emitted blue excitation light ( 470 nm spectral peak) ∼470 nm spectral peak) 

whose power was adjusted per each animal. Fluorescence emissions were passed 

through an emission filter (bandpass filter, 525/50 nm) and collected by CMOS imaging 

sensor.  Before the start of the recording, the mouse was head-fixed on a running wheel to

attach the microscope and adjust its focal plane so it matched the field of view from the 

previous recordings. Afterwards, the mouse with the Miniscope attached was placed in a 

start box for 3–5 minutes before recording sessions started. The calcium imaging was 

acquired at 20 Hz, and synchronously started with WebCam camera recording.

Calcium signal processing

CaImAn software was used to motion-correct any movements between the calcium 

imaging frames, identify the cells and extract their fluorescence signal from the video 
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recordings44. The method for cell and signal detection was based on constrained non-

negative matrix factorization45 (CNMF-E). CaImAn extracted background-subtracted 

calcium fluorescence values (F) and deconvolved the signal. The deconvolved signal can 

be interpreted as a scaled probability of a neuron being active. The calcium imaging 

videos recorded in the same-day trials were motion corrected to a common template frame

and were concatenated. Signal extraction and further processing was performed on the 

resulting long video, allowing the detection of cells and signals present across the trials. To

improve the computational performance, the videos were cropped to a rectangle 

containing the imaged cells and the video width and height was downsampled by a factor 

of 2.

The putative cells identified were automatically filtered using CaImAn. The results 

were visually inspected and the filtering parameters adjusted to exclude non-cell like 

shapes and traces from the filtered components. The criteria used for the filtering included 

a threshold for signal to noise ratio of the trace, the minimum and maximum size of the 

component‘s spatial footprint, threshold for consistency of the spatial footprint at different 

times of the component‘s activation, and a threshold for component‘s resemblence to a 

neuronal soma as evaluated by a convolutional neural network provided with CaImAn 

software.

The identity of cells between the recordings on different days was matched using a 

registration algorithm implemented in CaImAn. The algorithm aligned the image with 

spatial footprints of cells from all days to the image from the reference day and matched 

the cells when their centers of mass were closer than 10 µm.

The deconvolved traces were smoothed in time with a Gaussian kernel (σ = 75 ms).

The trace was time binned by averaging the values in 200 ms bins.

For the comparison of dCA1 and vCA1 activity, calcium event rates are reported. A 

calcium event was detected whenever the cell‘s deconvolved signal crossed 20% of its 

maximum value.

Place cell detection and analysis

To assess how spatial locations modulated activity of a cell, we considered periods of 

running as described above and calculated place maps — mean neural activity per spatial 

bin. The total activity inside 6 x 6 cm bins was summed from the smoothed deconvolved 

signal. The mean neural activity in the spatial bin was then calculated as a ratio of the total

activity to the total occupancy in the bin after both maps were smoothed across the space 
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using a 2D Gaussian kernel with σ = 12 cm. The place map was filtered to include spatial 

bins with total occupancy that exceeded 1 s (5 time bins, thresholded on unsmoothed total 

occupancy).

Spatial information of a cell‘s activity was calculated using the place map values. 

Spatial information was defined as46:

SpatialInformation=∑
i=1

N

p i
λi
λ̄
log2(

λi
λ̄ )(1)

where λ̄ represents the mean value of the neural signal, pi represents probability of the 

occupancy of the i-th bin, and λ i represents its mean neural activity.

Spatial information was compared to the value expected by chance. The chance 

level was calculated by circularly shifting the activity with regards to the actual location. For

each cell, the activity was circularly shifted within the trial by a time offset chosen randomly

(minimum offset 10 s for baited and 20 s for unbaited trials). If the cell‘s spatial information 

exceeded 95% values calculated on 1000 random shifts of its activity, it was defined as a 

place cell. 

A limited number of neuronal responses sampled per spatial bin can lead to an 

upward bias in the estimated spatial information47. To correct for this bias, we subtracted its

estimated value from the estimated spatial information. The bias was estimated as the 

mean spatial information from the time-shifting procedure used for place cells detection. 

This procedure did not require binning the neuronal responses from the calcium imaging 

as required by analytical estimation48, and has been used previously to estimate mutual 

information bias49.

We defined the field size as the fraction of a place map with values exceeding half 

the maximum value. Fields in the place map were identified by finding local maxima 

exceeding half the global maximum. The local maxima were restricted to be at least 25 cm

apart and have at least one more adjacent spatial bin exceeding half the global maximum. 

The center of mass for the field was calculated and used to report the field‘s distance from 

the reward locations. For place cells with multiple place fields, the shortest distance from 

the reward was used. Fields ≤20 cm from the reward location were referred to as reward 

fields. To count the reward locations where a place cell had a reward field, only cells that 

were classified as a place cell in at least half of the test trials were considered.

