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Abstract

Research in human associated microbiomes often involves the analysis of taxonomic
count tables generated via high-throughput sequencing. It is difficult to apply statistical
tools as the data is high-dimensional, sparse, and compositional. An approachable way
to alleviate high-dimensionality and sparsity is to aggregate variables into pre-defined
sets. Set-based analysis is ubiquitous in the genomics literature, and has demonstrable
impact in improving interpretability and power of downstream analysis. Unfortunately,
there is a lack of sophisticated set-based analysis methods specific to microbiome
taxonomic data, where current practice often employs abundance summation as a
technique for aggregation. This approach prevents comparison across sets of different
sizes, does not preserve inter-sample distances, and amplifies protocol bias. Here, we
attempt to fill this gap with a new single sample taxon enrichment method that uses a
novel log-ratio formulation based on the competitive null hypothesis commonly used in
the enrichment analysis literature. Our approach, titled competitive balances for
taxonomic enrichment analysis (CBEA), generates sample-specific enrichment scores as
the scaled log ratio of the subcomposition defined by taxa within a set and the
subcomposition defined by its complement. We provide sample-level significance testing
by estimating an empirical null distribution of our test statistic with valid p-values.
Herein we demonstrate using both real data applications and simulations that CBEA
controls for type I error even under high sparsity and high inter-taxa correlation
scenarios. Additionally, it provides informative scores that can be inputs to downstream
analyses such as prediction tasks.

Author summary

The study of human associated microbiomes relies on genomic surveys via
high-throughput sequencing. However, microbiome taxonomic data is sparse and high
dimensional which prevents the application of standard statistical techniques. One
approach to address this problem is to perform analyses at the level of taxon sets.
Set-based analysis has a long history in the genomics literature, with demonstrable
impact in improving both power and interpretability. Unfortunately, there is limited
interest in developing new set-based tools tailored for microbiome taxonomic data given
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its unique features compared to other ’omics data types. We developed a new tool to
generate taxon set enrichment scores at the sample level through a novel log-ratio
formulation based on the competitive null hypothesis. Our scores can be used for
statistical inference at both the sample and population levels, as well as inputs to other
downstream analyses such as prediction models. We demonstrate the performance of
our method against competing approaches across both real data analyses and simulation
studies.

Introduction 1

The microbiome is the collection of microorganisms (bacteria, protozoa, archaea, fungi, 2

and viruses) which co-exist with their host. Previous research has shown that changes 3

in the composition of the human gut microbiome are associated with important health 4

outcomes such as inflammatory bowel disease [1], type II diabetes [2], and obesity [3]. 5

To understand the central role of the microbiome in human health, researchers have 6

relied on high-throughput sequencing methods, either by targeting a specific 7

representative gene (i.e. amplicon sequencing) or by profiling all the genomic content of 8

the sample (i.e. whole-genome shotgun sequencing) [4]. Raw sequencing data is then 9

processed through a variety of bioinformatic pipelines [5, 6], yielding various data 10

products, one of which are taxonomic tables which can be used to study associations 11

between members of the microbiome and an exposure or outcome of interest. 12

However, there are unique challenges in the analysis of these taxonomic count 13

tables [7, 8]. The data is sparse, high-dimensional, and likely compositional [7–9]. Even 14

though these problems are challenging, a very approachable solution is to use set-based 15

analysis methods, also termed gene set testing in the genomics literature [10,11]. 16

Aggregated variables can be less sparse, and testing on a smaller number of features can 17

reduce the multiple-testing burden. As such, gene set testing methods have been shown 18

to increase power and reproducibility of genomic analyses. Furthermore, through the 19

usage of functionally informative sets defined a priori based on historical experiments 20

(for example MSigDB [12], and Gene Ontology [13]), gene set analysis also allows for 21

more biologically informative interpretations. 22

A diverse set of methods have already been developed in this field. Traditional methods 23

utilize the hypergeometric distribution to test for the overrepresentation of a gene set 24

using a candidate list of genes screened based on a marginal model [11]. Unfortunately, 25

these approaches are sensitive to the differential expression test as well as the chosen 26

threshold when trying to select genes for the candidate list. Aggregate score methods, 27

which are generally preferred [14], instead assign a score for each gene set based on 28

gene-specific statistics such as z-scores or fold change. Of these approaches, methods 29

such as GSEA [12] perform a test for each gene set at the population level, summarizing 30

information across all samples. Conversely, methods such as GSVA [15] and VAM [16], 31

generate enrichment scores at the sample level and are more akin to a transformation. 32

