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Abstract 

It has been demonstrated earlier that the neural network based program AlphaFold2 can be 

used to dock proteins given the two sequences separated by a gap as the input. The protocol 

presented here combines AlphaFold2 with the physics based docking program ClusPro. The 

monomers of the model generated by AlphaFold2 are separated, re-docked using ClusPro, and 

the resulting 10 models are refined by AlphaFold2. Finally, the five original AlphaFold2 models 

are added to the 10 AlphaFold2 refined ClusPro models, and the 15 models are ranked by their 

predicted aligned error (PAE) values obtained by AlphaFold2. The protocol is applied to two 

benchmark sets of complexes, the first based on the established protein-protein docking 

benchmark, and the second consisting of only structures released after May 2018, the cut-off 

date for training AlphaFold2. It is shown that the quality of the initial AlphaFold2 models 

improves with each additional step of the protocol. In particular, adding the AlphaFold2 refined 

ClusPro models to the AlphaFold2 models increases the success rate by 23% in the top 5 

predictions, whereas considering the 10 models obtained by the combined protocol increases 

the success rate to close to 40%. The improvement is similar for the second benchmark that 

includes only complexes distinct from the proteins used for training the neural network.  
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1. Introduction 

In Round 14 of Critical Assessment of Structure Prediction (CASP14), the doubly blind, biennial 

experiment focusing on protein structure prediction, the Google affiliated company DeepMind 

surprised the organizers by demonstrating major improvement in prediction accuracy [1]. The 

models had been obtained by AlphaFold2, a neural network based program. The AlphaFold2 

algorithm and program has been recently released [2], and it is now generally recognized in the 

scientific community that DeepMind essentially solved the protein folding problem [3]. Given 

only the sequence, for a large fraction of monomeric proteins, the method is able to produce 

models that are indistinguishable from experimental structures. Although the accuracy may 

depend on the depth of the multiple sequence alignment (MSA) available for a given target, 

results are generally very good even without any meaningful templates and only with a shallow 

MSA.  

Given the success of AlphaFold2 for protein structure prediction, the obvious question is 

whether the method can also predict protein-protein complexes. DeepMind did not participate in 

the assembly prediction experiment of CASP14 [4], but results show that most residues located 

at domain-domain interfaces of multi-domain proteins were predicted remarkably well. In fact, 

some of the predicted residue conformations seemed well placed for the interaction, in spite of 

not modeling the interacting protein partner. It was shown that docking models of interacting 

proteins generated by AlphaFold2 provides results that are comparable to docking X-ray 

structures [5]. Therefore, it was expected that deep neural network based methods can also be 

directly used for predicting the structures of protein-protein complexes. This assumption was 

confirmed by the Baker group by using RoseTTaFold, a different but similar deep learning 

based structure prediction method [6]. Rather than providing the sequence of a single protein as 

the input, they used two or more sequences with a gap between them, and demonstrated that 

the program can generate coordinates of two or more interacting protein chains. This was done 

by providing a paired alignment and modifying the residue index to include the gap. Thus, the 

network enabled the direct building of structure models for protein-protein complexes from 

sequence information, short circuiting the standard procedure of building models for individual 

subunits and then carrying out rigid-body docking. Mirdita et al. [7] has shown that the same 

technique works with AlphaFold2, often even without the paired alignment. AlphaFold2 uses 

relative positional encoding with a cap at |i − j| ≥ 32, which means that by offsetting the residue 

index between two proteins to be >32, AlphaFold2 treats them as separate polypeptide chains.  

A similar protocol was applied to protein-peptide docking by Ko and Lee [8] and by Tsaban et al. 

[9]. Both groups linked the peptide sequence to the protein sequence via a polyglycine linker, 

and used AlphaFold2 without any modifications. The method was tested on large benchmark 

sets of protein-peptide complexes. There were some differences in the overall quality reported, 

but both studies concluded that fairly accurate docked structures could be obtained for about 

half of the targets. In some cases, the method obviously failed with the poly-glycine linker 

throwing the peptide segment into space. In other cases the models correctly identified the 

binding pocket, but showed errors of peptide rotation or translation [9]. Tsaban et al. also 

compared the performance of  AlphaFold2 to that of the physics-based peptide docking protocol 

PIPER-FlexPepDock [10] and observed an almost orthogonal behavior in terms of successes 

and failures.  
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In the present paper we describe a protocol for protein-protein docking that substantially 

improves the AlphaFold2 generated models by combining AlphaFold2 with our established 

physics-based docking method ClusPro [11]. In the first step we use AlphaFold2 as described 

previously, with the two protein sequences separated by a gap, and generate five primary 

AlphaFold2 models. However, we go beyond what has been done in earlier studies and 

combine AlphaFold2 with ClusPro at three different points of the algorithm. First, the best 

AlphaFold2 model is selected, the two proteins in the complex are separated, and docked to 

each other using ClusPro. As standard with the server, ClusPro generates 10 models [11]. Each 

of the 10 ClusPro models are then used as templates in AlphaFold2 runs, resulting in 10 

secondary AlphaFold2 models. As the third combination of the two methods, the five primary 

AlphaFold2 models from the first step are added to the 10 secondary models, and all 15 models 

are ranked using the PAE (Predicted Aligned Error) values generated by Alphafold2, selecting 

the model with the lowest PAE as the top prediction. As will be described, we tested the method 

on two benchmark sets of interacting proteins, and observed substantial increase in the number 

of complexes that were modeled with acceptable or better accuracy.  

