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Abstract 22 
Cancer is a disease of gene dysregulation, where cells acquire somatic and epigenetic alterations 23 
that drive aberrant cellular signaling. These alterations adversely impact transcriptional programs 24 
and cause profound changes in gene expression. Interpreting somatic alterations within context-25 
specific transcriptional programs will facilitate personalized therapeutic decisions but is a 26 
monumental task. Toward this goal, we develop a partially interpretable neural network model 27 
called Chromatin-informed Inference of Transcriptional Regulators Using Self-attention 28 
mechanism (CITRUS). CITRUS models the impact of somatic alterations on transcription factors 29 
and downstream transcriptional programs. Our approach employs a self-attention mechanism to 30 
model the contextual impact of somatic alterations. Furthermore, CITRUS uses a layer of hidden 31 
nodes to explicitly represent the state of transcription factors (TFs) to learn the relationships 32 
between TFs and their target genes based on TF binding motifs in the open chromatin regions of 33 
tumor samples. We apply CITRUS to genomic, transcriptomic, and epigenomic data from 17 34 
cancer types profiled by The Cancer Genome Atlas. CITRUS predicts patient-specific TF activities 35 
and reveals transcriptional program variations between and within tumor types. We show that 36 
CITRUS yields biological insights into delineating TFs associated with somatic alterations in 37 
individual tumors. Thus, CITRUS is a promising tool for precision oncology.   38 
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Introduction 39 
The complex interplay between signaling inputs and transcriptional responses dictates important 40 
cellular functions. Dysregulation of this interplay leads to development and progression of 41 
disease, which has been most clearly delineated in the context of certain cancers. Cancer cells 42 
acquire somatic alterations that modify signaling and transcriptional programs, leading to 43 
profound changes in gene expression. We still lack a complete understanding of how somatic 44 
alterations affect cellular function in cancer. To begin to understand these effects, it is important 45 
to study somatic alterations within the specific transcriptional context in which they are found. 46 
Context- and patient-specific studies can be achieved with machine learning techniques, which 47 
are expected to facilitate personalized therapeutic decisions. 48 
 49 
In the last decade, a monumental effort has been made to molecularly profile tumors by consortia, 50 
including The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium 51 
(1,2). The multimodal datasets generated by these efforts include gene expression and somatic 52 
alterations, such as recurrent mutations and copy number variations (CNVs). The combination of 53 
genomic and transcriptomic information enables the integration of transcriptional states with 54 
upstream signaling pathways. Several methods have been developed to connect somatic 55 
alterations to a prior network or to gene expression (3-9). More recently, the Genomic Data 56 
Analysis Network generated assay for transposase-accessible chromatin with high-throughput 57 
sequencing (ATAC-seq) data for a subset of TCGA samples (~500 patients) (10). Although 58 
chromatin profiling helps uncover context-dependent and/or non-linear effects of transcription 59 
factors (TFs) on gene expression, it has not yet been incorporated into methods that connect 60 
somatic alterations to transcriptional programs across cancers. Incorporating DNA sequence 61 
information at promoter, intronic, and intergenic enhancers from ATAC-seq tumor profiles using 62 
TF motif analysis will improve the modeling of transcriptional regulation and delineate the impact 63 
of somatic alterations on transcriptional programs.  64 
 65 
Deep learning is a powerful tool for capturing non-linear feature interactions that can explain the 66 
underlying biological phenomena. For example, attention mechanism is a deep learning method 67 
that has been widely used in computer vision and natural language processing. In contrast to 68 
traditional deep learning methods, the self-attention mechanism considers the contextual 69 
relationship of the input features and assigns attention weights to each input (11). In general, 70 
attention mechanisms improve the performance of deep learning models and increase the 71 
interpretability of the models. More recently, attention mechanisms have been applied to cancer 72 
genomics for cancer driver gene detection (12), drug response prediction (13), and base editing 73 
outcome prediction (14). For example, the genomic impact transformer (GIT) model utilizes a self-74 
attention mechanism to encode the effects of somatic alterations in cancer and uses multi-layer 75 
perceptrons to predict differentially expressed genes (12). The attention mechanism enables GIT 76 
to select driver mutations that are likely to lead to downstream phenotypes. However, the GIT 77 
model lacks interpretability in the sense that it does not model intermediate TFs during modeling 78 
signaling from somatic alterations to gene expression programs.  79 
 80 
Here, we present Chromatin-informed Inference of Transcriptional Regulators Using Self-81 
attention mechanism (CITRUS), a partially interpretable neural network model with encoder-82 
decoder architecture. CITRUS links somatic alterations to transcriptional programs by modeling 83 
the statistical relationships between mutations, CNVs, gene expression, and TF-target gene 84 
information derived from ATAC-seq (Fig. 1). We show that CITRUS yields important biological 85 
insights into dysregulated TFs in individual tumors. Using a systematic in silico knock out 86 
approach, we identified key TFs associated with major somatic alterations. We believe CITRUS 87 
will assist researchers in providing actionable hypotheses for follow-up experiments and 88 
developing personalized and targeted therapeutics in a pan-cancer setting. 89 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.09.07.459263doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459263