In addition to being able to screen for enriched sets per sample, this strategy also allows 33

for the flexible incorporation of different downstream analyses, such as fitting prediction 34

models, or performing dimension reduction. 35

In microbiome research, even when no explicit enrichment analysis is performed, 36

researchers often aggregate taxa to higher Linnean classification levels such as genus, 37

family, or phylum. However, there is limited research done to extend existing set-based 38

methods to microbiome relative abundance data. Some software suites, such as 39

MicrobiomeAnalyst, do offer tools to perform enrichment testing with curated taxon 40

sets [17]. However, the approach used in MicrobiomeAnalyst is a form of 41
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overrepresentation analysis at the population level and therefore similarly sensitive to 42

the differential abundance approach used and p-value threshold. One of the primary 43

challenges for adapting gene set analysis to the microbiome context is the compositional 44

nature of the data. Sequencing technologies constrain the total number of reads, and 45

samples are expected to have the same number of reads instead of DNA content [18, 19]. 46

However, different samples still yield arbitrarily different total read counts [9, 20], 47

suggesting the use of normalization methods to allow for proper comparison of feature 48

abundances across samples. However, microbiome data sets do not follow certain 49

assumptions that enable the cross-application of methods from similar fields (such as 50

RNA-seq) [18,19]. For example, DESeq2’s estimateSizeFactors [21] assumes that the 51

majority of genes acts as housekeeping genes with constant expression levels across 52

samples. As such, practitioners often rely on total sum normalization to transform 53

count data into relative proportions that sum to one [22]. Some studies have provided 54

emprical performance vealuations supporting this normalization schema [23]. Since this 55

approach imposes a sum constraint on the data, post normalization microbiome data 56

sets are compositional [9], which means that the abundance of any taxon can only be 57

interpreted relative to another. Under this scenario, log-ratio based approaches from the 58

compositional data analysis (CoDA) literature [24] are motivated to address this 59

issue. 60

Unfortunately, the standard practice for aggregating variables using element-wise 61

summations (referred to as amalgamations in the CoDA literature), does not adequately 62

address the compositional issue [25]. First, inter-sample Aitchison distances computed 63

on original parts are not preserved after amalgamation [26]. This means that cluster 64

analyses might show different results depending on the level of amalgamation and 65

differs from the those computed from original variables. Second, amalgamations do not 66

allow for comparison between sets of different sizes within the same experimental 67

condition since larger sets will have larger means and variances. Third, considering that 68

each taxa has specific measurement biases [25], an amalgamation based approach would 69

make the bias of the amalgamated variable dependent on the relative abundance of the 70

its constituents. In other words, if taxon 1 has abundance A1 and bias B1, while taxon 71

2 has abundance A2 and bias B2, then the bias of the aggregate variable (for example, a 72

genera) is (A1B1 +A2B2)/(A1 +A2) (see Appendix 1. from McLaren et al. [25]). This 73

means that bias invariant approaches (such as analyses of ratios) would no longer be 74

invariant when applied to amalgamated variables as bias now varies across samples. The 75

alternative would be to multiply the proportions rather than to sum them [26]. 76

Here, we present a taxon-set testing method for microbiome relative abundance data 77

that addresses the aforementioned issues. Our approach generates enrichment scores at 78

the sample level similar to GSVA [15] and VAM [16]. We leverage the concept of the Q1 79

competitive hypothesis presented in Tian et al. [27] to formulate the enrichment of a set 80

as the compositional balance [28] of taxa within the set and remainder taxa using 81

multiplication as the method of aggregating proportions [26]. This well-defined null 82

hypothesis allows us to perform significance testing with interpretable results through 83

estimating the empirical distribution of our statistic under the null that can also 84

account for variance inflation due to inter-taxa correlation [29]. 85

In the following sections, we present our approach titled competitive balances for 86

taxonomic erichment analysis (CBEA). First, we present the step-by-step formulation of 87

CBEA and discuss its statistical properties. Second, we detail our evaluation strategy 88

using both real data and parametric simulations, and the methods we are comparing 89

against. Third, we present results on enrichment testing using CBEA for single samples 90

as well as at the population level. Fourth, we show the performance of CBEA in 91

downstream disease prediction. Finally, we discuss our results and the limitations of our 92
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method. An R package implementation of CBEA can be found on GitHub 93