2. Methods 

2.1. Benchmark sets 

The combined method has been tested on two benchmark sets. Benchmark 1 was based on 

Version 5 of the very established protein-protein docking benchmark (BM5) developed by the 

Weng group [12].  BM5 is a nonredundant and fairly diverse set of protein complexes for testing 

protein–protein docking algorithms. Each entry in BM5 includes the 3D structures of the 

complex and one or both unbound component proteins. The set includes 40 antibody-antigen, 

88 enzyme-containing and 102 ‘‘other type’’ complexes [12]. While Alphafold was applied to 

predict all 230 targets in BM5, due to the limitations of our GPU resources we were able to get 

results only for 204 complexes, among them were 34 antibody-antigen pairs and 170 non-

antibody containing complexes that included both enzyme-containing and ‘‘other type’’ 

structures [12]. A drawback of using Benchmark 1 is that the proteins forming the complexes in 

BM5 were present in the training set used by AlphaFold2, which was trained on Protein Data 

Bank (PDB) structures released before May 2018 [2]. Thus, while the training set included only 

monomeric proteins, testing the method on BM5 may introduce some bias, leading to 

overestimating the performance of AlphaFold2. 

Benchmark 2 was designed to exclude the possibility of implicit bias. It includes only 

heterodimeric targets from the PDB released after May 2018, since such protein structures were 

certainly not used for training AlphaFold2. Furthermore, we used ClusPro TBM to look for 

homologous templates for potential targets and limited our selection to those with no 

appropriate template in the PDB [13]. This was done to ensure that our data set consisted of 

truly novel protein-protein interactions. The final Benchmark 2 consists of 17 complexes with the 

PDB IDs 5ZNG, 6A6I, 6GS2, 6H4B, 6IF2, 6II6, 6ONO, 6PNQ, 6Q76, 6U08, 6ZBK, 7AYE, 7D2T, 

7M5F, 7N10, 7NLJ, 7P8K. 

2.2. Docking protein pairs using AlphaFold2 

For the complexes in Benchmark 1, the sequences for the unbound proteins were extracted 

from BM5 in fasta file format [12]. For the targets in Benchmark 2, the sequence and chain 
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information was obtained from the PDB using the PISA/author assigned biological assembly.  

We then generated a multiple sequence alignment (MSA) for each sequence using the 

MMseqs2 API [7, 14]. We joined the MSAs to make pseudo-monomers in which each chain of 

the oligomer was separated by gaps that were set to 200 residues in our protocol [7]. The final 

MSA was then used as the input without any template to build five AlphaFold2 models with the 

pTM model parameter set as this allowed us to also obtain the predicted aligned error (PAE) 

values for each model [2].  

2.3. Calculating the average interface PAE 

The PAE values calculated by AlphaFold2 provided an error estimate for each residue with 

respect to every other residue in the model. We used this to calculate an average interface PAE 

score, where interface was defined as the residues within 10.0 Å of the other subunit. For each 

residue on the interface, we retained the PAE values for the interface residues on the other 

subunit. These were then used to calculate the average interface PAE scores that provided the 

ranking of the models, with lower scores being ranked higher. 

2.4. Docking predicted subunits using ClusPro 

The residues in the top ranked model predicted by AlphaFold2 were split into two groups. One 

served as the receptor, and the other, the ligand. For the complexes in Benchmark 1, this split 

was based on the sequences of the two proteins as defined in BM5. The residues belonging to 

the first protein, usually the larger one, were defined as the receptor, and the residues belonging 

to second protein formed the ligand. For the heterodimeric targets in Benchmark 2, the 

sequences in the PDB files were used to define the two proteins. The separated receptor and 

ligand models were then submitted to the ClusPro server for docking [11]. Some chains had 

long unstructured tails which were manually cut before submission. The antibody-antigen pairs 

were docked using ClusPro’s antibody mode, whereas for all other targets we used the 

electrostatic-favored coefficient set as they have been shown to produce the best results [15]. In 

both cases the 10 best models generated by ClusPro were retained.  

The ClusPro free docking protocol consists of two main steps [11]. The first step is running 

PIPER, a docking program that performs systematic search of complex conformations on a grid 

using the fast Fourier transform (FFT) correlation approach [16]. The scoring function includes 

the van der Waals interaction energy, an electrostatic energy term, and desolvation 

contributions calculated by a structure based pairwise potential [11].  The second step of 

ClusPro is clustering the top 1000 structures generated by PIPER using the pairwise RMSD as 

the distance measure. The radius used in clustering is defined in terms of Cα interface RMSD. 

For each docked conformation, we select the residues of the ligand that have any atom within 

10 Å of any receptor atom, and calculate the Cα RMSD for these residues from the same 

residues in all other 999 ligands. Thus, clustering 1000 docked conformations involves 

computing a 1000 × 1000 matrix of pairwise Cα RMSD values. Based on the number of 

structures that a ligand has within a (default) cluster radius of 9 Å RMSD, we select the largest 

cluster and rank its cluster center as the top prediction of the target complex. The members of 

this cluster are removed from the matrix, and we select the next largest cluster and rank its 

center as number two, and so on. After clustering with this hierarchical approach, the ranked 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2021. ; https://doi.org/10.1101/2021.09.07.459290doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459290
http://creativecommons.org/licenses/by/4.0/


complexes are subjected to a straightforward (300 step and fixed backbone) minimization of the 

van der Waals energy using the CHARMM potential to remove potential side chain clashes. 

2.5. Refining ClusPro results using AlphaFold2 

The top 10 docked structures produced by ClusPro were provided to AlphaFold2 as templates 

for structure prediction. The MSA for each case was generated in the same way as described 

earlier (see Methods 2.2). The parameters for model 1 from the pTM parameter set was used to 

generate one model for each template as it gave us the best results out of the five model 

parameters (data not shown). This resulted in 10 refined models for each target which were 

ranked based on their interface PAE scores. We then also added the five models generated by 

AlphaFold2 in the first step of this protocol. Finally, the 15 resulting models were ranked based 

on their average interface PAE scores.  