3 
 

Material & Methods  90 
Data pre-processing 91 
We downloaded the batch normalized RNA-Seq expression levels quantified by RNA-Seq by 92 
Expectation Maximization (RSEM) from the Genomic Data Commons (GDC) portal 93 
(https://gdc.cancer.gov/about-data/publications/pancanatlas. We log2-transformed RSEM values 94 
and identified the 2,500 most variable genes across samples within a cancer type. Then, we took 95 
the union of the identified genes across cancer types. The final gene set included 5541 genes. 96 
 97 
We obtained processed gene-level somatic alterations for each cancer patient from Cai et al. (4). 98 
Genes with non-synonymous mutations, small insert/deletion, or somatic copy number alteration 99 
(deletion or amplification) were given a value of 1, and otherwise were given a value of 0. We 100 
removed genes that were not present in at least 4% of samples for each cancer type. 101 
 102 
We downloaded the ATAC-seq pan-cancer dataset from the GDC portal 103 
(https://gdc.cancer.gov/about-data/publications/ATACseq-AWG) (10). Using the MEME (15) 104 
curated Cis-BP (16) TF-binding motif reference, we scanned the pan-cancer ATAC-seq peak atlas 105 
with FIMO (17) to find peaks likely to contain each motif (P < 10−5). The final set contained 320 106 
motifs. We associated each peak with its nearest gene in the human genome using the 107 
ChIPpeakAnno package (18). ATAC-seq peaks located in the body of the transcription unit, 108 
100 kb upstream of the transcription start site (TSS), and 100 kb downstream of the 3’ end were 109 
assigned to the associated gene. TF-binding site identification was used to convert the assigned 110 
ATAC peaks for each gene to a feature vector of binding signals by assigning the maximum score 111 
of each motif across all peaks to a gene. Then, we created a matrix C Î {0,1}kxl that defines a 112 
candidate set of associations between TFs and target genes. Ci,j = 1 when there is a connection 113 
from TF 𝑗 to the gene/RNA 𝑖 (red lines connecting the TF layer and target gene expression (Exp) 114 
layer in Fig. 1).  115 
 116 
CITRUS model 117 
CITRUS is a framework for modeling impact of somatic alterations on transcriptional programs. 118 
Fig. 1 shows the model architecture with an overall encoder and decoder structure. Somatic gene 119 
alteration inputs with more than 20K dimensions were encoded into a compressed representation 120 
as tumor embedding and then decode to a large dimension data of gene expression. This allows 121 
the model to capture key features of the high dimension inputs and reduce the data noise as well. 122 
 123 
We designed a self-attention mechanism which assigned importance weights to input features 124 
(somatic alterations) through the model training. Formally, given a specific tumor 𝑡, with the 125 
cancer type 𝑠, we have a set of somatic alterations in the tumor {𝑔!}!"#$  where m is number of 126 
mutant genes. The encoder module first maps each gene 𝑔  (it is 𝑔!  here, but we omit the 127 
subscript for notation simplicity) into its corresponding gene vector 𝒆%. Then, the encoder utilizes 128 
the multi-head self-attention mechanism to calculate the weighted sum of both the gene 129 
embeddings and the cancer type embedding:  130 
 131 

𝒆& = 𝒆' + α#𝒆# + α(𝒆( + α)𝒆) +⋯+ α$𝒆$ 132 
 133 
The self-attention mechanism takes the gene embeddings of all mutated/altered genes as an 134 
input and outputs the attention weights {α!}!"#$  through a sub-neural network. The attention 135 
mechanism captures the context of co-existing somatic alterations and their complex interactions, 136 
which is lost in simpler models. Interested readers can find the mathematical details of self-137 
attention mechanisms in the cited reference (12). 138 
 139 
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The decoder first infers the TF activities from the encoded tumor embedding 𝒆&: 140 
𝒆* = 𝑡𝑎𝑛ℎ0𝑊*𝒆& + 𝒃*3. 141 

 142 
We used tanh activation instead of ReLU operation, which is more widely used in deep learning, 143 
because it has similar performance to that of ReLU in our model and generates more biologically 144 
meaningful results (e.g., distribution of TFs 𝒆*). Finally, CITRUS predicts cancer type-specific 145 
mRNA expression from TF activities: 146 
 147 