Bayesian decoders
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Two Bayesian decoders were constructed from the neural activity: the first one decoding 

spatial location of the running mouse, the second one decoding whether the mouse was 

running in the proximity of a learned reward location. 

The decoders used binarized background-subtracted calcium fluorescence values 

F. The binarized trace had value 1 (active cell) when the fluorescence exceeded the 90th 

percentile of the cell‘s values for that day; otherwise, the binarized trace had value 0 

(inactive cell).

The Bayesian decoder assumed activity of the cells was independent given the 

output, and it chose the output to maximize posterior probability given the neural data:

ŝ=argmaxsP ( s) ∏
i=1

ncells

P ( r i∨ s ) (2)

For decoding the mouse location during running, s represents the spatial bin, P(s) 

represents the prior occupation probability in the spatial bin s, and P(r i | s) represents the 

probability of the i-th cell being active in the spatial bin s. 

For decoding whether the mouse was running in the proximity of learned reward location, s

represents if the mouse is within 20 cm from the reward, P(s) represents prior occupation 

probability, and P(ri | s) represents the probability of the i-th cell being active away or in 

proximity of the reward. 

The decoders were trained and evaluated on two non-overlapping datasets:

(1) The decoder for the spatial location was trained, and evaluated using a cross-validation

method as follows: The day‘s session was split into five equal parts. A single part was 

reserved for evaluation and the others for training the decoder. The decoder was trained 

and evaluated, and the process was repeated five times, each time with a different part of 

data reserved for evaluation. The decoder was compared to a baseline random decoder 

which predicted spatial location based on prior occupancy probabilities. The decoder 

errors were reported as a distance between the actual and the predicated spatial bin. 

Because fewer cells were recorded in the vCA1 than in the dCA1, we compared decoders 

trained on equally sized populations by randomly sampling 30 cells from each recorded 

session (72% of the vCA1 recordings had more than 30 cells). The spatial decoding from 

equally sized neuronal populations was repeated 50 times with different cell samples.

(2) The decoder of whether the mouse is at a reward location was trained on data from two

unbaited test trials, which were performed on different days and shared a single learned 

reward location. The training dataset was filtered to times when the mouse was in 
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proximity of the learned reward location (distance ≤15 cm), or the mouse was well-away 

from the reward location (distance ≥40 cm). The decoder was evaluated on data from 

another unbaited test trial. In this trial, one of the learned reward locations was different 

from the ones in the training dataset, and one of the learnt reward locations was missing 

from the current ones. Only data from the proximity of either of these two locations was 

used for evaluation (the reward zone vs the previous reward zone). The evaluation was 

restricted to trials that shared at least 10 cells with the training trials. The decoder 

assumed equal prior P(s) of the zones. The resulting decoder‘s performance was 

compared with a baseline random decoder. The decoder errors were reported as the 

percentage of correct predictions.

Downsampled data comparison

To verify that differences in maze occupancy between foraging and test trials were not the 

reason for the observed accumulation of place cells at goal location, we randomly 

downsampled the data. For each spatial bin in the two sessions, an equally sized subset of

timestamps was selected to match the lower of the two occupancies. The selected 

timestamps were used to construct place maps and to identify place cells. The random 

downsampling procedure was repeated 100 times, and the statistics about the place field 

locations and their distance to reward locations aggregated.

Population activity on reward approach

To analyze the population activity during an approach to reward locations, periods of 

running that exceeded a minimum duration of 3 s were used. In the baited trials, the 

running bouts were aligned by the time of the tracked mouse body stopping within 7 cm 

from the reward. For the bouts stopping at non-rewarded locations, the stops at distance 

>24 cm from the reward were included. In the unbaited trials, the running bouts were 

included if they included a location <18 cm from a learned reward location and covered a 

distance >12 cm. The deconvolved z-scored activity was aligned to the timestamp when 

the mouse was closest to the learned reward location. The mean population z-scored 

activity was calculated for 1 s-long bins and the activity at 4–5 s before the bout finish was 

compared to the activity at 0–1 s.

Statistical analysis

Results are reported using two statistical methods. First, we estimated p-values using null 

hypothesis significance testing. The p-values are low for small effects assessed on large 
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sample sizes; they depend on unseen data, and on the plan for how many animals to test 

experimentally50. Therefore, we also report Bayes Factors51 — a measure of relative 

evidence for two competing hypotheses. It is calculated as a ratio of posterior probabilities:

the probability of the alternative hypothesis given the observed data over the probability of 

the null hypothesis given the observed data. We assumed equal prior probability of the 

alternative and null hypothesis. In addition to providing further statistical support to 

significant p-values, Bayes Factor analysis gives evidence for the absence of differences 

where the effects are non-significant51. The magnitude of evidence was graded as 

inconclusive, moderate or strong following Jeffreys‘ thresholds52.