2.5. Assessing the accuracy of docked structures  

We used the DockQ program to assess the interface quality of the generated models [17]. The 

interface of interest for each target was the one between the receptor and ligand as specified in 

section 2.3. DockQ outputs a score between 0 and 1 to indicate interface quality. A score < 0.23 

indicates an incorrect interface, 0.23 ≤ score < 0.49 indicates an acceptable interface, 0.49 ≤ 

score < 0.80 indicates a medium quality interface, and score ≥ 0.80 indicates a high quality 

interface. A target was considered successful for a method if the interface for one of the models 

produced by the method was of acceptable quality or better.  

3. Results and discussion 

3.1. AlphaFold2 refinement improves predictions 

We used the sequence information from the PDB for the 204 targets in Benchmark 1 to build the 

complexes using AlphaFold2. As described, the model with the lowest average interface PAE 

was split into two groups of residues based on the interface of interest, and docked using 

ClusPro. A direct comparison of the results by AlphaFold2 and ClusPro show that AlphaFold2 

performs better for top 1 and top 5 predictions, both in terms of the number of targets with 

acceptable or better quality models and in terms of the quality of the interfaces defined by the 

DockQ score (Figure 1). However, considering the top 10 models from ClusPro increases the 

number of successful targets to 98, which is higher than the 88 successful targets for the 5 

models from AlphaFold2. The higher success rate comes at the cost of interface quality as 

ClusPro provides far fewer targets with high quality interfaces.  
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Figure 1: 

Performance on 

Benchmark 1. The 

number of 

successful targets 

and the quality of 

best models at the 

different steps of 

the protocol.  

 

 

 

The 10 models generated by ClusPro were then refined using AlphaFold2 and ranked based on 

their average interface PAEs. As shown in Figure 1, this step improves the results considerably.  

AlphaFold2 on its own still generates good models as the top 1 prediction for more targets than 

the AlphaFold2 refinement of the ClusPro models. However, when considering the top 5 

predictions, the AlphaFold2 refinement of the 10 ClusPro models is successful for 96 targets, 

compared to the 88 targets obtained by AlphaFold2 without ClusPro. Moreover, considering all 

10 AlphaFold2 refined ClusPro models increases the number of successful targets to 109. For 

some targets where AlphaFold2 fails by itself and ClusPro produces an acceptable quality 

model, AlphaFold2 refinement is then able to improve the ClusPro interface to a high quality 

prediction (Table S1). However, it is also apparent that there is a loss of interface quality for 

some targets where AlphaFold2 by itself did better than ClusPro followed by AlphaFold2 

refinement. In fact, the AlphaFold2 refinement of the 10 ClusPro models produces high quality 

predictions for fewer targets than when considering the top five Alphafold2 models without any 

further calculation (Table S1). To address this loss, we added the original five AlphaFold2 

models to the 10 AlphaFold2 refined ClusPro models, and ranked the 15 models based on the 

average PAE interface scores. This improved the number of successful targets while also 

preserving, or even improving, the quality of the interfaces of the top models. This strategy, i.e., 

selecting 10 models with the lowest PAE values among the 15 models (10 AlphaFold2 refined 

ClusPro models plus the five original AlphaFold2 models) produced 123 successful targets, with 

an average DockQ score of 0.415. This was a 37.6% increase in the number of successful 

targets compared to ClusPro when considering the top 10 models, and almost 40% (39.8%) 

compared to the original AlphaFold2 runs. Thus, the combined protocol produces much higher 

success rates that either ClusPro or AlphaFold2 on its own. The refinement of ClusPro 

generated models by AlphaFold2 was particularly effective and improved the average DockQ by 

58.3%. We note that the ClusPro performance discussed here was based on docking the 

monomer models generated by AlphaFold2, thus starting the calculations from sequences 

rather than structures, which is another strength of the combined protocol.  
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3.2. Refinement improvement persists for new targets 

As stated, the heterodimer targets in Benchmark 2 were released in the PDB after May 2018 

and did not have homologous templates. Similar to Benchmark 1, the sequences were used to 

derive a complex structure using Alphafold2. These were then split into subunits, docked using 

ClusPro, and refined by AlphaFold2. The results for these complexes differ from the results for 

Benchmark 1 in two significant ways. First, when considering the top 5 models, AlphaFold2 

produced good predictions for fewer targets than ClusPro (Figure 2), although it did result in 

more high quality interfaces. The lower interface quality for the ClusPro results is not too 

surprising given that it is a rigid body docking method that does not take into account the 

conformational changes upon binding. It is likely that success for fewer targets by AlphaFold2 is 

due to the fact that these targets were specifically selected for their lack of appropriate 

templates in the PDB. Thus, AlphaFold2 had no or very few structures similar to the targets in 

the training data, reducing the quality of predictions. The second difference from the results for 

Benchmark 1 is that the number of successful targets did not improve when going from the 

ClusPro models to the AlphaFold2 refined ClusPro models, and further to the mixed version of 

AlphaFold2 and refined ClusPro models. However, similar to the results for Benchmark 1, 

interface quality improved considerably with refinement (Figure 3). The average DockQ score 

highlights this improvement as it increases from 0.422 for the top 10 ClusPro models to 0.561 

for the AlphaFold2 refined ClusPro models (Table S2).  

 

Figure 2: 

Performance on 

Benchmark 2. The 

number of 

successful targets 

and the quality of 

best models at the 

different steps of 

the protocol.  
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Figure 3: Comparison of the best model from each method to the native structure for targets 

6H4B and 7P8K.  