(qpmnguyen/CBEA). 94

Materials and Methods 95

Competitive balances for taxonomic enrichment analysis 96

(CBEA) 97

The CBEA method generates sample-specific enrichment scores for microbial sets using 98

products of proportions [30]. Details on the computational implementation of CBEA can 99

be found in the Supplementary Materials. The CBEA method takes two inputs: 100

• X: n by p matrix of positive proportions for p taxa and n samples measured 101

through either targeted sequencing (such as of the 16S rRNA gene) or whole 102

genome shotgun sequencing. Usually X is generated from standard taxonomic 103

profiling pipelines such as DADA2 [5] for 16S rRNA sequencing, or 104

MetaPhlAn2 [6] for whole genome shotgun sequencing. CBEA does not accept X 105

matrices with zeroes since it invalidates the log-ratio transformation. Users can 106

generate a dense matrix X using a method of choice, however by default mode 107

CBEA will add a pseudocount of 10−5 if zeroes are detected in the matrix. 108

• A: p by m indicator matrix annotating the membership of each taxon p to m sets 109

of interest. These sets can be Linnean taxonomic classifications annotated using 110

databases such as SILVA [31], or those based on more functionally driven 111

categories such as tropism or ecosystem roles (Ai,j = 1 indicates that microbe i 112

belongs to set j). 113

The CBEA method generates one output: 114

• E: n by m matrix indicating the enrichment score of m pre-defined sets identified 115

in A across n samples. 116

The procedure is as follows: 117

1. Compute the CBEA statistic: Let M be a n by m matrix of CBEA scores. 118

Let Mi,k be CBEA score for set k and sample i: 119

Mi,k =

√∑
k Aik(p−

∑
k Aik)

p
ln

(
g(Xi,j |Aj,k = 1)

g(Xi,j |Aj,k 6= 1))

)
(1)

where g(.) is the geometric mean. This represents the ratio of the geometric mean 120

of the relative abundance of taxa assigned to set k and remainder taxa. 121

2. Estimate the empirical null distribution Enrichment scores represent the 122

test statistic for the Q1 null hypothesis Ho that relative abundances in X of 123

members of set k are not enriched compared to those not in set k. Since the 124

distribution of CBEA under the null vary depending on data characteristics 125

(Fig 1), an empirical null distribution will be estimated from data. 126

• Compute the CBEA statistic on permuted and un-permuted X. 127

Let Xperm be the column permuted relative abundance matrix, and Mperm 128

be the corresponding CBEA scores generated from Xperm. Similarly, we have 129

Munperm be CBEA scores generated from X. 130

• Estimate correlation-adjusted empirical distribution for each set. 131

For each set, a fit a parametric distribution to both Mperm and Munperm. 132
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The location measure estimated from Mperm and the spread measure 133

estimated from Munperm will be combined as the correlation-adjusted 134

empirical null distribution Pemp for each set. Two available options are the 135

normal distribution and the mixture normal distribution. For the normal 136

distribution, parameters were estimated using the method of maximum 137

likelihood implemented in the fitdistr package [32]. For the mixture normal 138

distribution, parameters were estimated using an expectation-maximization 139

algorithm implemented in the mixtools package [33]. 140

3. Calculate finalized CBEA scores with respect to the empirical null. 141

Enrichment scores Ei,k are calculated as the cumulative distribution function 142

(CDF) values or z-scores with respect to Pemp distribution. Raw p-values can be 143

calculated by subtracting E from 1. 144

Properties of CBEA 145

CBEA and balances between groups of parts 146

The CBEA statistic is based on the multiplication-based aggregation approach used to 147

calculate balances between groups of parts [26]. These balances are computed using the 148

isometric log ratio (ILR) transformation [30] formula. For a given balance i splitting 149

variables across sets R and S, we have the balance coordinate x∗i as: 150

x∗i =

√
rs

r + s
log

(
g(Xj|j∈R)

g(Xj|j∈S)

)
(2)

where r and s are the cardinalities of sets R and S respectively, g(z) is the geometric 151

mean, and Xj are values of the original predictors with indexes defined by membership 152

in R and S. 153

CBEA belongs to a set of methods that seek to leverage compositional balances for the 154

analysis of microbiome data [28,34–36]. Unlike methods such as PhILR [35], CBEA 155

does not present an orthonormal basis for the complete ILR transformation (such as a a 156

sequential binary partition) [30]. Therefore, it is not a subclass of the ILR 157

transformation and is adjacent to this approach. A similar method to CBEA would be 158

phylofactor [34]. However, instead of performing an optimization procedure to identify 159

interesting balances, CBEA constructs balances a priori using pre-defined sets, and 160

formulates the enrichment of a set as the scaled log-ratio between the center of the 161

subcomposition represented by microbes within the set and the center of the 162

subcomposition represented by remainder taxa. This formulation aligns with the Q1 163

null hypothesis from the gene set testing literature [27]. 164

Estimating the null distribution 165

We can assume that the CBEA statistic, similar to other log-ratio based transforms, 166

follows a normal distribution [30,37]. However, when applying CBEA for hypothesis 167

testing at the sample level, it is expected that the researcher would be testing a large 168

number of hypotheses. Under the assumption that the number of truly significant 169

hypotheses is low, Efron [38] showed that estimating the null distribution of the test 170

statistic directly (termed the empirical null distribution) is much more preferable than 171

using the theoretical null due to unobserved confounding effects inherently part of 172

observational studies. As such, to perform significance testing using CBEA, we also 173

estimated the null distribution from observed raw CBEA variables. 174

This assumption is also supported by preliminary simulation studies (detailed below). 175