Mixed-effects models were used for the statistical analysis to allow for unbalanced 

sampling and correlated samples. Both apply to this data, for example due to correlations 

between the samples of cell activity recorded at the same timestamp, or recordings from 

the same mouse on different trials. The effects were assessed with linear and log-linear 

mixed-effects models. The fixed effects were the statistically tested effects such as implant

location (dCA1 vs vCA1) or cell type (place cell vs non-place cell); the random effects were

modeled as mouse-specific and session-specific random variables. The random effects 

were included in the estimation of the linear regression intercept.

For the frequentist approach, the model coefficients were estimated using the 

restricted maximum-likelihood method. The residual errors were checked for linear model 

assumptions: zero mean, no correlation with the predicted values and homoscedasticity. 

To satisfy these assumptions, some models used a log-linear transformation of the 

response variable. The significant effects and their interactions were reported and the 

post-hoc tests were performed on differences in least-square means of the paired groups. 

The tests used Sattherwaite estimation of degrees of freedom and adjusted p values using

Holm-Bonferroni correction.

For the Bayes factor analyses, the mixed-effects models mirrored the frequentist 

models and had the same fixed and random effects. The priors were specified as cauchy 

distribution with sqrt(2)/2 scale for fixed effects and 0.5 scale for random effects. These 

priors follow the expectation that the in-between mice differences are smaller than the 

effects of interest. Bayes factor for the effect of interest was calculated as probability of the

full model over the probability of the model excluding the tested effect.

The effect sizes were reported with 95% credibility intervals (CI; equal-tailed 

interval). The interval can be interpreted as a range within which the effect falls with 95% 
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probability given the evidence from the observed data. Credibility intervals were estimated 

from the samples of the model‘s posterior distribution.

Statistical analysis was performed in R version 3.6.3 (ref 53). Data are reported as 

mean ± SEM unless otherwise stated. The linear mixed-effects models were built in R with 

package ‘lme4’ and p values for the fixed effects were obtained using Sattherwaite 

estimation of degrees of freedom implemented in the ‘lmerTest’ R package. Least-square 

means were calculated and tested with ‘lsmeansLT’ function from the same package. 

Bayesian linear mixed-effects models were created using ‘BayesFactor’ R package and 

‘lmBF’ function.

Data are reported as mean ± SEM unless otherwise stated.

Data and code availability 

Code used for the analysis and to generate the figures can be accessed on the authors’ 

GitHub sites: (1) for processing calcium signal using CaImAn: 

https://github.com/przemyslawj/caiman_scripts, (2) for package calculation spatial metrics 

and implementing a Bayesian decoder: https://github.com/przemyslawj/datatrace, (3) for 

scripts generating the figures in the manuscript: https://github.com/przemyslawj/hpc-

reward-coding. Data will be shared on request.
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Figures
Figure 1. Similar spatial information encoded in dCA1 and vCA1 during 
foraging.

(A) Location of the GRIN lens implanted above dCA1 (top) and vCA1 (bottom) pyramidal 
cells expressing GCaMP6f. Scale bar 1 mm.

(B) Spatial footprints of cells detected in a single day from a dCA1- (top) and vCA1-
implanted (bottom) mouse.

(C) Example background-subtracted fluorescence traces from the five cells shown in blue 
in (B).

(D) Examples of dCA1 (top) and vCA1 place cells (bottom) recorded during single-day 
foraging sessions. Locations of calcium events marked with a red dot are overlaid over 
mouse movement paths (top); place maps are shown below. Gray pixels represent 
unsampled locations.

(E) Percentage of the dCA1 and vCA1 cells identified as place cells during foraging.

(F) Field sizes of the dCA1 and vCA1 place cells.

(G) Field counts per place cell.

(H) Spatial information of place cells normalized by the cell’s mean deconvolved activity.

(I) Within-day stability of place fields measured as a correlation between place maps from 
the same-day early and late trials.

(J) Accuracy of decoding location from neural activity in the dCA1 and vCA1. Shows 
distribution of decoding errors (left) and the median error (right) calculated using cross-
validation on single-day activity. Decoders were trained and evaluated on 30 sampled cells
to match the cell counts in dCA1 and vCA1; the sampling was repeated 50 times.

Distribution of the values shown on violin plots of the width proportional to density; 
horizontal bars mark the means; individual data points overlayed on top of the violin plots. 
Error bars mark ± SEM.