Conclusions 

We tested the ability of the neural network based protein structure prediction program 

AlphaFold2 of predicting the structures of protein-protein complexes. The method, established 

in earlier publications, is simply running the program on the two sequences separated by a gap 

[7]. Application to 204 complexes from the “gold standard” protein-protein docking benchmark 

[12] confirmed that this method yields a considerable success rate when considering the top five 

AlphaFold2 predictions. This performance is similar to the one observed for other protein 

docking programs [15]. As expected, even some of the poorly predicted complexes had 

excellent models of the protein monomers. The monomers were docked by the physics based 

traditional docking server ClusPro [11], and the resulting models were used as templates in a 

repeated prediction of the complexes by AlphaFold2. The combination of the two approaches 

substantially improved the overall performance. The performance on the protein docking 

benchmark (Benchmark 1 in this paper) may be somewhat biased since these proteins were 

part of the structures used when training the AlphaFold2 program. The possibility of such bias 

was eliminated by performing the same type of calculations for heterodimer complexes 

deposited in the PDB after May 2018, the cut-off date of training AlphaFold2, and that did not 

have any templates. Performance was similar to that seen for the other benchmark. Thus, we 

conclude that the combined protocol produces better results than either AlphaFold2 or ClusPro 

on its own. It is also important that the calculations can be performed without knowing the 

structures of the proteins to be docked, and hence we believe that the algorithm proposed here 

will be very useful in applications.  
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Table S1: DockQ score of the best model for the targets in Benchmark 1.  

Target 

  DockQ score of best model 

 Alphafold    Cluspro    Alphafold refined Cluspro   
Alphafold refined Cluspro 

plus Alphafold   

  Top 1 Top 5   Top 1 Top 5 Top 10   Top 1 Top 5 Top 10   Top 1 Top 5 Top 10 

1A2K  0.012 0.013  0.017 0.068 0.192  0.014 0.04 0.142  0.014 0.04 0.142 

1ACB  0.501 0.501  0.123 0.123 0.227  0.07 0.688 0.688  0.07 0.688 0.688 

1AHW  0.007 0.009  0.024 0.059 0.197  0.209 0.209 0.209  0.209 0.209 0.209 

1AK4  0.027 0.036  0.013 0.121 0.121  0.023 0.128 0.128  0.023 0.128 0.128 

1AKJ  0.746 0.746  0.012 0.027 0.035  0.007 0.019 0.035  0.007 0.746 0.746 

1ATN  0.012 0.012  0.005 0.435 0.435  0.443 0.443 0.443  0.443 0.443 0.443 

1AVX  0.043 0.043  0.655 0.655 0.655  0.775 0.775 0.775  0.775 0.775 0.775 

1AY7  0.915 0.915  0.119 0.12 0.245  0.896 0.896 0.896  0.915 0.915 0.915 

1AZS  0.017 0.518  0.006 0.491 0.491  0.017 0.017 0.516  0.017 0.017 0.038 

1B6C  0.043 0.043  0.054 0.065 0.125  0.041 0.078 0.133  0.041 0.078 0.133 

1BJ1  0.007 0.009  0.066 0.066 0.107  0.059 0.105 0.105  0.059 0.105 0.105 

1BKD  0.578 0.586  0.008 0.008 0.008  0.008 0.008 0.008  0.578 0.586 0.586 

1BUH  0.666 0.803  0.026 0.082 0.659  0.749 0.778 0.778  0.666 0.803 0.803 

1BVK  0.04 0.044  0.169 0.169 0.179  0.052 0.151 0.159  0.052 0.151 0.159 

1BVN  0.866 0.866  0.452 0.452 0.452  0.113 0.46 0.46  0.113 0.866 0.866 

1CGI  0.809 0.82  0.666 0.666 0.666  0.718 0.905 0.905  0.809 0.905 0.905 

1CLV  0.014 0.014  0.124 0.307 0.307  0.122 0.298 0.298  0.122 0.298 0.298 

1D6R   0.02 0.028   0.065 0.072 0.141   0.072 0.072 0.14   0.072 0.072 0.14 

1DFJ  0.723 0.723  0.135 0.387 0.387  0.106 0.4 0.4  0.106 0.4 0.723 

1DQJ  0.009 0.012  0.047 0.061 0.166  0.098 0.155 0.155  0.098 0.155 0.155 

1E4K  0.005 0.03  0.01 0.069 0.249  0.013 0.298 0.298  0.013 0.298 0.298 

1E6E  0.821 0.826  0.52 0.52 0.52  0.655 0.77 0.77  0.821 0.826 0.826 

1E6J  0.01 0.011  0.097 0.097 0.114  0.088 0.116 0.116  0.088 0.116 0.116 

1EAW  0.019 0.026  0.212 0.314 0.314  0.125 0.293 0.293  0.019 0.293 0.293 

1EER  0.711 0.711  0.045 0.663 0.663  0.706 0.719 0.719  0.711 0.719 0.719 
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1EFN  0.011 0.02  0.035 0.047 0.047  0.024 0.029 0.029  0.024 0.029 0.029 