We simulated microbiome taxonomic count data under the global null across different 176
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data features and compute raw CBEA scores and compute kurtosis and skewness in 177

Fig 1A. We found that the characteristics of the null change depending on sparsity and 178

inter-taxa correlation. Sparsity seems to drive the distribution to be more positively 179

skewed while inter-taxa correlation encourages platykurtic (negative kurtosis). The 180

effect is most dramatic under both high inter-taxa correlation and sparsity. This 181

heterogeneity further supports the decision to estimate an empirical null distribution, as 182

suggested by Efron [38]. 183

Fig 1. Properties of the null distribution of CBEA under the global null
simulations. Panel (B) presents kurtosis and skewness of CBEA scores while panel
(A) presents the goodness of fit (as Kolmogorov-Smirnov D statistic) for mixture
normal and normal distributions. Panel (C) is a density plot of the shape of the null
distribution. Results indicated the necessity of estimating an empirical null and
demonstrating that the mixture distribution was the better fit compared to the basic
normal.

Additionally, the degree of kurtosis and skewness also suggests that the normal 184

distribution itself might not be a good approximation of the null. To address this issue, 185

we also evaluated a two-component normal mixture distribution. The goodness of fit of 186

the mixture normal and the normal distribution using Kolmogorov-Smirnov (KS) test 187

statistic computed on fitted normal and mixture normal distribution when fitted on 188
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CBEA scores in simulation scenarios under the global null is shown in Fig 1B. We can 189

see that the mixture normal distribution is a better fit (lower KS scores) than the 190

normal distribution across both sparsity and correlation settings. 191

We performed our empirical null estimation by fitting our distribution of choice and 192

computing relevant parameters on raw CBEA scores on taxa-permuted data (equivalent 193

to gene permutation in the gene expression literature). As such, the null distribution is 194

characterized by scores computed on sets of equal size with randomly drawn taxa. 195

Variance inflation due to inter-taxa correlation 196

When taxa within a set are highly correlated, the variance of the sample mean of 197

taxon-wise statistics is inflated. Without loss of generalizability, for a set of taxa with 198

taxon-specific statistics x1, ..., xp we have the variance of the mean x̄ to be: 199

V ar(x̄) =
1

m2

∑
i=1

(σ2
i ) +

∑
i<j

ρijσiσj

 (3)

where σi is the standard deviation of taxon i and ρij is the correlation between i and j. 200

The second term of (3) is the correlation dependent variance component, which goes to 201

0 if there is no correlation. The CBEA statistic follows a similar pattern. Since the 202

geometric mean of a set of variables is equivalent to the exponential of the arithmetic 203

mean of their logarithms, we can re-write CBEA score for a set k with size K as 204

follows: 205

Mi,k =

√
K(p−K)

K + (p−K)

(
logXi,j|j∈K − logXi,j|j /∈K

)
(4)

where p is the overall number of taxa, j is the index of a taxa and K is the set of 206

indices of taxa in set k. The CBEA statistic then looks similar to a t-statistic for 207

difference in means of log-transformed proportions. As such, the pooled variance of 208

CBEA is dependent on the variance inflation of both mean components logXi,j|j∈K and 209

logXi,j|j /∈K . The result of this variance inflation is inflated type I error since highly 210

correlated sets are also detected as significantly enriched. 211

However, as Wu et al. [29] showed, performing column permutation to estimate the null 212

distribution of a competitive test statistic doesn’t allow for adequate capture of this 213

variance inflation factor since the permutation procedure disrupts the natural 214

correlation structure of the original variables. It is important to address this problem 215

since there is strong inter-taxa correlation within the microbiome [39]. Our strategy for 216

addressing this issue is to use the location (or mean) estimate from the column 217

permuted raw score matrix with the spread (or variance) estimate taken from the 218

original un-permuted scores. This still allows us to leverage the null distribution 219

generated via column permutation while using the proper variance estimate taken from 220

scores where the correlation structure has not been disrupted. As such, this procedure 221