𝑦6 = 𝑊𝑒* + 𝑏+ 148 
where 𝑊 corresponds to the sparse TF-target gene matrix constrained by the prior 𝐶 ∈ {0,1},×.. 149 
More specifically, to integrate priors into our model, 𝑊 shares the same shape with prior 𝐶, and 150 
𝑊/,1 is allowed to be nonzero only when 𝐶/,1 = 1, and Wi,j is constrained to be non-negative value. 151 
We use mean square loss function as: 𝑀𝑆𝐸(𝑦, 𝑦6). 152 
 153 
One might use other common approaches to integrate prior 𝐂 into the 𝐖, i.e., by applying a 154 
Gaussian prior to 𝑊, which is equivalent to adding an additional penalty to the loss function 155 
∑ (𝑊)/,1(/,1:3!,#"4 . However, this “soft” constraint tends to generate less stable TF layers across 156 
different runs of training compared to the “hard” constraints shown in our model.  157 
 158 
To prevent overfitting and to increase robustness to noise, we introduced additional dropout 159 
operations with a dropout rate of 0.2 after the input layer, activated tumor embedding layer, and 160 
activated TF layer. 161 
 162 
Training and evaluation 163 
We implemented CITRUS through the PyTorch package (https://pytorch.org/), and training was 164 
performed using the Adam optimizer with default parameters except for the learning rate15 and 165 
weight decay. We set the learning rate to 1 × 105) and the weight decay to 1 × 1056.  We used 166 
early stopping with patience of 30 steps to stop training. 167 
 168 
For statistical evaluation, we computed the mean Spearman correlation (ρ) between predicted 169 
and measured gene expression profiles for each tumor type. We split datasets into training (40%), 170 
validation (20%), and testing (20%) sets. For CITRUS, we utilized the training and validation sets 171 
to tune hyperparameters, such as the learning rate and training steps, and then evaluated these 172 
parameters on the testing set. For affinity regression (see below), we separated datasets by 173 
cancer type and conducted 5-fold cross-validation to tune hyperparameters in the training and 174 
validation sets. Then, we applied the trained model with selected hyperparameters to the testing 175 
set for performance evaluation. To increase the stability of inferred TF activity analysis, we 176 
assembled multiple CITRUS models trained with different random initialization state and 177 
integrated the TF layer based on the average of 10 trials. 178 
 179 
Parameter selection: CITRUS includes more than 10 hyperparameters that are described in the 180 
following paragraphs. These hyperparameters were tuned for optimal performance in the 181 
validation set. Ideally, hyperparameter optimization is performed using a grid search of all 182 
parameters. However, this is not practical due to the tremendous computational cost. For 183 
example, three options for each parameter leads to 310 possible combinations for just 10 184 
parameters. In addition, we guide the performance metric by k-fold cross-validation, and the total 185 
experiments necessary would be 5×310 (k=5). Therefore, our hyperparameter tuning strategy 186 
combined automatic and manual tuning. First, we created empirical settings for each parameter 187 
and randomly selected a set of parameters from 100 combinations. We utilized the best-188 
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performing settings to narrow down the preliminary decisions and correlation among parameters. 189 
Then, we tuned parameters independently or in sub-groups manually or by grid search. 190 
 191 
Model robustness: The learning rate is perhaps the most important hyperparameter in neural 192 
network training. We first tested the learning rate in a range of settings [10-5, 10-4, 10-3, 10-2 ...], 193 
starting with the lowest setting and progressing to larger values until validation loss started to 194 
diverge. We found that if the learning rate was too small, overfitting occurred and picked up input 195 
noise. Additionally, overfitting reduced the number of driver genes that were covered in 196 
downstream attention weight analyses. If the learning rate was too big, however, the model could 197 
not converge to an optima and yielded higher validation loss. Ultimately, we selected learning 198 
rates of 10-3 and 10-4 and applied a weight penalty (weight decay) to find an optimal combination 199 
of settings. We set the weight decay range from 10-6 to 10-4 and performed a grid search. The 200 
optimal settings for learning rate and weight decay were determined to be 10-3 and 10-5, 201 
respectively. Although large batch sizes can accelerate learning rates and training, our 202 
experiments indicated that a learning rate of 10-3 was the largest value that maintained validation 203 
accuracy when tested on increasing batch sizes (16, 64, 100, and 300, which is the maximum 204 
value that could run in GPU). We found that larger batch sizes tended to have slightly higher 205 
gene-wise correlation at the cost of longer training time. To balance execution time, we selected 206 
a batch size of 100. The early stopping patience setting is also related to the learning rate and 207 
batch size. Specifically, higher learning rates and larger batch sizes require smaller patience to 208 
stop training. Higher patience settings may otherwise cause overfitting. Using our selected 209 
learning rate and batch size settings, a patience of 30 was generally sufficient to maintain training 210 
without stopping too early (underfitting) due to fluctuation and without halting too far from the 211 
optima (overfitting). We validated a patience setting of 30 by comparing it with a case of overfitting. 212 
We selected the lowest loss point in the overfit training and measured how far it was from the 213 
model with early stopping. During early stages of training, the model showed an initial drop in 214 
validation performance followed by a rise. To avoid this inconsistency, we did not apply early 215 
stopping for the first 180 test steps. To test the attention mechanism, we created a mesh grid for 216 
two attention sizes (256, 128) and four attention head settings (32, 16, 8, 4). We then performed 217 
an exhaustive grid search within these settings. Based on prediction performance, we selected 218 
256 and eight as the optimal values for attention size and attention head, respectively. 219 
 220 
Finally, we fine-tuned our model by adjusting the dropout rate. Because we used weight decay 221 
for regularization, dropout is considered a secondary regularization for our model. In addition to 222 
hidden layer dropout, we also applied dropout to our input to reduce input noise and network 223 
redundancy and to generate a more stable hidden TF layer. We tested a sequence of five dropout 224 
rates (0.1, 0.2, 0.3, 0.4, 0.5). All dropout rate settings yielded performances above 0.9 for average 225 
sample correlation in the testing set. We determined the dropout rate optimal value (0.2) primarily 226 
based on driver gene coverage in self-attention analyses. 227 
 228 
As we used an early stopping mechanism, we set the maximum iteration parameter to 1000. This 229 
setting ensures that the training process stops either once the patience setting is satisfied or once 230 
the maximum iterations is reached. Code testing and quick runs were performed with a maximum 231 
iteration of one. 232 
 233 
We tested two activation functions: 'ReLU' and 'tanh'. Although both activation functions 234 
performed similarly, 'tanh' generated more biologically meaningful results and was selected. We 235 
also tested l2, minimax, and standard normalization (scale) to normalize gene expression and 236 
found that scale normalization generated the best prediction accuracy for our model settings. 237 
 238 
 239 
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Training the affinity regression (AR) models 240 
AR is an algorithm for efficiently solving a regularized bilinear regression problem (19,20) and 241 
was defined in our model as follows. For a data set of M tumor samples profiled using RNA-seq 242 
with N genes, we let YÎRNxM be the log10 gene expression profiles of tumor samples. Each 243 
column of Y corresponds to an RNA-seq experiment for a cancer type. We define the TF attributes 244 
of each gene in a matrix D ÎRNxQ, where each row represents a gene, and each column 245 
represents a TF vector. The TF vector indicates whether there is a binding site for the TF on each 246 
gene based on ATAC-seq data. We define the somatic alteration attributes of tumor samples as 247 
a matrix P Î RMxS where each row represents a tumor sample, and each column represents the 248 
somatic alteration status for the tumor sample. We set up a bilinear regression problem to learn 249 
the weight matrix W Î RQxS on paired TF and somatic alteration features: 250 