1EWY  0.053 0.103  0.073 0.27 0.334  0.021 0.185 0.355  0.053 0.103 0.355 

1EZU  0.049 0.049  0.04 0.188 0.188  0.05 0.166 0.166  0.05 0.166 0.166 

1F34  0.423 0.423  0.01 0.638 0.638  0.019 0.671 0.671  0.019 0.423 0.671 

1F51  0.01 0.602  0.332 0.332 0.332  0.733 0.733 0.733  0.01 0.733 0.733 

1F6M  0.19 0.19  0.02 0.026 0.026  0.011 0.02 0.048  0.011 0.02 0.19 

1FAK  0.592 0.629  0.026 0.026 0.026  0.005 0.023 0.029  0.592 0.629 0.629 

1FCC  0.007 0.017  0.023 0.023 0.023  0.019 0.019 0.022  0.019 0.019 0.022 

1FFW  0.859 0.859  0.02 0.296 0.822  0.863 0.863 0.863  0.863 0.863 0.863 

1FLE  0.904 0.905  0.538 0.601 0.601  0.885 0.885 0.885  0.904 0.905 0.905 

1FQ1  0.461 0.461  0.012 0.016 0.024  0.012 0.015 0.029  0.461 0.461 0.461 

1FQJ  0.029 0.158  0.013 0.02 0.06  0.012 0.739 0.739  0.012 0.739 0.739 

1FSK  0.012 0.012  0.038 0.109 0.121  0.103 0.122 0.122  0.103 0.122 0.122 

1GCQ  0.073 0.084  0.128 0.128 0.258  0.079 0.079 0.079  0.073 0.084 0.084 

1GHQ  0.008 0.013  0.009 0.013 0.013  0.012 0.013 0.013  0.012 0.013 0.013 

1GL1  0.079 0.089  0.092 0.683 0.683  0.813 0.813 0.813  0.813 0.813 0.813 

1GLA  0.005 0.006  0.016 0.023 0.023  0.02 0.023 0.023  0.02 0.023 0.023 

1GP2  0.139 0.139  0.008 0.206 0.206  0.008 0.328 0.328  0.008 0.328 0.328 

1GPW  0.7 0.705  0.37 0.37 0.546  0.636 0.68 0.68  0.7 0.705 0.705 

1GRN  0.672 0.795  0.022 0.089 0.089  0.816 0.823 0.827  0.672 0.816 0.823 

1GXD  0.271 0.271  0.005 0.006 0.006  0.003 0.006 0.006  0.003 0.271 0.271 

1H9D  0.942 0.945  0.077 0.724 0.724  0.906 0.945 0.945  0.942 0.945 0.945 

1HCF  0.011 0.587  0.032 0.032 0.033  0.024 0.032 0.032  0.024 0.032 0.587 

1HIA  0.019 0.031  0.035 0.116 0.128  0.033 0.122 0.122  0.033 0.122 0.122 

1I2M  0.394 0.394  0.01 0.375 0.375  0.01 0.44 0.44  0.01 0.44 0.44 

1I4D  0.01 0.05  0.025 0.07 0.074  0.047 0.058 0.062  0.047 0.058 0.062 

1I9R  0.005 0.006  0.222 0.222 0.222  0.03 0.26 0.26  0.03 0.26 0.26 

1IB1  0.03 0.047  0.047 0.047 0.064  0.02 0.027 0.064  0.02 0.027 0.064 

1IBR  0.043 0.058  0.064 0.065 0.129  0.064 0.07 0.176  0.064 0.07 0.176 

1IJK  0.036 0.036  0.063 0.079 0.089  0.09 0.09 0.09  0.09 0.09 0.09 

1IQD  0.003 0.256  0.074 0.09 0.345  0.351 0.351 0.468  0.003 0.351 0.468 

1IRA  0.466 0.483  0.207 0.44 0.44  0.486 0.493 0.552  0.486 0.493 0.552 
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1J2J  0.669 0.669  0.361 0.399 0.399  0.783 0.783 0.783  0.783 0.783 0.783 

1JIW  0.015 0.351  0.009 0.074 0.079  0.009 0.074 0.074  0.009 0.074 0.074 

1JK9  0.542 0.57  0.139 0.139 0.314  0.53 0.561 0.561  0.53 0.57 0.57 

1JMO  0.009 0.009  0.006 0.047 0.047  0.05 0.05 0.05  0.05 0.05 0.05 

1JPS  0.008 0.009  0.028 0.471 0.471  0.48 0.48 0.48  0.48 0.48 0.48 

1JTD  0.027 0.036  0.03 0.032 0.057  0.028 0.036 0.057  0.028 0.036 0.057 

1JTG  0.041 0.042  0.014 0.045 0.533  0.042 0.543 0.543  0.042 0.543 0.543 

1JWH  0.004 0.696  0.003 0.009 0.009  0.006 0.008 0.008  0.004 0.696 0.696 

1JZD  0.023 0.207  0.024 0.054 0.054  0.035 0.039 0.051  0.035 0.039 0.051 

1K5D  0.02 0.02  0.007 0.061 0.061  0.006 0.02 0.058  0.006 0.02 0.058 

1K74  0.513 0.661  0.584 0.584 0.584  0.682 0.682 0.682  0.682 0.682 0.682 

1KAC  0.01 0.019  0.013 0.013 0.442  0.474 0.474 0.474  0.474 0.474 0.474 

1KKL  0.01 0.791  0.103 0.103 0.103  0.01 0.12 0.12  0.01 0.791 0.791 

1KLU  0.019 0.06  0.01 0.022 0.022  0.004 0.01 0.028  0.004 0.01 0.028 

1KTZ  0.014 0.022  0.033 0.033 0.033  0.047 0.048 0.048  0.047 0.048 0.048 

1KXP  0.818 0.842  0.769 0.769 0.769  0.849 0.849 0.849  0.818 0.849 0.849 

1KXQ  0.029 0.029  0.013 0.021 0.021  0.012 0.021 0.021  0.012 0.021 0.021 

1LFD  0.196 0.383  0.106 0.106 0.134  0.206 0.368 0.368  0.206 0.368 0.368 

1M10  0.312 0.548  0.606 0.606 0.606  0.647 0.722 0.722  0.312 0.722 0.722 

1M27  0.014 0.014  0.153 0.367 0.367  0.178 0.217 0.308  0.178 0.217 0.308 

1MAH  0.058 0.114  0.058 0.168 0.168  0.057 0.166 0.166  0.057 0.166 0.166 

1ML0  0.005 0.015  0.019 0.019 0.019  0.013 0.019 0.019  0.013 0.019 0.019 

1MLC  0.008 0.009  0.052 0.052 0.062  0.033 0.046 0.064  0.033 0.046 0.064 

1MQ8  0.72 0.755  0.004 0.005 0.005  0.004 0.004 0.006  0.72 0.755 0.755 

1NCA  0.011 0.011  0.055 0.065 0.065  0.025 0.048 0.069  0.025 0.048 0.069 

1NSN  0.011 0.012  0.065 0.066 0.338  0.045 0.067 0.356  0.045 0.067 0.356 

1NW9  0.02 0.05  0.049 0.169 0.37  0.055 0.096 0.391  0.055 0.096 0.391 

1OC0  0.917 0.932  0.065 0.125 0.125  0.889 0.889 0.889  0.917 0.932 0.932 

1OFU  0.008 0.008  0.013 0.031 0.101  0.01 0.027 0.088  0.01 0.027 0.088 

1OPH  0.564 0.564  0.028 0.163 0.277  0.267 0.267 0.267  0.267 0.267 0.564 

1OYV  0.019 0.02  0.053 0.348 0.348  0.052 0.414 0.414  0.052 0.414 0.414 

1PPE  0.012 0.07  0.632 0.632 0.632  0.335 0.645 0.645  0.335 0.645 0.645 
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1PVH  0.056 0.061  0.024 0.089 0.089  0.031 0.066 0.066  0.031 0.066 0.066 