assumes that the variance of the test statistic under the alternate hypothesis is the same 222

as that of the null. Details of the computational implementation to this estimation 223

process can be found in the Supplementary Materials. 224

However, set-based analysis is an exploratory approach that can help generate 225

functionally informative hypotheses, and as such users might not want strict type I error 226

control in favor of higher power. This is especially true for competitive hypotheses, 227

where its stricter formulation compared to the self-contained approach implies that the 228

test naturally has lower power [11,40]. Furthermore, sets that are highly correlated 229

compared to background can be biologically relevant. Therefore, CBEA provides an 230

option for users to specify whether correlation adjustment is desired. 231

February 16, 2022 7/25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2022. ; https://doi.org/10.1101/2021.09.07.459294doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459294
http://creativecommons.org/licenses/by-nc-nd/4.0/


Evaluation 232

We based our evaluation strategy on gene set testing benchmarking standards set by 233

Geistlinger et al. [41] and utilized the same approaches whenever possible. All data sets 234

are obtained from either the curatedMetagenomicData [42] and HMP16SData [43] R 235

packages (2020-10-02 snapshot), or downloaded from the Qiita platform [44]. All code 236

and data sets used for evaluation of this method is publicly available and can be found 237

on GitHub (qpmnguyen/CBEA analysis). Additional packages used to support this 238

analysis includes: tidyverse [45], pROC [46], phyloseq [47], mia [48], targets [49]. 239

Statistical significance 240

We evaluate the inference procedure of CBEA compared to alternate methods using two 241

approaches: randomly sampled taxa sets and sample label permutation. These analyses 242

were performed on the 16S rRNA gene sequencing of the oral microbiome from the 243

Human Microbiome Project [1, 50]. This data set contains 369 samples split into two 244

subsites: supragingival and subgingival. We processed this data set by removing all 245

samples with total read counts less than 1000 and OTUs whose presence (at least 1 246

count) is in 10% of samples or less. 247

Sample-level inference 248

Due to CBEA’s self-contained null hypothesis, we can perform inference at the sample 249

level for the enrichment of a set. We evaluated this application by generating one 250

random taxon-set of different sizes S ∈ {20, 50, 100, 150, 200} across 500 iterations. 251

Random sets can act as our estimate for type I error since this matches the CBEA null 252

hypothesis stated in Materials and Methods, where we expect within each sample, sets 253

of randomly drawn taxa should not be significantly enriched compared to the remainder 254

background taxa. For this evaluation, we estimated type I error as the fraction of 255

samples where our random set is detected as significant at a p-value threshold of 0.05 256

with confidence bands computed from the standard error across all iterations. 257

Additionally, this analysis also tests whether CBEA is sensitive to different set 258

sizes. 259

Population-level inference 260

We can perform enrichment testing at the population level by generating corresponding 261

sample level CBEA scores and performing a two-sample test such as Welch’s t-test. In 262

order to evaluate CBEA under this context, we generated CBEA scores of sets 263

representing genus-level annotation in above gingival data set [1, 50] and applied a t-test 264

to test for enrichment (similar to GSVA [15]) across a randomly generated variable 265

indicating case/control status (repeated 500 times). Type I error is estimated as the 266

fraction of sets per iteration found to be significantly enriched with confidence bands 267

computed from the standard error across all iterations. In addition, we also performed a 268

random set analysis assessment, where we generated 100 sets of different set sizes 269

S ∈ {20, 50, 100, 150, 200} and evaluated the fraction of genera that were found to be 270

differentially abundant across the original labels (supragingival versus subgingival 271

subsite). 95% confidence intervals were computed using the Agresti-Couli 272

approach [51]. 273

Phenotype relevance 274

We want to evaluate whether sets found to be significantly enriched by CBEA are 275

relevant to the research question. To perform this assessment, we relied on the gingival 276
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data set mentioned above [1, 50]. This data set was chosen because its clear biological 277

interpretation can serve as the ground truth. Specifically, we expect aerobic microbes to 278

be enriched in the supragingival subsite where the biofilm is exposed to the open air, 279

while conversely anaerobic microbes thrive in the subgingival site [52]. Genus-level 280

annotations for microbial metabolism from Beghini et al. [53] were obtained from the 281

GitHub repository associated with Calagaro et al. [54]. For sample-level inference, we 282

assessed power as the fraction of supragingival samples where aerobic microbes are 283

significantly enriched. For population-level inference, power is the fraction of sets 284

representing genus level taxonomic assignments that were significant across subsite 285

labels. 286

In addition to statistical power, we also assessed phenotype relevance through 287

evaluating whether highly ranked sets based on CBEA scores are more likely to be 288

enriched according to the ground truth. This is represented by the area under the 289

receiving operator curve (AUROC/AUC) scores computed on CBEA scores against true 290

labels (similar approach was used to evaluate VAM [16]). DeLong 95% confidence 291

intervals for AUROC [55] were obtained for each estimate. 292

Disease Prediction 293

CBEA scores can also be used for downstream analyses such as disease prediction tasks. 294