 251 
DWPT ~ Y 252 

We can transform the system to an equivalent system of equations by reformulating the matrix 253 
products as Kronecker products: 254 

DWPT » Y Û (PÄD) vec(W) » vec(Y) 255 

where ⊗ is a Kronecker product, and vec is a vectorizing operator that stacks a matrix and 256 
produces a vector. The result of this system is a standard (if large-scale) regression problem. Full 257 
details and a derivation of the reduced optimization problem are provided elsewhere (20).  258 

In silico knockout analysis 259 
We implemented an in silico knock out approach that removes a specific somatic mutation (or 260 
copy number variation) g from all the tumor samples that carry it. The new somatic alteration 261 
profiles and the CITRUS-inferred TF activities generate a “wild type” corpus that does not contain 262 
the alteration g. In contrast, the original samples containing the alteration g serve as the 263 
"mutant/altered" group. We then conducted t-tests between the mutant and wild type groups to 264 
evaluate the impact of mutation g. This approach captures the contextual effects of mutations 265 
through the non-linear attention module of CITRUS and provides a controlled experimental 266 
environment that holds all mutations constant except for mutation g. For complex genotypes, the 267 
model explains TF activity across tumors. We then corrected for multiple hypotheses across 268 
models, treating inferred TF activities as separate groups of tests. 269 
 270 
Statistical analysis 271 
Statistical tests were performed with the R statistical environment (4.0.2) and Python. For 272 
population comparisons of inferred TF activities, we performed Student’s t-tests and determined 273 
the direction of shifts by comparing the mean of the two populations. We corrected raw P-values 274 
for multiple hypothesis testing based on two methods: Bonferroni and FDR (BH method).  275 
 276 
Association score between TF activity subtypes and frequent somatic alterations. For each 277 
somatic mutation or copy number variation, we calculated the P-value of its frequency in a cancer 278 
subtype compared to other subtypes using Fisher’s exact test. The P-value was further adjusted 279 
through FDR across subtypes. To identify the relative frequency of a somatic alteration in a 280 
subtype, we defined an association score, which is the product of the relative frequency direction 281 
and -log10FDR.  282 
 283 
 284 
 285 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.09.07.459263doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459263