To avoid double counting of the cells sampled on different days, data in (F) and (H–I) is for 
place cells recorded in the last-day foraging sessions. The effect of the recording location 
was tested with linear mixed-effects models in (E), (G) and (J) and with log-linear mixed-
effects models in (F) and (H). **p < 0.01.

Table S1. Statistics of dCA1 and vCA1 place cells.

Summary of statistics presented in Figure 1. 
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Video S1. Calcium imaging from dCA1 during foraging.

Behavior (top left) together with the recorded calcium imaging (top right) and the extracted 

calcium fluorescence traces for 50 cells (bottom).

Video S2. Calcium imaging from vCA1 during foraging.

As in Video S1, but for vCA1.

Figure S1. Matching cell identity between days, and modulation of the 
activity by running, related to Figure 1.

(A) Reconstructed location of the recorded cells under the GRIN relay lens implanted in 
the vCA1 of 6 imaged mice. Horizontal bars mark the bottom of the relay lens.

(B) Matching of cell identity (cell registration) based on the cells’ spatial footprints in 
calcium recordings from two different days. An example with cells found on one day is 
shown in green, on the other day in red, and their overlap in yellow. 

(C) Spatial correlation of the matched cells as a function of the distance between their 
centroids.

(D) Histogram for the number of recording days that a cell was active and matched. Over 
the 14–16 days, there were a total of 2,965 dCA1 and 1,125 vCA1 unique cells.

(E) Percentage of cells from the first test trial active again in the later test trials.

(F) Percentage of foraging trials that the dCA1 and vCA1 implanted mice spent running.

(G) Running speed of the dCA1 and vCA1 implanted mice.

The effect of the recording location was tested with linear mixed-effects models in (F) and 
log-linear mixed-effects models (G).

Figure 2. dCA1 but not vCA1 place cells accumulated at learned reward 
locations.

(A) Timeline for the learning and test sessions showing when and how the reward 
locations (triangles) changed.

(B) Progress in learning measured by distance run per trial. Vertical bars mark the mean 
distance ± SEM, dashed lines mark the time of reward translocations.

(C) Example running path of a mouse during unbaited test trial. Gray discs show the extent
of the reward zone used for the analysis.

(D) Number of reward zone crossings during the first 120 s of the test trials compared to 
the crossings of the zones centered on the same locations during foraging. Linear mixed-
effects model was used to test for the effects of learning, implant location, and their 
interaction.
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(E) Examples of dCA1 place fields for the same cell during foraging and the test after 
Learning 1. Triangles mark reward locations.

(F) Learning-induced changes of distance from dCA1 place fields to the closer of two 
reward locations. Left: distribution of distances shown for place fields from foraging and 
place fields from unbaited test after learning. Right: the proportion of dCA1 place cells with
a place field within 20 cm of the learned reward location (reward field). Data compared 
with post-hoc test on least-square means of linear mixed-effects model for the effects of 
learning, implant location, and their interaction.

(G) As in (E) but for vCA1 cells.

(H) As in (F) but for vCA1 cells.

**p < 0.01, ***p < 0.001.

Figure S2. Place cell accumulation at learned reward locations was not 
caused by increased occupancy at the reward locations.

(A) Ss in Figure 2F left and 2H left for place cells calculated on randomly downsampled 
data to match occupancies between foraging and test trials.

(B) Change in the percentage of place cells with a reward field between the foraging and 
test trials calculated on randomly downsampled data. Data compared with post-hoc test on
least-square means of linear mixed-effects model.

**p < 0.01.

Video S3. Calcium imaging from dCA1 during learning.

Behavior (top left) together with the recorded calcium imaging (top right) and the extracted 

calcium fluorescence traces for 50 cells (bottom).

Video S4. Calcium imaging from vCA1 during learning.

As in Video S3, but for vCA1.

Figure 3. dCA1 population activity ramping up and vCA1 activity 
ramping down as mice approach the reward.

(A) Example single-trial path of a mouse (left) together with dCA1 cell activity (right). Each 
row of the raster shows the z-scored activity of a single cell. The cells are sorted by the 
time of their maximum activity. Periods when the mouse ran are marked above the raster 
with gray. Blue-colored gradient immediately above the raster indicates the color-matched 
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spatial location on the left; the population activity z-score is shown below. Dashed vertical 
lines show the time when the mouse stopped at rewards or a non-rewarded location.

(B) dCA1 population activity as mice approached the reward. After learning, the activity 
increased before the reward (left), and the percentage of active place cells and non-place 
cells increased during the approach to reward location (middle). The percentage of active 
place cells increased during the approach in unbaited test trials (right). The traces have a 
width of ± SEM; gray rectangles mark 1-s-long periods used for the statistical comparison. 
Data compared with post-hoc tests on least-square means of linear mixed-effects models 
for the effects of learning stage, reward proximity, and their interaction.