We utilized two data sets for this evaluation: 295

1. Whole genome sequencing of stool samples from inflammatory bowel disease 296

(IBD) patients in the MetaHIT consortium [56]. This data set contains 396 297

samples from a cohort of European adults, where 195 adults were classified as 298

having IBD (which includes patients diagnosed with either ulcerative colitis or 299

Crohn’s disease). We processed this data by removing all samples with less than 300

1,000 total read counts as well as any OTU that was present (with non-zero 301

proportions) in 10% of the samples or less. Prior to model fitting, we 302

back-transformed relative abundances into count data (to align the format with 303

our 16S rRNA gene sequencing data set) using the provided total number of reads 304

aligned to MetaPhlan marker genes (per sample). 305

2. 16S rRNA gene sequencing of stool samples from IBD patients in the RISK 306

cohort [57]. This data set contains 16S rRNA gene sequencing samples from a 307

cohort of pediatric patients (ages < 17) from the RISK cohort enrolled in the 308

United States and Canada. Of the 671 samples obtained, 500 samples belong to 309

patients with IBD. We processed this data set by removing all samples with less 310

than 1,000 total read counts as well as any OTU that was present (at least 1 311

count) in 10% of the samples or less. 312

We evaluate disease prediction performance by fitting a random forest model [58] using 313

as inputs CBEA scores to classify samples of patients with IBD and healthy controls. 314

Random forest was chosen as a baseline learner due to its flexibility as an out-of-the-box 315

model that is easy to fit. In this instance we evaluated predictive performance of a 316

default random forest model (without hyperparameter tuning) AUROC after 10-fold 317

cross validation. Additionally, we utilized SMOTE to correct for class imbalances [59]. 318

Implementation was done using the tidymodels suite of packages [60]. 319

Comparison Methods 320

We benchmarked the statistical properties of CBEA against existing baseline 321

approaches. For sample-level inference analyses, utilized the Wilcoxon rank-sum test, 322

which non-parametrically tests the difference in mean counts between taxa from a 323

February 16, 2022 9/25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2022. ; https://doi.org/10.1101/2021.09.07.459294doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459294
http://creativecommons.org/licenses/by-nc-nd/4.0/


pre-defined set and its remainder similar to CBEA. For assessments at the population 324

level, we compared CBEA against performing a standard test for differential abundance 325

with set-level features generated via element-wise summations instead. We chose 326

DESeq2 [21] and corncob [61] because they represent both methods extrapolated from 327

RNA-seq [47] and those developed specifically for microbiome data. 328

Since disease prediction models and rankings-based phenotype relevance analyses seek 329

to evaluate the informativeness of CBEA scores instead of relying on computing 330

p-values, we compared performance against other single sample based approaches from 331

the gene set testing literature, specifically ssGSEA [62] and GSVA [15]. Additionally, for 332

evaluating prediction, we also compared performance against a standard analysis plan 333

where inputs are count-aggregated sets with the centered log-ratio (CLR) 334

transformation. 335

Results 336

In this section, we present results for evaluating statistical significance, phenotype 337

relevance, and predictive performance. In addition to real data, we also evaluated 338

models based on parametric simulations, where results can be found in the 339

Supplemental Materials. 340

Statistical Significance 341

Inference at the sample level 342

CBEA provides significance testing at the sample level through a self-contained 343

competitive null hypothesis. Generating random sets approximate the global null 344

setting where within each sample, sets generated by randomly sampling taxa should not 345

be significantly more enriched than remainder taxa. 346

Fig 2 demonstrates type I error of sample-level inference evaluated using the random set 347

approach. The Wilcoxon rank sum test and unadjusted CBEA under mixture normal 348

assumption demonstrated good type I error control at the appropriate α level. This fits 349

with our expectations since the mixture normal distribution has a much better fit than 350

the normal distribution especially at the tails of the empirical distribution (Fig 1). 351

However, other variants of CBEA demonstrated inflated type I error, especially 352

correlation adjusted variants compared to their unadjusted counter parts. 353

Encouragingly, all methods demonstrate consistent performance across all set sizes, with 354

a slight increase in type I error at the highest levels. 355

Interestingly, simulation results (S1 Fig) showed an opposite pattern. Adjusted 356

approaches were good at controlling for type I error, especially under the low inter-taxa 357

correlation values within the set (similar to generating random sets where the natural 358

correlation structure is disrupted). In these simulations, unadjusted approaches and the 359