7 
 

Results  286 
Pan-cancer modeling of transcriptional programs 287 
To systematically interpret somatic alterations within context-specific transcriptional programs 288 
and to identify disrupted TFs that drive tumor-specific gene expression patterns across multiple 289 
cancer types, we developed CITRUS (Fig. 1). CITRUS traces biological signaling from somatic 290 
alterations to signaling pathways, to TFs, and finally to target gene expression (mRNA levels). To 291 
enable this tracing, CITRUS employs an encoder-decoder architecture (Fig. 1). The encoder 292 
module compresses input somatic alterations into a latent vector variable called a tumor 293 
embedding. The decoder predicts TF activities from the tumor embedding and then predicts target 294 
gene expression. We used sparse TF-target gene priors based on tumor ATAC-seq data. Briefly, 295 
we started with an atlas of chromatin accessible genomic locations derived from the tumor types 296 
to be analyzed using ATAC-seq profiling data (see Methods). We then represented every gene 297 
by its feature vector of TF-binding scores, where motif information was summarized across all 298 
promoter, intronic, and intergenic chromatin accessible sites assigned to the gene (see Methods).  299 
 300 
We applied this approach to 17 tumors from TCGA and identified key TFs associated with somatic 301 
alterations. Our dataset included samples from 17 different tumor types for which mRNA, somatic 302 
mutation, copy number variation, and ATAC-seq data were available: bladder urothelial 303 
carcinoma (BLCA, n=371), breast cancer (BRCA, n=719), cervical squamous cell carcinoma and 304 
endocervical adenocarcinoma (CESC, n=267), colorectal adenocarcinoma (COAD, n=271), 305 
esophageal carcinoma (ESCA, n=170), glioblastoma multiforme (GBM, n=143), head and neck 306 
squamous carcinoma (HNSC, n=475), kidney renal cell-clear carcinoma (KIRC, n=357), kidney 307 
renal papillary cell carcinoma (KIRP, n=272), liver hepatocellular carcinoma (LIHC, n=336), lung 308 
adenocarcinoma (LUAD, n=459), lung squamous cell carcinoma (LUSC, n=430), 309 
pheochromocytoma and paraganglioma (PCPG, n=109), prostate cancer (PRAD, n=449), 310 
stomach adenocarcinoma (STAD, n=373), thyroid carcinoma (THCA, n=216), and uterine corpus 311 
endometrial carcinoma (UCEC, n=361).  312 
 313 
For statistical evaluation, we computed the mean Spearman correlation between predicted and 314 
measured gene expression profiles on the testing set (see Methods). CITRUS achieved 315 
significantly better performance than a regularized bilinear regression algorithm called affinity 316 
regression (AR) (20-22) that was trained independently for each cancer type. and explain gene 317 
expression across tumors in terms of somatic alteration status and presence of TF binding sites 318 
based on a pan-cancer ATAC-seq atlas (Fig. 2A).  319 
 320 
To identify somatic alterations that influenced gene expression programs, we compared the 321 
relationship of overall attention weights (inferred by CITRUS) and the frequencies of somatic 322 
alterations (used as the control group) across all cancer types and within each cancer type (Fig. 323 
2B and Supplementary Fig. 1). In general, attention weights were positively correlated with the 324 
frequency of somatic alteration. For example, the top altered genes TP53 and PIK3CA had high 325 
attention weights. However, our self-attention mechanism assigned low attention weights to many 326 
frequently altered genes, indicating that these genes may be cancer passengers. Indeed, we 327 
found genes with high attention weights were enriched for known cancer drivers using the 328 
IntOGen9 database. We first grouped all the genes into two parts with the threshold of 2 329 
(log(attention+1) ³ 2 as the more attended group, and log(attention+1) < 2 as the less attended 330 
group). Using Fisher’s exact test, we verified that known cancer driver genes were enriched in 331 
the highly attended group (P = 4.48 ´ 10-41) in the pan-cancer analysis. We also observed a few 332 
infrequently altered genes with high attention weights. For example, the H3K4 methyltransferase 333 
KMT2C had a high attention weight in BRCA but was infrequently altered. Indeed, KMT2C is a 334 
key regulator of ERα activity and anti-estrogen response in breast cancer (23,24). 335 
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We used CITRUS to infer patient-specific TF activities across tumor types. Clustering tumors by 336 
these inferred TF activities largely recovered the distinction between major tumor types (Fig. 2C). 337 
Interestingly, samples with squamous morphology components (BLCA, CESC, ESCA, HNSC, 338 
and LUSC) clustered together. Tumors with tissue or organ similarities or proximity were also 339 
clustered together. These included neuroendocrine and glioma tumors (GBM and PCPG), clear 340 
cell and papillary renal carcinomas (KIRC and KIRP), a gastrointestinal group (COAD, and 341 
STAD), and breast and endometrial cancer (BRCA and UCEC). We also observed similar 342 
clustering of the tumor embeddings (Supplementary Fig. 2). 343 
 344 
Next, we assessed TF-tumor type associations by t-test and compared inferred TF activities 345 
between samples in each tumor type versus those in all other tumor types. We corrected for false 346 
discovery rate (FDR) across TFs and identified significant shared and cancer-specific TFs, which 347 
are listed in Supplementary Data 1. The average TF activity and significance of the four most 348 
significant TFs in each cancer are shown in Fig. 3. Our results highlight both known and novel 349 
cancer-specific TF regulators. For example, FUBP1, which regulates c-Myc gene transcription, 350 
had significantly higher inferred activity in many cancer types, including LIHC, HNSC, BLCA, 351 
ESCA, CESC, LUSC, PRAD, BRCA, and UCEC. Consistent with previous reports, IRF3 activity 352 
was significantly higher in GBM(25). KLF8 had decreased activity in GBM, LIHC, and KIRC, which 353 
is consistent with its role in suppressing cell apoptosis during tumor progression (26). Additionally, 354 
YY1, which regulates various developmental processes (27), had increased activity in CESC and 355 
COAD.  356 
 357 
Cancer subtype identification from CITRUS-inferred TF activity and somatic alterations  358 
Next, we asked whether CITRUS could identify cancer subtypes based on the TF activity 359 
associated with somatic alterations. We conducted k-means clustering of inferred TF activities for 360 
each cancer type to define subtypes, and then we conducted hierarchical clustering of both the 361 
cancer subtypes and TF activities. Fig. 4 shows the clustering of subtypes by CITRUS-inferred 362 