(C) Change in the number of active cells from the 4–5 s before the reward approach to 0–1
s shown as a function of day-mean learning trial performance. The black line shows the 
slope of modeled regression together with its credibility interval in gray. Linear mixed-
effects model used to test for the effects of trial performance.

(D) As in (A) but for vCA1.

(E) As in (B) but for vCA1.

(F) As in (C) but for vCA1.

 **p < 0.01, ***p < 0.001.

Figure S3. Changes in dCA1 and CA1 population activity, data for 
individual approaches to the reward in Figure 3.

(A) Examples with dCA1 population activity during individual approaches towards the 
reward locations (middle). Day-mean ± SEM dCA1 activity and running speed shown 
below the examples.

(B) As in (A) but for vCA1. 

(C) Population activity during 4–5 s and 0–1 s time window before the mouse arrives at the
reward. Data points show values for individual running bouts and correspond to the mean 
± SEM in 3B and 3E left panels; lines connect day-mean values calculated per animal.

(D) As in (C) but for percent of active place cells and the other cells in late learning trials. 
Data points correspond to the mean ± SEM in 3B and 3E middle panels.

(E) Mean population activity during running bouts towards the reward as a function of 
reward distance. The trace has a width of ± SEM.

(F) As in (C) but for averaged percent of active place cells and the other cells in unbaited 
test trials. Data points correspond to the mean ± SEM in 3B and 3E right panels.

Data compared with post-hoc tests on least-square means of linear mixed-effects models 
for the effects of learning stage, reward proximity and their interaction. **p < 0.01, ***p < 
0.001.
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Figure 4. A subpopulation of vCA1 but not dCA1 cells tracked the 
learned reward location and was active in anticipation of the reward.

(A) Example place maps for dCA1 and vCA1 cells with a reward field during Test 1. After 
the reward location was moved, the reward-tracking cells (top) remapped to one of the 
current reward locations in Test 2 and 3. The non-tracking cells (bottom) did not remap to 
one of the current reward locations.

(B) Distance from the place field center of mass to the closer of the learned reward 
locations. Compares the distances between two groups of place cells: (1) cells with a 
reward field at the previous reward location in the preceeding test trial; (2) cells without a a
reward field in the preceeding test trial. Data compared with log-linear mixed-effects 
model.

(C) Cumulative distribution function for the frequency with which cells had a reward field 
during the test trials. For example, a cell with fields at two reward locations during the 
three trials had a frequency of 33%.

(D) Activity in single-day learning trials of example dCA1 cell and vCA1 cell that had a 
reward field in the next-day test trial. Each row shows activity in a single trial centered on 
the time of the mouse arriving at reward. Gray marks periods from before the recording 
start or after its finish.

(E) Population activity difference between reward-active and other cells. Cells were 
classified as reward-active and other depending on their activity in the next-day test trial. 
Linear mixed-effects model for the effects of reward proximity, recording site and their 
interaction; effect of reward proximity in dCA1 and vCA1 tested with least-square means. 
Gray rectangles mark 1-s-long periods used for the statistical comparison.

(F) Training and test data used for binary decoders predicting whether the mouse was 
running inside reward zone. The decoders were trained on the activity from test trials on 
two different days. They were tested on activity from another day when the decoder had to 
flip its prediction for the two tested locations: the previously rewarded location was 
unrewarded and vice versa. 

(G) Accuracy of decoding from cells‘ activity shown as the difference from random 
predictions based on reward zone occupancy probability. Decoders evaluated on data 
from test trials with different reward locations than in training. For the exact location, the 
decoder had to give the opposite answer to the training data. Accuracy below the random 
level means the decoder predicted location rather than predicting reward zone.

(H) Shows decoding accuracy from the mean population activity. Accuracy shown as the 
difference from random prediction.

Individual points in (I) and (J) show decoding accuracy per test trial.
*p < 0.05, **p < 0.01, ***p < 0.001.
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Figure S4. Anticipatory activity of reward-active cells, and decoding 
reward location, related to Figure 4.

(A) Percentage of cells from the first test trial active again in the later test trials. The ribbon
has a width of ± SEM.

(B) Averaged activity of two cell groups: cells with reward fields in a next-day test trial and 
the cells without a reward field shown around the time of mice arriving at the reward. The 
trace has a width of ± SEM.

(C) Day-mean activity of cells 0–1 s before the mice approached the rewards during late 
learning trials. Compares the activity of the cells with and without reward fields during next-
day test trials. Distribution of the values is shown on violin plots of the width proportional to
density; horizontal bars mark the means. Data compared with post-hoc tests on least-
square means of linear mixed-effects models for the effects of cell group (reward active or 
not), recording location, and their interaction.