Wilcoxon rank sum test had significant type I error inflation with increasing correlation. 360

All approaches seems to be invariant to the level of data sparsity. 361

Inference at the population level 362

Similar to other single sample approaches to gene set testing such as GSVA [15], we can 363

perform inference at the population level by utilizing a two-sample difference in means 364

test. Here, we evaluate using CBEA scores generated under different settings with 365

Welch’s t-test in a supervised manner to assess whether a set is enriched across 366

case/control status. 367
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Fig 2. Random taxa set analyses for inference at the sample level of CBEA under
different parametric assumptions compared against a Wilcoxon rank-sum test. Type I
error (y-axis) was evaluated by generating random sets of different sizes (x -axis) (500
replications per size) and computing the fraction of samples where the set was found to
be significantly enriched at α = 0.05. Error bars represent the mean type I error ±
sample standard error computed across 500 replications of the experiment. Only the
unadjusted CBEA with the mixture normal distribution and the Wilcoxon rank sum test
were able to control for type I error at 0.05. All approaches are invariant to set sizes.

Fig 3 shows results for this scenario using both random sample label and random set 368

evaluations. The random sample label approach (Fig 3A) provides a controlled setting 369

where we can estimate type I error rate controlled at α = 0.05. Across all replications, 370

CBEA methods were able to control for type I error at the nominal threshold of 0.05, 371

with CBEA raw scores being the most performant. Neither output types, correlation 372

adjustment, nor distributional assumption improved performance values. Surprisingly, 373

DESeq2 and corncob both exhibit significantly inflated type I error. 374

We also assessed the impact of set-size on the inference procedure by testing for 375

enrichment using the original sample labels but with randomly sampled sets of different 376

sizes (Fig 3B). Overall we observed very similar values across CBEA as well as corncob 377

and DESeq2, suggesting that no individual method is systematically identifying too 378

many significant sets. Additionally, similar to analogous analyses at the sample level, no 379

approach was significantly sensitive to changes in set sizes. 380

Phenotype Relevance 381

Inference at the sample level 382

In Fig 4, we evaluate whether sets found to be significant by CBEA are relevant to the 383

phenotype of interest. We leveraged the gingival data set as stated in Evaluation section 384

where we know beforehand that aerobic microbes are more likely to be enriched in 385

supragingival subsite samples and vice versa. 386

We estimated statistical power using this data set as the fraction of supragingival 387
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Fig 3. Random sample label (A) and random set (B) analyses for population level
inference. (A) Type I error (x -axis) was estimated as the overall fraction of sets found
to be enriched α = 0.05 using randomly generated sample labels (500 permutations).
Error bars represent the mean type I error ± sample standard error. (B) Proportion of
significant sets (y-axis) using 100 randomly generated sets of different set sizes (x -axis).
Confidence intervals computed using Agresti-Couli method for binomial proportions.
For sample label permutation (A), all CBEA approaches were able to control for type I
error but not for corncob and DESeq2. For random set analyses (B), all approaches
demonstrate similar rate of accepting significant sets and were invariant to overall set
size.

samples where the set representing aerobic microbes were significantly enriched. We 388

observed that adjusted CBEA approaches demonstrate much lower power compared to 389

the Wilcoxon rank-sum test and unadjusted variants. This is surprising given the fact 390

that in statistical significance analyses, the adjusted CBEA approach provides inflated 391

type I error, especially if the normal distribution assumption was chosen, which 392

indicates a mismatch in estimating the null distribution since a high type I error did not 393

result in increased power. 394

We also evaluated phenotype relevance by assessing whether enriched sets according to 395
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Fig 4. Statistical power (A) and score rankings (B) to assess phenotype relevance. (A)
Power (x -axis) was estimated as the overall fraction of aerobic microbes found to be
enriched in supragingival samples at α = 0.05. 95% confidence intervals were computed
using the Agresti-Couli approach for binomial proportions. (B) Score rankings were
evaluated by comparing computed scores against true values using AUROC (x -axis).
DeLong 95 % confidence intervals for AUROC were computed.

