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Abstract 
In this work, we used Nanostring N-counter technology, to evaluate the mRNA expression 
level of more than 330 regulatory genes over 34-time points covering the first three days of 
development of the sea urchin larvae. The hierarchical clustering of the mRNAs expression 
levels has identified groups corresponding to the major developmental landmarks (e.g., 
maternal to zygotic transition and gastrulation). Furthermore, comparison with previous 
experiments indicates high reproducibility of mRNA level temporal dynamics across batches. 
Finally, we generated an online tool to visualize gene expression during sea urchin larval 
development. The site can be accessed at https://nanostring2021.herokuapp.com/.  
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Introduction 
 

The larvae of sea urchin Strongylocentrotus purpuratus represent one of the best-
studied organisms with a well-established Gene Regulatory Networks (GRN) up to early 
gastrula embryo (30 hours post fertilization – hpf- see  for example(1–4)). However, several 
events crucial for the development of the larval body plan (e.g., the neuronal differentiation) 
happen in the post-gastrula stages where information on the mRNAs level is scant. There 
are about 280 transcription factors encoded in Strongylocentrotus purpuratus genome(5) 
and previous works have focused only on a few genes or at few developmental time points. 
Materna and colleagues analysed the mRNA expression level for 138 spatially restricted 
regulatory genes in early sea urchin development from fertilized egg to 48 hpf (6). 
Subsequently, Tu and collaborators sequenced the developmental transcriptome using 
mRNA-seq (7) for 10 timepoints but only three were from stages after 40 hpf. A 
comprehensive, high-density description of mRNA expression for the encoded transcription 
factors is crucial to identify genes involved in the establishment of the larval morphology. 
Furthermore, the dynamics in the mRNAs level can be used to infer potential regulatory 
interactions and the overall developmental hierarchy, the first critical step in the identification 
of the GRNs.  

In this work, we measured the level of expression of 335 regulatory genes from 
zygote to 3 days of development, with at 2-hour interval for a total of 34-time points. We 
used Nanostring N-counter Technology that represents a middle-range technology where 
hundreds of genes can be measured simultaneously yet maintaining a high level of 
precision. Compared to other technologies, such as mRNA-seq and qPCR, the Nanostring 
N-counter Technology does not require a library or enzymes, reducing substantially the 
possible biases (8). In brief, the technology is based on the hybridization of two probes, a 
capture and reporter probe, to each target transcript and the number of hybridization events 
is quantified using an automated fluorescent microscope (8).  

To study the mRNA temporal dynamics, we used hierarchical clustering and 
identified seven clusters that correlate with morphological events happening during sea 
urchin larval development). The data suggest that the level of expression of regulatory 
genes is sufficient to discriminate between developmental stages. Next, we compared our 
data with the previous observation from Materna and collaborators (6), and identified a high 
level of reproducibility for the mRNA expression level. Finally, to allow accessibility to the 
data, we developed an online tool that can be used to visualize the mRNA level of 
expression. The developmental time course can be found in a searchable database that is 
accessible at https://nanostring2021.herokuapp.com/.  

 
Materials and methods 
 
Code set. We designed a probe set containing 335 genes covering most of the regulatory 
genes expressed during the development of Strongylocentrotus purpuratus (see table S1 for 
the sequences). This includes transcription factors and other modulators of gene expression 
such as WNT and FGF signalling and a transcriptional cofactor (see table S2). The code set 
was designed using previous information from Materna et al. (6) and using gene models 
predicted by Tu et al. (7). The genes were classified using EggNog Mapper (9), and 
BLASTP against the Metazoan transcription factor database (10) (see Table S2 for the 
classification). 
Embryo culture and RNA extraction. Sea urchin embryos were fertilized in filtered 
seawater and cultured at 15°C. Every other hour ~300 embryos were counted and lysed in 
350μl of a solution of RLT buffer and β-mercaptoethanol from the Qiagen RNeasy Micro Kit 
(Qiagen, Hilden, Germany). The lysates were immediately stored at -80°C until use. The 
RNA was extracted according to the manufacturer’s instructions but, similarly to Materna et 
al. (6), to maximize recovery, RNA was eluted with 100 μl nuclease-free water at 60°C. The 
samples were ethanol precipitated and resuspended in 7μl nuclease-free water, 5 of which 
were used in the following NanoString hybridization. 
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Nanostring nCounter assays. For each individual time point the transcript count was 
measured using the NanoString nCounter. Hybridization reactions were performed 
according to the manufacturer’s instructions with 5μl RNA solution. Care was taken to 
minimize the time after the addition of the capture probe set to minimize background due to 
non-specific interactions between detection probes and capture probes. All hybridization 
reactions were incubated at 65°C for a minimum of 18 h. Hybridized probes were recovered 
with the NanoString Prep Station and immediately evaluated with the NanoString nCounter. 
For each reaction, 600 fields of view were counted.  
mRNA quantification. We performed two biological replicates, and the mRNA level was 
quantified as follows. First, for each sample, the background correction was performed 
individually by removing the total sum negative control using NanoStringNorm (11). This 
step removes aspecific probe binding. Second, to account for differences in hybridization 
efficiency, we estimated the mRNA counts using the Nanostring internal spikes. We took 
advantage of the six Nanostring exogenous mRNA spikes-in those covers from 0.125 
femtomolar to 125 femtomolar. We converted this into mRNA molecules and estimated the 
mRNA level for each sample by comparing gene counts and mRNA spikes-in counts. While 
these steps ameliorate the differences in the hybridization events, they do not correct the 
differences between samples (e.g., different number of embryos) that can affect the 
reconstruction of the time-course. We combined the correct counts for all time points and 
used the total counts to account for the variation between time points. Finally, the average 
between the mRNA was used to combine the two replicates.  
 