mean TF activities and corresponding somatic alteration associations (see Methods). We 363 
observed major differences in mean TF activities across cancer types and minor but significant 364 
differences within cancer types. Variations within a cancer type may arise from distinct mutation 365 
or CNV profiles of subgroups. For example, clustering by TF activities revealed subclasses of 366 
CESC enriched with KRAS; KIRC enriched with VHL, BAP1, PBRM1, and TP53; LIHC enriched 367 
with CTNNB1, BAP1, and TP53; THCA enriched with NRAS, HRAS, and BRAF; and PCPG 368 
enriched with HRAS.  369 
  370 
As our goal was to decipher cancer-specific downstream effects of targeted therapies and to 371 
discover secondary targets for combination drug strategies, we developed a systematic statistical 372 
approach for modeling the impact of somatic alterations on TF activity. We implemented an in 373 
silico knock out approach that removes a specific somatic mutation (or CNV) g from all carrier 374 
tumor samples in each TCGA cancer study and then predicts altered TF activity (see Methods). 375 
Using this approach, we were able to identify TFs whose inferred activity was significantly 376 
dysregulated by somatic alterations in known cancer driver genes. Fig. 5A demonstrates TF 377 
activities that were associated with somatic alterations in UCEC. CITRUS identified mutations in 378 
PIK3CA, PTEN, KRAS, TP53, and CTNNB1 that were significantly associated with various TF 379 
activities across UCEC tumors (∼66% of tumors have PTEN inactivating mutations, ∼50% have 380 
PIK3CA activating mutations, ~38% have TP53 mutations, ~26% have CTNNB1 mutations, and 381 
~20% have KRAS mutations). UCEC samples with PTEN mutations were mutually exclusive with 382 
TP53, CTNNB1, and KRAS mutations and showed distinct TF activity patterns. Mutations in 383 
PTEN that inactivate its phosphatase activity result in increased PI3K signaling. Consistent with 384 
this effect, TFs associated with PTEN mutations were involved in cell cycle and differentiation, 385 
including E2F5, TP63, ELF3, DBP, ZKSCAN3, LHX2, HOXB6, SOX9, DBP, MYLB1, and GLIS1. 386 
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TFs associated with CTNNB1 mutant status were involved in WNT and TGF-beta signaling 387 
including TCF7, TCF7L2, TCF7L1, FOXH1, EMX1, and MYBL1.  388 
 389 
Similarly, CITRUS identified TF activities that were associated with somatic alterations in BRCA 390 
(Fig. 5B). Mutations in PIK3CA, PTEN, MAP2K4, GATA3, TP53, and CDH1 were significantly 391 
associated with various TF activities. In BRCA, ∼36% of tumors have PIK3CA activating 392 
mutations, ~35% have TP53 mutations, ~15% have GATA3 mutations, ~15% have CDH1 393 
mutations, ∼10% have PTEN mutations, and ~7% have MAP2K4 mutations. Activating mutations 394 
in PIK3CA often occur in one of three hotspot locations (E545K, E542K, and H1047R) and 395 
promote constitutive signaling through the pathway. TFs associated with PIK3CA mutations were 396 
involved in WNT signaling, epithelial–mesenchymal transition, and cancer stem cell transition, 397 
including ELF3, TFEC, STAT4, STAT5B, NFATC1, GLIS1, CDC5L, and AR. BRCA samples with 398 
PIK3CA and TP53 mutations were mutually exclusive, and our in silico knock out analysis 399 
associated distinct TFs with these mutations. TP53 mutant tumors were associated with increased 400 
activity of TFs that have roles in tumor growth, such as ETS2 and FOSB, growth modulation, such 401 
as THAP1, CREB3L1, and CEBPZ, and development, such as MEF2C/D, MEOX1, and MSX1. 402 
We performed similar analyses for other cancer types (Supplementary Fig. 3). 403 
 404 
Although the TFs affected by some somatic alterations differed between cancer types, mutation 405 
of TP53 was associated with similar TFs across cancer types (Supplementary Fig. 4). TP53 is 406 
one of the most frequently inactivated tumor suppressor genes that suffers from missense 407 
mutations in human cancer. These missense mutations result in the expression of a mutant form 408 
of p53 protein. Mutant p53 protein can disable other tumor suppressors (e.g., p63 and p73) or 409 
enable oncogenes, such as ETS2 (28). Indeed, the inferred TF activity of ETS2 was higher in 410 
mutant versus WT TP53 tumors across cancers (Fig. 5C); however, these differences were not 411 
as significant at the gene expression level (Supplementary Fig. 5).  412 
 413 
Discussion  414 
Analysis of the regulatory network in tumor datasets is challenging due to the complexity of the 415 
cancer genome (e.g., aneuploidy, CNVs, structural variation, and mutations). CITRUS provides a 416 
systematic framework for integrating regulatory genomics with tumor expression and somatic 417 
alterations to better understand how expression programs are affected by somatic alterations in 418 
cancers and to infer patient-specific TF activities. Our method uses a deep learning framework 419 
called a self-attention mechanism to capture the complex contextual interactions between somatic 420 
alterations. For a more accurate representation of TF-target gene relationships, we leveraged 421 
ATAC-seq tumor data from TCGA patients. CITRUS is designed to capture the flow of information 422 
from altered genes (e.g., signaling proteins) to TFs to target genes, and our in silico knock out 423 
analysis predicts the causal impacts of somatic alterations. Joint modeling across different tumor 424 
types also revealed patient subgroups associated with somatic alterations. In cases where a 425 
somatic alteration is associated with the activity of a targetable TF or their upstream/downstream 426 
component, it may be possible to identify combination therapies using CITRUS.   427 
 428 
One limitation of the TF binding motif approach utilized by CITRUS is that TFs of the same family 429 
often share a similar motif and thus are difficult to disambiguate. Therefore, TF motifs may 430 
encompass the activities of multiple TFs. Moreover, co-binding TF binding patterns (e.g., AP-431 
1−IRF complexes) can be biologically meaningful for gene expression and are not currently 432 
represented in our model. Future models will work to represent these composite elements as 433 
features. Another limitation is that we do not represent directionality in the TF-target gene priors 434 
(i.e., whether a gene is activated or repressed by a TF). Prior knowledge of whether the TF is 435 
acting as an activator or as a repressor would add meaningful interpretation to inferred TF 436 
activities. These limitations may confound the interpretation of the activity of TFs with context-437 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.09.07.459263doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459263