1PXV  0.02 0.263  0.038 0.038 0.047  0.021 0.035 0.046  0.021 0.035 0.046 

1QA9  0.015 0.015  0.002 0.01 0.01  0.009 0.009 0.01  0.009 0.015 0.015 

1QFW  0.01 0.023  0.014 0.437 0.437  0.476 0.476 0.476  0.476 0.476 0.476 

1R0R  0.109 0.109  0.365 0.365 0.365  0.022 0.129 0.574  0.022 0.129 0.574 

1R6Q  0.895 0.895  0.022 0.022 0.027  0.01 0.028 0.034  0.895 0.895 0.895 

1R8S  0.488 0.488  0.382 0.382 0.382  0.414 0.427 0.427  0.488 0.488 0.488 

1RKE  0.434 0.484  0.055 0.055 0.055  0.051 0.051 0.051  0.434 0.484 0.484 

1RLB  0.008 0.025  0.027 0.369 0.378  0.005 0.006 0.414  0.005 0.006 0.414 

1RV6  0.007 0.007  0.016 0.029 0.029  0.66 0.68 0.68  0.007 0.66 0.68 

1S1Q  0.03 0.069  0.015 0.015 0.243  0.014 0.014 0.284  0.014 0.014 0.284 

1SBB  0.008 0.008  0.011 0.019 0.02  0.011 0.02 0.02  0.011 0.02 0.02 

1SYX  0.013 0.039  0.014 0.144 0.449  0.011 0.803 0.803  0.011 0.803 0.803 

1TMQ  0.008 0.046  0.041 0.043 0.68  0.035 0.708 0.708  0.035 0.708 0.708 

1UDI  0.015 0.017  0.026 0.341 0.341  0.015 0.025 0.312  0.015 0.025 0.312 

1US7  0.038 0.04  0.02 0.046 0.081  0.046 0.072 0.072  0.046 0.072 0.072 

1VFB  0.037 0.042  0.279 0.279 0.279  0.059 0.295 0.295  0.059 0.295 0.295 

1WEJ  0.011 0.011  0.038 0.06 0.305  0.058 0.058 0.244  0.058 0.058 0.244 

1WQ1  0.719 0.719  0.079 0.15 0.15  0.723 0.723 0.723  0.719 0.723 0.723 

1XD3  0.556 0.556  0.516 0.516 0.516  0.557 0.557 0.557  0.556 0.557 0.557 

1XQS  0.657 0.657  0.025 0.245 0.326  0.653 0.68 0.68  0.657 0.68 0.68 

1XU1  0.025 0.134  0.053 0.584 0.584  0.022 0.8 0.8  0.022 0.8 0.8 

1Y64  0.211 0.211  0.011 0.011 0.011  0.011 0.011 0.015  0.011 0.011 0.211 

1YVB  0.794 0.815  0.098 0.335 0.363  0.797 0.798 0.798  0.794 0.815 0.815 

1Z0K  0.598 0.598  0.071 0.239 0.442  0.605 0.605 0.605  0.605 0.605 0.605 

1Z5Y  0.429 0.429  0.044 0.389 0.389  0.629 0.629 0.629  0.629 0.629 0.629 

1ZHH  0.589 0.602  0.023 0.389 0.389  0.023 0.543 0.562  0.589 0.602 0.602 

1ZHI  0.006 0.013  0.014 0.022 0.034  0.1 0.425 0.425  0.1 0.425 0.425 

1ZLI  0.05 0.051  0.028 0.036 0.079  0.047 0.085 0.085  0.047 0.085 0.085 

2A1A  0.713 0.713  0.172 0.172 0.627  0.637 0.637 0.637  0.637 0.713 0.713 

2A5T  0.882 0.888  0.01 0.02 0.033  0.837 0.837 0.837  0.882 0.888 0.888 

2A9K  0.009 0.011  0.024 0.029 0.03  0.013 0.031 0.031  0.013 0.031 0.031 
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2ABZ  0.059 0.059  0.022 0.091 0.091  0.076 0.09 0.09  0.076 0.09 0.09 