Results and discussion 
 
Developmental time explains the majority of the observed variation. To quantify the 
variation between the two biological replicates, we performed a PCA using ClusVis (12). The 
results suggest that the majority of variance (63.8%) is explained by developmental time 
(Figure 1). In all 34 points, the two biological replicates are clustered together, suggesting a 
high level of similarity between replicates. 

To clarify the temporal dynamics in gene expression, we performed a clustering 
analysis using ClusVis (12). The results in Figure 2 indicate the existence of multiple distinct 
clusters that correspond to well defined developmental stages defined based on 
embryological features. The first cluster confirms the results of the PCA and identifies a 
cluster that includes all the samples from 0 to 8 hpf that are consistent with previous data 
from transcriptional kinetics and suggest that the activation of the zygotic genome happens 
after 5-6 hours post fertilization (13). The remaining time points are organized in six distinct 
clusters that reflect the morphological events happening during sea urchin larval 
development. For example, one cluster comprises 10 to 18 hpf that encompass the majority 
of the Blastula stage. A similar pattern is observed for later stages where our clustering 
analysis identifies a sample cluster from 20 hpf to 26 hpf representing the mesenchyme 
blastula. These results indicate the expression of regulatory genes contains enough 
statistical power to identify well defined developmental stages. Furthermore, these results 
indicate that classic morphological changes happening during sea urchin development are 
the results of the changes in underlying expression of regulatory genes.  
 
High reproducibility of temporal dynamics of regulatory gene expression. Finally, we 
tested the reproducibility of our developmental time course. To this aim, we compared our 
expression profile with Nanostring data obtained by Materna and collaborators (6). In this 
case, the authors evaluated the level of expression to sea urchin development for 138 
regulatory genes for the 48 hours of development. Differently from this work, Materna and 
collaborators used spike-GFP and RFP to normalize the data. To compare the datasets, we 
selected eight genes that have a different level of expression from 100 to 20000 copies of 
mRNA per embryo. Comparison (Figure 3) shows that results are highly consistent and 
reproducible, despite using different instruments, conditions, and animal batches. This 
indicates that the developmental progression of genome regulation is tightly controlled. 
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Data accessibility. To visualize the mRNA expression for all the genes, we have created a 
visualization tool available at https://nanostring2021.herokuapp.com/ . A screenshot is 
shown in Figure 4. With this tool, it is possible visualize the mRNA expression level for the 
335 regulatory genes analysed in this work. A table with all expression data is available as 
supplementary data.  
  
Conclusions: By describing the developmental dynamics, the data presented in this work 
might inform future functional perturbations. The high-density sampling and the inclusion of 
potentially all the known transcription factors data can be used to reconstruct the temporal 
developmental hierarchy between the regulatory genes, and together with spatial data, 
inform the functional perturbation  
 
Figure 1. Principal component analysis of the temporal expression data. PCA analysis 
of Nanostring dataset from 0 to 72 hpf (n = 2 replicates per time point). The 63.8% of 
variance is explained by the gene expression temporal dynamics. 

Figure 2. Heat map of gene expression. (A) Heat map of scaled expression for average 
mRNA expression level for 335 genes average obtained from two replicates from 0 to 72 hpf 
(34-time points) of sea urchin larval development. The results indicate the existence of the X 
clusters that reflect the developmental transition during sea urchin embryonic development 
(lower part of the figure). (B) Developmental stages of S. purpuratus embryos at 15°C  

Figure 3. Reproducibility of mRNA measurements. Line plots obtained comparing mRNA 
expression from  this work and those from Materna and collaborators (6). The results 
indicate a high level of reproducibility of Nanostring measurements as well as of the 
transcriptional hierarchy.  
 
Figure 4. Snapshot of the expression data. The webpage allows for the visualization of up 
to 100 genes simultaneously both using heatmap or line plot.  
 
Table S1. Nanostring codeset used in this work. This table shows the gene names, WHL 
model and probe sequence for the 335 genes used in this work 
 
Table S2. Classification for the 335 regulatory genes used in this work. This table 
shows the annotation for each of the 335 genes obtained using BLASTP and the Animal 
Transcription factor database and using EggNog Mapper. 
 
Table S3. Expression level for 355 regulatory genes generated in this work. This table 
shows the expression level for 335 and 34 time points generated in this work. 
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