10 
 

specific activator and repressor roles. Further, regulatory network analysis of tumor datasets is 438 
also complicated by the presence of stromal/immune cells within the tumor and the heterogeneity 439 
of the cancer cells themselves. However, our framework can be extended to model single-cell 440 
RNA-seq or deconvoluted RNA-seq via computational methods. 441 
 442 
Despite these limitations, modeling the impact of somatic alterations on transcriptional programs 443 
may ultimately enable the development of individualized therapies, aid in understanding 444 
mechanisms of drug resistance, and allow the identification of biomarkers of response. We 445 
anticipate that computational modeling of transcriptional regulation across different tumor types 446 
will emerge as an important tool in precision oncology, aiding in the eventual goal of selecting the 447 
best therapeutic option for individual patients. 448 
 449 
Data availability 450 
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Stddata). Only the samples ‘whitelisted’ by TCGA for the Pan-Cancer Analysis Working Group 455 
were used in the study. For our analysis, we only used samples with parallel RNA-seq, somatic 456 
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Figures 565 
 566 

 567 
Fig. 1: Overview of CITRUS: An attention-based model with TF-target gene priors. The input 568 
to our framework includes somatic alteration and copy number variation, assay for transposase-569 
accessible chromatin with high-throughput sequencing (ATAC-seq), tumor expression datasets 570 
and TF recognition motifs. CITRUS takes somatic alteration and copy number variation data as 571 
input and encodes them as a tumor embedding using a self-attention mechanism. Additional 572 
cancer type information is used to stratify the confounding factor of tissue type. The middle layer 573 
further transforms the tumor embeddings into a TF layer, which represents the inferred activities 574 
of 320 TFs. Finally, gene expression levels are predicted from the TF activities through a TF-575 
target gene priors constrained sparse layer based on ATAC-seq. 576 
 577 
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 578 
Fig. 2: CITRUS models the impact of somatic alterations on gene expression programs. (A) 579 
Performance of CITRUS in each cancer type compared to the regularized bilinear regression 580 
method Affinity regression (Affreg). Boxplots show the mean Spearman correlations between 581 
predicted and actual gene expression based on CITRUS (orange) and Affreg (light blue) in TCGA 582 
datasets for each cancer type. Both CITRUS and Affreg were tuned on the same training and 583 
validation sets and evaluated on the same testing set. (B) Somatic alteration frequencies and 584 
CITRUS-inferred attention weights of genes. Cumulative pan-cancer results are shown on the 585 
left, and individual BRCA and HNSC results are shown in the middle and on the right, respectively. 586 
See Supplementary Fig. 1 for complete results from each cancer type. (C) Principal component 587 
analysis (PCA) of TF activity colored by cancer type. Standard TCGA tumor symbols are used to 588 
indicate tumor type. 589 
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 590 
Fig. 3: CITRUS identifies regulatory features of tumor types. Dot plot shows the mean inferred 591 
TF activity differences between samples in a given tumor type versus those in all other tumor 592 
types by t-test. We corrected for FDR across TFs for each pairwise comparison and identified 593 
significant TFs. The complete results are included in Supplementary Data 1. The dot size 594 
indicates -log10(FDR). For clarity, the union of the top four significant TFs in each cancer type is 595 
shown.  596 
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 597 
Fig. 4: Landscape of somatic alterations and inferred TF activities. (A) Heatmap shows tumor 598 
subtypes clustered by mean inferred TF activity. The color scale is proportional to TF activity. (B–599 
C) Heatmaps of association scores for (B) mutations and (C) copy number variations. Association 600 
scores were calculated by multiplying the -log10 FDR by the direction derived from Fisher’s exact 601 
test. 602 
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 603 
Fig. 5: Somatic alterations are associated with dysregulated TF activity. Impact of somatic 604 
alterations on individual TFs based on in silico knock out experiments in (A) UCEC and (B) BRCA 605 
datasets from TCGA. The dot plot shows mean TF activity, and dot size indicates –log10(FDR). 606 
See Supplementary Fig. 3 for the full list of cancer types. (C) Inferred ETS2 activity in TCGA 607 
studies and impact of TP53 mutations. Tumors with mutant TP53 have significantly higher ETS2 608 
activity than WT tumors (P < 0.01, t-test). This association is not significant using mRNA levels of 609 
ETS2 (Supplementary Fig. 5). Box edges represent the upper and lower quantile with median 610 
value shown as a bold line in the middle of the box. Whiskers extend to 1.5 times the quantile. 611 
 612 
 613 