(D) Accuracy of decoding from cells’ activity shown as the difference from random 
predictions based on reward zone occupancy probability. Decoders evaluated on the 
training dataset.

***p < 0.001.
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Figure 1. Similar spatial information encoded in dCA1 and vCA1 during foraging.

(A) Location of the GRIN lens implanted above dCA1 (top) and vCA1 (bottom) pyramidal cells expressing GCaMP6f. Scale bar 1 mm.

(B) Spatial footprints of cells detected in a single day from a dCA1- (top) and vCA1-implanted (bottom) mouse.

(C) Example background-subtracted fluorescence traces from the five cells shown in blue in (B).

(D) Examples of dCA1 (top) and vCA1 place cells (bottom) recorded during single-day foraging sessions. Locations of calcium events marked 

with a red dot are overlaid over mouse movement paths (top); place maps are shown below. Gray pixels represent unsampled locations.

(E) Percentage of the dCA1 and vCA1 cells identified as place cells during foraging.

(F) Field sizes of the dCA1 and vCA1 place cells.

(G) Field counts per place cell.

(H) Spatial information of place cells normalized by the cell’s mean deconvolved activity.

(I) Within-day stability of place fields measured as a correlation between place maps from the same-day early and late trials.

(J) Accuracy of decoding location from neural activity in the dCA1 and vCA1. Shows distribution of decoding errors (left) and the median error 

(right) calculated using cross-validation on single-day activity. Decoders were trained and evaluated on 30 sampled cells to match the cell 

counts in dCA1 and vCA1; the sampling was repeated 50 times.

Distribution of the values shown on violin plots of the width proportional to density; horizontal bars mark the means; individual data points 

overlayed on top of the violin plots. Error bars mark ± SEM.

To avoid double counting of the cells sampled on different days, data in (F) and (H–I) is for place cells recorded in the last-day foraging 

sessions. The effect of the recording location was tested with linear mixed-effects models in (E), (G) and (J) and with log-linear mixed-effects 

models in (F) and (H). **p < 0.01..
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Figure S1. Matching cell identity between days, and modulation of the activity by running, related to Figure 1.

(A) Reconstructed location of the recorded cells under the GRIN relay lens implanted in the vCA1 of 6 imaged mice. Horizontal bars 

mark the bottom of the relay lens.

(B) Matching of cell identity (cell registration) based on the cells’ spatial footprints in calcium recordings from two different days. An 

example with cells found on one day is shown in green, on the other day in red, and their overlap in yellow. 

(C) Spatial correlation of the matched cells as a function of the distance between their centroids.

(D) Histogram for the number of recording days that a cell was active and matched. Over the 14–16 days, there were a total of 2,965 

dCA1 and 1,125 vCA1 unique cells.

(E) Percentage of cells from the first test trial active again in the later test trials.

(F) Percentage of foraging trials that the dCA1 and vCA1 implanted mice spent running.

(G) Running speed of the dCA1 and vCA1 implanted mice.

The effect of the recording location was tested with linear mixed-effects models in (F) and log-linear mixed-effects models (G).
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mean ± SEM statistic and p-value CI n Fig

0.45 1E

linear mixed-effects
0.8 [-16%, 4%] 1G

1H

0.22 1I

Table S1

[-15%, 11%]

11.5 1F[24%, 204%]

0.25 [-31%, 65%]

[-0.12, 0.19]

Tested 
variable

BF10

Place cells 
fraction

39 sessions from 
13 mice 

Mean count of 
fields

39 sessions from 
13 miceF(1,11) = 1.9, p = 0.19 

Normalized 
spatial

information

720 cells from
13 mice 

Place field 
stability

Place field size
(% of maze)

720 cells from
13 mice

log-linear mixed-effects
F(1,10) = 12.5, p = 0.006

720 cells from
13 mice

dCA1: 3.4 ± 0.1% 
vCA1: 8.2 ± 0.4%

log-linear mixed-effects 
F(1,10) = 0.15, p = 0.71

dCA1: 0.07 ± 2×10-3 
vCA1: 0.07 ± 6×10-3 

dCA1: 0.45 ± 0.01 
vCA1: 0.46 ± 0.02

linear mixed-effects
F(1,10) = 0.22, p = 0.65

dCA1: 46 ± 3%
vCA1: 43 ± 4%

dCA1: 1.7 ± 0.04
vCA1: 1.6 ± 0.06

linear mixed-effects
F(1,11) = 0.12, p = 0.74

Table S1. Statistics of dCA1 and vCA1 place cells.

Summary of statistics presented in Figure 1. 
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Figure 2. dCA1 but not vCA1 place cells accumulated at learned reward locations.