2AJF  0.006 0.007  0.005 0.007 0.03  0.005 0.005 0.03  0.005 0.005 0.03 

2AYO  0.007 0.435  0.09 0.399 0.399  0.43 0.43 0.43  0.007 0.43 0.435 

2B42  0.05 0.05  0.008 0.066 0.335  0.008 0.066 0.339  0.008 0.066 0.339 

2BTF  0.51 0.515  0.005 0.482 0.482  0.565 0.565 0.565  0.565 0.565 0.565 

2C0L  0.039 0.478  0.013 0.039 0.039  0.037 0.037 0.04  0.037 0.039 0.478 

2CFH  0.72 0.725  0.636 0.636 0.636  0.711 0.72 0.723  0.711 0.72 0.725 

2FD6  0.012 0.028  0.021 0.022 0.037  0.028 0.031 0.037  0.028 0.031 0.037 

2G77  0.816 0.816  0.561 0.561 0.561  0.781 0.784 0.784  0.781 0.816 0.816 

2GAF  0.028 0.029  0.042 0.046 0.359  0.356 0.356 0.356  0.356 0.356 0.356 

2GTP  0.903 0.904  0.025 0.047 0.047  0.879 0.879 0.879  0.903 0.904 0.904 

2HLE  0.707 0.752  0.424 0.528 0.528  0.684 0.684 0.684  0.707 0.752 0.752 

2HQS  0.814 0.814  0.008 0.565 0.565  0.823 0.826 0.826  0.814 0.823 0.826 

2HRK  0.882 0.882  0.202 0.42 0.42  0.868 0.868 0.868  0.868 0.868 0.868 

2I25  0.025 0.025  0.023 0.043 0.064  0.043 0.043 0.052  0.043 0.043 0.052 

2I9B  0.602 0.611  0.505 0.505 0.505  0.503 0.635 0.635  0.503 0.635 0.635 

2IDO  0.745 0.768  0.055 0.562 0.562  0.749 0.749 0.749  0.745 0.768 0.768 

2J0T  0.875 0.88  0.02 0.047 0.077  0.018 0.046 0.88  0.875 0.88 0.88 

2J7P  0.188 0.206  0.083 0.231 0.231  0.007 0.342 0.342  0.007 0.286 0.342 

2JEL  0.009 0.009  0.263 0.263 0.408  0.1 0.396 0.396  0.1 0.396 0.396 

2MTA  0.078 0.185  0.01 0.394 0.394  0.011 0.378 0.378  0.011 0.378 0.378 

2NZ8  0.528 0.528  0.008 0.458 0.458  0.368 0.515 0.515  0.528 0.528 0.528 

2O3B  0.925 0.927  0.643 0.643 0.643  0.788 0.878 0.878  0.925 0.927 0.927 

2O8V  0.508 0.517  0.032 0.277 0.277  0.246 0.392 0.392  0.508 0.517 0.517 

2OOB  0.021 0.021  0.073 0.114 0.114  0.09 0.09 0.09  0.09 0.09 0.09 

2OT3  0.5 0.5  0.052 0.188 0.188  0.483 0.483 0.483  0.483 0.5 0.5 

2OUL  0.919 0.919  0.571 0.571 0.571  0.865 0.865 0.865  0.919 0.919 0.919 

2OZA  0.007 0.163  0.006 0.029 0.029  0.021 0.025 0.025  0.021 0.025 0.025 

2PCC  0.156 0.728  0.414 0.414 0.414  0.335 0.335 0.369  0.335 0.335 0.728 

2SIC  0.924 0.924  0.57 0.57 0.57  0.827 0.895 0.895  0.924 0.924 0.924 

2SNI  0.801 0.801  0.474 0.474 0.474  0.763 0.799 0.799  0.801 0.801 0.801 

2UUY  0.053 0.053  0.04 0.104 0.14  0.023 0.103 0.134  0.023 0.103 0.134 
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2VDB  0.735 0.735  0.006 0.021 0.021  0.007 0.021 0.021  0.007 0.021 0.735 