(P < 1e-7) (P < 1e-105) (P < 1e-2) (P < 1e-5) (P < 1e-3) (P < 1e-4) (P < 1e-17)

(P < 1e-10) (P < 1e-22) (P < 1e-26) (P < 1e-6) (P < 1e-13) (P < 1e-17) (P < 1e-29)

SM_CDH1
SM_TP53

SM_GATA3
SM_MAP2K4

SM_PTEN
SM_PIK3CA

FO
XD

2
ZN

F5
89

PA
X5

CE
BP

Z
SP

I1
TE

AD
1

BA
CH

2
IR
F3

CR
EB

1
JU
ND

HI
F1
A

CE
NP

B
FO

SB
SI
X5

DB
P

NR
1D

1
ZN

F5
24

AR
NT

2
M
EO

X1
M
LX
IP
L

TF
EC

BA
TF
3

JD
P2

M
AF

K
RE

ST
NF

E2
L2

ST
AT
4

EL
F3

NF
AT
C1

M
YB

L1
HO

XB
6

TP
63

PA
X6

SP
DE

F
RU

NX
3

AT
F6

M
AX

E2
F4

ES
R2

ZN
F3
33

ER
G

HO
XC

6

TFs

SG
A

2

3

−0.05

0.00

0.05

0.10

−Delta

BRCA

SM_CTNNB1
SM_TP53
SM_KRAS
SM_PTEN

SM_PIK3CA

G
CM

1
FO

SB
ET

S2
FU

BP
1

E2
F5

TG
IF
1

LB
X2

M
EO

X1
TF
EB

TF
DP

1
TE

T1
HI
F1
A

M
LX

DD
IT
3

ID
4

NF
KB

2
RF

X1
NR

6A
1

HO
XA

1
CR

EM
TC

F7
L2

TC
F7
L1

TC
F7

M
BD

2
ER

G
KD

M
2B

TF
EC

FO
XH

1
EM

X1
ZK

SC
AN

3
LH

X2
HO

XB
6

SO
X9

EL
F3

DB
P

M
YB

L1
M
AF

K
G
LI
S1

TP
63

TC
F3

JD
P2

TFs

SG
A

2

3

−0.05

0.00

0.05

0.10

−Delta

UCEC

ΔTF

Not significant

FDR < 0.05

FDR < 0.01

FDR < 0.001

SM_CDH1

SM_TP53

SM_GATA3

SM_MAP2K4

SM_PTEN

SM_PIK3CA

FO
XD

2
ZN

F5
89

PA
X5

CE
BP

Z
SP

I1
TE

AD
1

BA
CH

2
IR
F3

CR
EB

1
JU
ND

HI
F1
A

CE
NP

B
FO

SB
SI
X5

DB
P

NR
1D

1
ZN

F5
24

AR
NT

2
M
EO

X1
M
LX
IP
L

TF
EC

BA
TF
3

JD
P2

M
AF

K
RE

ST
NF

E2
L2

ST
AT
4

EL
F3

NF
AT
C1

M
YB

L1
HO

XB
6

TP
63

PA
X6

SP
DE

F
RU

NX
3

AT
F6

M
AX

E2
F4

ES
R2

ZN
F3
33

ER
G

HO
XC

6

TFs

SG
A

0

1

2

3

−0.2

−0.1

0.0

0.1

0.2
−Delta

BRCA

A

B

C

SM_CDH1

SM_TP53

SM_GATA3

SM_MAP2K4

SM_PTEN

SM_PIK3CA

FO
XD

2
ZN

F5
89

PA
X5

CE
BP

Z
SP

I1
TE

AD
1

BA
CH

2
IR
F3

CR
EB

1
JU
ND

HI
F1
A

CE
NP

B
FO

SB
SI
X5

DB
P

NR
1D

1
ZN

F5
24

AR
NT

2
M
EO

X1
M
LX
IP
L

TF
EC

BA
TF
3

JD
P2

M
AF

K
RE

ST
NF

E2
L2

ST
AT
4

EL
F3

NF
AT
C1

M
YB

L1
HO

XB
6

TP
63

PA
X6

SP
DE

F
RU

NX
3

AT
F6

M
AX

E2
F4

ES
R2

ZN
F3
33

ER
G

HO
XC

6

TFs

SG
A

0

1

2

3

−0.10

−0.05

0.00

0.05

0.10

−Delta

BRCA

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.09.07.459263doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459263