(A) Timeline for the learning and test sessions showing when and how the reward locations (triangles) changed.

(B) Progress in learning measured by distance run per trial. Vertical bars mark the mean distance ± SEM, dashed lines mark the time of 

reward translocations.

(C) Example running path of a mouse during unbaited test trial. Gray discs show the extent of the reward zone used for the analysis.

(D) Number of reward zone crossings during the first 120 s of the test trials compared to the crossings of the zones centered on the 

same locations during foraging. Linear mixed-effects model was used to test for the effects of learning, implant location, and their 

interaction.

(E) Examples of dCA1 place fields for the same cell during foraging and the test after Learning 1. Triangles mark reward locations.

(F) Learning-induced changes of distance from dCA1 place fields to the closer of two reward locations. Left: distribution of distances 

shown for place fields from foraging and place fields from unbaited test after learning. Right: the proportion of dCA1 place cells with a 

place field within 20 cm of the learned reward location (reward field). Data compared with post-hoc test on least-square means of linear 

mixed-effects model for the effects of learning, implant location, and their interaction.

(G) As in (E) but for vCA1 cells.

(H) As in (F) but for vCA1 cells.

**p < 0.01, ***p < 0.001.
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Figure S2. Place cell accumulation at learned reward locations was not caused by increased occupancy at the reward locations.

(A) As in Figure 2F left and 2H left for place cells calculated on randomly downsampled data to match occupancies between foraging 

and test trials.

(B) Change in the percentage of place cells with a reward field between the foraging and test trials calculated on randomly 

downsampled data. Data compared with post-hoc test on least-square means of linear mixed-effects model.

**p < 0.01.
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Figure 3. dCA1 population activity ramping up and vCA1 activity ramping down as mice approach the reward.

(A) Example single-trial path of a mouse (left) together with dCA1 cell activity (right). Each row of the raster shows the z-scored activity of 

a single cell. The cells are sorted by the time of their maximum activity. Periods when the mouse ran are marked above the raster with 

gray. Blue-colored gradient immediately above the raster indicates the color-matched spatial location on the left; the population activity z-

score is shown below. Dashed vertical lines show the time when the mouse stopped at rewards or a non-rewarded location.

(B) dCA1 population activity as mice approached the reward. After learning, the activity increased before the reward (left), and the 

percentage of active place cells and non-place cells increased during the approach to reward location (middle). The percentage of active 

place cells increased during the approach in unbaited test trials (right). The traces have a width of ± SEM; gray rectangles mark 1-s-long 

periods used for the statistical comparison. Data compared with post-hoc tests on least-square means of linear mixed-effects models for 

the effects of learning stage, reward proximity, and their interaction.

(C) Change in the number of active cells from the 4–5 s before the reward approach to 0–1 s shown as a function of day-mean learning 

trial performance. The black line shows the slope of modeled regression together with its credibility interval in gray. Linear mixed-effects 

model used to test for the effects of trial performance.

(D) As in (A) but for vCA1.

(E) As in (B) but for vCA1.

(F) As in (C) but for vCA1.

 **p < 0.01, ***p < 0.001.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2021. ; https://doi.org/10.1101/2021.09.07.459245doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459245
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

Time from reward (s)

5

10

15

-4 -2 0 2 -4 -2 0 2 -4 -2 0 2

day 1 day 3 day 5

0.0

1.0

 
 Population 

z-score

5

10A
pp

ro
ac

h

-4 -2 0 2 -4 -2 0 2 -4 -2 0 2

day 1 day 3 day 5
B

running
speed

A
pp

ro
ac

h

10 cm/s

0.5 sd

10 cm/s

0.4 sd

mean
trace

mean
trace

Figure S3

4–5 0–1

0.0

0.2

0.4

0.6

0.8

4–5 0–1 4–5 0–1 4–5 0–1 4–5 0–1 4–5 0–1

P
op

ul
at

io
n 

z-
sc

or
e

early
learning

late
learning

dCA1

dCA1

-0.25

0.00

0.25

0.50

non-reward
stopping

vCA1

vCA1

n.s.n.s. n.s.n.s. *** ***

C

Non-baited test trialsFE

0

10

20

30

A
ct

iv
e 

ce
lls

 %

0

10

20

30

40

dCA1
place
cells

non-place
cells

vCA1
place
cells

non-place
cells

n.s. n.s. n.s.***

4–5 0–1 4–5 0–1 4–5 0–1 4–5 0–1

non-reward
stopping

early
learning

late
learning

5
10
15
20
25

5
10
15
20
25

C
el

ls
 a

ct
iv

e 
(%

)

Place cells
Other cells

Late learning trials

Distance from reward (cm)

dCA1 vCA1

Late learning trials

0

10

20

30

40

A
ct

iv
e 

ce
lls

 %

dCA1
place
cells

non-place
cells

0

20

40

vCA1
place
cells

non-place
cells

D

n.s.***** ***

4–5 0–1 4–5 0–1 4–5 0–1 4–5 0–1

40 30 20 10 0 40 30 20 10 0

Time from reward (s)

Time from reward (s)

Time from reward location (s)

Time before stopping (s)

Figure S3. Changes in dCA1 and CA1 population activity, data for individual approaches to the reward in Figure 3.