2VXT  0.022 0.024  0.054 0.054 0.209  0.028 0.05 0.17  0.028 0.05 0.17 

2W9E  0.02 0.02  0.098 0.098 0.098  0.061 0.069 0.097  0.061 0.069 0.097 

2X9A  0.922 0.922  0.675 0.675 0.675  0.91 0.91 0.91  0.922 0.922 0.922 

2YVJ  0.361 0.375  0.233 0.233 0.233  0.166 0.245 0.332  0.166 0.361 0.375 

2Z0E  0.665 0.681  0.008 0.569 0.569  0.616 0.616 0.616  0.665 0.681 0.681 

3A4S  0.834 0.855  0.53 0.53 0.53  0.801 0.862 0.862  0.834 0.862 0.862 

3AAA  0.769 0.769  0.01 0.283 0.304  0.359 0.359 0.359  0.769 0.769 0.769 

3AAD  0.009 0.011  0.024 0.024 0.029  0.014 0.017 0.021  0.014 0.017 0.021 

3BIW  0.012 0.033  0.015 0.015 0.052  0.011 0.043 0.043  0.011 0.043 0.043 

3BP8  0.004 0.061  0.009 0.013 0.099  0.008 0.013 0.079  0.008 0.012 0.02 

3BX7  0.027 0.035  0.032 0.056 0.056  0.018 0.058 0.058  0.018 0.058 0.058 

3CPH  0.276 0.321  0.299 0.299 0.299  0.009 0.313 0.345  0.009 0.313 0.341 

3D5S  0.86 0.86  0.419 0.45 0.45  0.021 0.713 0.713  0.86 0.86 0.86 

3DAW  0.733 0.733  0.405 0.405 0.405  0.426 0.426 0.426  0.426 0.733 0.733 

3EO1  0.009 0.014  0.008 0.039 0.039  0.01 0.033 0.033  0.01 0.033 0.033 

3EOA  0.037 0.041  0.031 0.036 0.042  0.036 0.041 0.058  0.036 0.041 0.041 

3F1P  0.012 0.047  0.147 0.466 0.466  0.012 0.479 0.579  0.012 0.06 0.479 

3FN1  0.011 0.011  0.034 0.49 0.49  0.013 0.442 0.442  0.011 0.442 0.442 

3G6D  0.055 0.073  0.075 0.254 0.345  0.416 0.416 0.416  0.416 0.416 0.416 

3H2V  0.009 0.011  0.035 0.088 0.088  0.017 0.085 0.085  0.017 0.085 0.085 

3HI6  0.03 0.03  0.043 0.043 0.08  0.031 0.048 0.083  0.031 0.048 0.083 

3HMX  0.004 0.005  0.026 0.038 0.256  0.038 0.202 0.202  0.038 0.202 0.202 

3K75  0.905 0.908  0.039 0.039 0.232  0.896 0.896 0.896  0.905 0.908 0.908 

3L5W  0.061 0.061  0.042 0.192 0.192  0.035 0.182 0.182  0.035 0.182 0.182 

3L89  0.008 0.011  0.008 0.019 0.019  0.015 0.015 0.019  0.015 0.015 0.019 

3LVK  0.046 0.209  0.484 0.484 0.484  0.043 0.103 0.458  0.043 0.103 0.458 

3MXW  0.012 0.014  0.036 0.036 0.036  0.036 0.036 0.036  0.036 0.036 0.036 

3P57  0.02 0.024  0.087 0.087 0.087  0.02 0.07 0.07  0.02 0.07 0.07 

3PC8  0.786 0.812  0.824 0.824 0.824  0.869 0.869 0.869  0.786 0.869 0.869 

3RVW  0.007 0.011  0.039 0.166 0.166  0.063 0.063 0.173  0.063 0.063 0.173 

3S9D  0.821 0.84  0.568 0.568 0.568  0.811 0.845 0.845  0.811 0.845 0.845 
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3SGQ  0.036 0.771  0.097 0.206 0.206  0.116 0.159 0.194  0.036 0.159 0.771 

3SZK  0.01 0.011  0.063 0.063 0.063  0.009 0.063 0.063  0.009 0.063 0.063 

3V6Z  0.006 0.008  0.031 0.076 0.076  0.014 0.052 0.074  0.014 0.052 0.074 

3VLB  0.359 0.359  0.068 0.663 0.663  0.382 0.864 0.864  0.382 0.864 0.864 

4CPA  0.037 0.053  0.035 0.094 0.218  0.094 0.196 0.196  0.094 0.196 0.196 

4DN4  0.387 0.387  0.102 0.156 0.232  0.152 0.225 0.225  0.152 0.225 0.225 

4FZA  0.62 0.678  0.01 0.048 0.048  0.01 0.015 0.042  0.62 0.678 0.678 

4G6J  0.017 0.017  0.031 0.053 0.128  0.033 0.193 0.193  0.033 0.193 0.193 

4G6M  0.041 0.041  0.039 0.205 0.205  0.043 0.215 0.215  0.043 0.215 0.215 

4H03  0.004 0.072  0.016 0.022 0.03  0.021 0.03 0.03  0.021 0.03 0.03 

4HX3  0.023 0.036  0.014 0.065 0.065  0.014 0.058 0.063  0.014 0.058 0.063 

4IZ7  0.585 0.585  0.371 0.371 0.371  0.018 0.367 0.367  0.018 0.585 0.585 

4M76  0.008 0.008  0.009 0.052 0.052  0.03 0.03 0.042  0.03 0.03 0.042 

7CEI  0.867 0.867  0.443 0.443 0.443  0.873 0.873 0.873  0.867 0.873 0.873 

9QFW  0.037 0.107  0.188 0.188 0.198  0.016 0.217 0.217  0.016 0.217 0.217 

BAAD  0.012 0.015  0.014 0.014 0.019  0.009 0.015 0.015  0.009 0.015 0.015 

BOYV  0.014 0.014  0.035 0.037 0.037  0.016 0.038 0.038  0.016 0.038 0.038 

BP57  0.067 0.067  0.021 0.074 0.074  0.026 0.027 0.049  0.026 0.067 0.067 

CP57  0.104 0.147  0.014 0.214 0.214  0.026 0.067 0.115  0.026 0.104 0.147 

Average   0.269 0.316   0.127 0.219 0.263   0.240 0.326 0.356   0.266 0.372 0.416 
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Table S2: DockQ score of the best model for the targets in Benchmark 2.    

 

Target 

  DockQ score of best model 

 Alphafold    Cluspro    Alphafold refined Cluspro   
Alphafold refined Cluspro 

plus Alphafold   

  Top 1 Top 5   Top 1 Top 5 Top 10   Top 1 Top 5 Top 10   Top 1 Top 5 Top 10 

5ZNG  0.017 0.017  0.081 0.081 0.081  0.04 0.065 0.071  0.04 0.061 0.071 

6A6I  0.151 0.151  0.103 0.514 0.514  0.106 0.191 0.191  0.106 0.179 0.191 

6GS2  0.486 0.52  0.004 0.076 0.438  0.487 0.487 0.487  0.486 0.51 0.52 

6H4B  0.022 0.051  0.581 0.581 0.581  0.802 0.816 0.816  0.802 0.816 0.816 

6IF2  0.692 0.714  0.028 0.489 0.489  0.728 0.728 0.728  0.692 0.728 0.728 

6II6  0.798 0.798  0.63 0.63 0.63  0.796 0.796 0.796  0.798 0.798 0.798 

6ONO  0.619 0.619  0.02 0.089 0.089  0.639 0.649 0.649  0.639 0.649 0.649 

6PNQ  0.17 0.17  0.044 0.053 0.212  0.041 0.22 0.22  0.041 0.22 0.22 

6Q76  0.925 0.925  0.019 0.598 0.598  0.944 0.944 0.944  0.925 0.944 0.944 

6U08  0.197 0.197  0.249 0.542 0.542  0.188 0.648 0.648  0.188 0.648 0.648 

6ZBK  0.807 0.862  0.328 0.438 0.438  0.861 0.861 0.861  0.807 0.862 0.862 

7AYE  0.764 0.815  0.775 0.775 0.775  0.849 0.865 0.865  0.764 0.865 0.865 

7D2T  0.006 0.01  0.46 0.46 0.46  0.013 0.489 0.489  0.013 0.489 0.489 

7M5F  0.009 0.009  0.009 0.011 0.016  0.008 0.015 0.015  0.008 0.015 0.015 

7N10  0.745 0.847  0.749 0.749 0.749  0.799 0.799 0.799  0.745 0.847 0.847 

7NLJ  0.018 0.028  0.077 0.091 0.091  0.07 0.07 0.074  0.07 0.07 0.07 

7P8K  0.032 0.061  0.022 0.478 0.478  0.886 0.886 0.886  0.886 0.886 0.886 

Average   0.380 0.400   0.246 0.391 0.422   0.486 0.561 0.561   0.471 0.564 0.566 
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