(A) Examples with dCA1 population activity during individual approaches towards the reward locations (middle). Day-mean ± SEM dCA1 activity and 

running speed shown below the examples.

(B) As in (A) but for vCA1. 

(C) Population activity during 4–5 s and 0–1 s time window before the mouse arrives at the reward. Data points show values for individual running 

bouts and correspond to the mean ± SEM in 3B and 3E left panels; lines connect day-mean values calculated per animal.

(D) As in (C) but for percent of active place cells and the other cells in late learning trials. Data points correspond to the mean ± SEM in 3B and 3E 

middle panels.

(E) Mean population activity during running bouts towards the reward as a function of reward distance. The trace has a width of ± SEM.

(F) As in (C) but for averaged percent of active place cells and the other cells in unbaited test trials. Data points correspond to the mean ± SEM in 3B 

and 3E right panels.

running
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Figure 4. A subpopulation of the vCA1 but not dCA1 cells tracked the learned reward location and was active in anticipation of the 

reward.

(A) Example place maps for dCA1 and vCA1 cells with a reward field during Test 1. After the reward location was moved, the reward-

tracking cells (top) remapped to one of the current reward locations in Test 2 and 3. The non-tracking cells (bottom) did not remap to 

one of the current reward locations.

(B) Distance from the place field center of mass to the closer of the learned reward locations. Compares the distances between two 

groups of place cells: (1) cells with a reward field at the previous reward location in the preceeding test trial; (2) cells without a a 

reward field in the preceeding test trial. Data compared with log-linear mixed-effects model.

(C) Cumulative distribution function for the frequency with which cells had a reward field during the test trials. For example, a cell with 

fields at two reward locations during the three trials had a frequency of 33%.

(D) Activity in single-day learning trials of example dCA1 cell and vCA1 cell that had a reward field in the next-day test trial. Each row 

shows activity in a single trial centered on the time of the mouse arriving at reward. Gray marks periods from before the recording start 

or after its finish.

(E) Population activity difference between reward-active and other cells. Cells were classified as reward-active and other depending on 

their activity in the next-day test trial. Linear mixed-effects model for the effects of reward proximity, recording site and their interaction; 

effect of reward proximity in dCA1 and vCA1 tested with least-square means. Gray rectangles mark 1-s-long periods used for the 

statistical comparison.

(F) Training and test data used for binary decoders predicting whether the mouse was running inside reward zone. The decoders were 

trained on the activity from test trials on two different days. They were tested on activity from another day when the decoder had to flip 

its prediction for the two tested locations: the previously rewarded location was unrewarded and vice versa. 

(G) Accuracy of decoding from cells‘ activity shown as the difference from random predictions based on reward zone occupancy 

probability. Decoders evaluated on data from test trials with different reward locations than in training. For the exact location, the 

decoder had to give the opposite answer to the training data. Accuracy below the random level means the decoder predicted location 

rather than predicting reward zone.

(H) Shows decoding accuracy from the mean population activity. Accuracy shown as the difference from random prediction.

Individual points in (I) and (J) show decoding accuracy per test trial.

*p < 0.05, **p < 0.01, ***p < 0.001.
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Figure S4. Anticipatory activity of reward-active cells, and decoding reward location, related to Figure 4.(A) Percentage of cells from the 

first test trial active again in the later test trials. The ribbon has a width of ± SEM.(B) Averaged activity of two cell groups: cells with 

reward fields in a next-day test trial and the cells without a reward field shown around the time of mice arriving at the reward. The trace 

has a width of ± SEM.(C) Day-mean activity of cells 0–1 s before the mice approached the rewards during late learning trials. Compares 

the activity of the cells with and without reward fields during next-day test trials. Distribution of the values is shown on violin plots of the 

width proportional to density; horizontal bars mark the means. Data compared with post-hoc tests on least-square means of linear mixed-

effects models for the effects of cell group (reward active or not), recording location, and their interaction.(D) Accuracy of decoding from 

cells’ activity shown as the difference from random predictions based on reward zone occupancy probability. Decoders evaluated on the 

training dataset.***p < 0.001.
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