ground truth are preferentially ranked higher using assigned continuous scores (instead 396

of performing a hypothesis test). This aspect is captured through computing AUROC 397

values comparing computed enrichment scores and true labels. Consistent with the 398

previous type I error evaluation, adjusting for correlation did not improve performance, 399

where obtained AUROC were around 0.5 and at the same level as the benchmark 400

Wilcoxon rank sum statistic. Unadjusted methods were much better at ranking true 401

enriched sets, however the mean AUROC values are lower than alternate single sample 402

enrichment methods (GSVA [15] and ssGSEA [62]) even though this difference is not 403

significant due to overlapping confidence intervals. 404

The above results were replicated in simulation studies where we observed that adjusted 405

approaches were very conservative and demonstrated significantly lower power (S3 Fig) 406

with increasing correlation even at the highest evaluated effect sizes. When assessing 407

score rankings, the performance of CBEA was closer to ssGSEA and GSVA compared 408

to real data evaluations, however all single sample approaches were much better than 409

using the W statistic from the Wilcoxon Rank Sum test. 410

Inference at the population level 411

We also assessed statistical power for population level inference scenarios using a similar 412

approach. Here, enrichment scores for sets representing all identified genera were 413

computed, and power was estimated as the fraction of sets found to be differentially 414

enriched across sample site labels (supragingival or subgingival). We compared these 415

results against performing a differential abundance test of genus level features generated 416

via sum-based approaches. Results are shown in Fig 5. Some CBEA variants, such as 417

CDF outputs for the mixture normal distributional assumption, did not correctly detect 418

as many significant sets as DESeq2 or corncob despite very close performance values. 419
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Fig 5. Statistical power to assess phenotype relevance of inference tasks at the
population level. Power (x -axis) was estimated as the overall fraction of sets
representing genera that are aerobic or anaerobic microbes found to be differentially
enriched across sample type (supragingival or subgingival). 95% confidence intervals
were computed using the Agresti-Couli approach for binomial proportions.

Using raw CBEA scores was best approach, however it did not exceed values obtained 420

from DESeq2 and corncob. 421

Disease Prediction 422

Since CBEA can generate informative scores that can discriminate between samples 423

with inflated counts for a set (Fig 4), we wanted to assess whether they can also act as 424

useful inputs to predictive models. In this section we assessed the predictive 425

performance of a standard baseline random forest model [58] with different single 426

sample enrichment scoring methods as inputs (CBEA, ssGSEA, and GSVA). 427

Additionally, we also compared predictive performance of using these scores against the 428

a standard approach of using the centered log ratio transformation (CLR) on taxon sets 429

aggregated via abundance summations. 430

We fit our model to two data sets with a similar disease classification task of 431

discriminating patients who were diagnosed with IBD (includes both Crohn’s disease 432

and ulcerative colitis) using only microbiome taxonomic composition. The two data sets 433

represent different microbiome sequencing aprpaoches: the Gevers et al. [57] data set 434

uses 16S rRNA gene sequencing, while the Nielsen et al [56] data set uses whole genome 435

shotgun sequencing. 436

Fig 6 illustrates the performance of our model with AUROC as the evaluation criteria. 437

In the 16S rRNA data set, the best performing CBEA variant (CDF values computed 438

from an unadjusted mixture normal distribution) outperforms both GSVA and ssGSEA 439

but not the standard CLR approach. Interestingly, in the whole genome sequencing 440

data set, CBEA outperforms CLR, but was similar in performance to GSVA. However, 441

due to large confidence intervals, no method significantly out-performed other evaluated 442

approaches. As such, these results indicate that, for a given pre-determined collection of 443

sets, CBEA generated scores are can be informative and provide competitive 444
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Fig 6. Predictive performance of a naive random forest model trained on CBEA,
ssGSEA, GSVA generated scores as well as the standard CLR approach on predicting
patients with inflammatory bowel disease versus controls using genus level taxonomic
profiles. Data sets used span both 16S rRNA gene sequencing (Gevers et al. [57]) and
whole-genome shotgun sequencing (Nielsen et al. [56]). CBEA performs better than
GSVA and ssGSEA but not as well as CLR, with the exception of the whole genome
sequencing data set.

performance when acting as inputs to disease predictive models. Simulation studies (S5 445

Fig) showed similar results, however CBEA more consistently underperformed 446

compared to CLR across all scenarios. Interestingly, the performance gap decreases with 447

increasing sparsity levels and correlation. 448

Discussion 449

Inference with CBEA 450

CBEA is a microbiome-specific approach to generate sample specific enrichment scores 451

for taxonomic sets defined a priori. The formulation of CBEA as a comparison between 452

taxa within the set and its complement corresponds to the competitive null hypothesis 453

in the gene set testing literature [27]. Since this null hypothesis is self-contained per 454

sample, this allows users perform enrichment testing at the sample level. Additionally, 455

in combination with a difference in means test, CBEA can also test for enrichment at 456
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the population level across case/control status similar to GSVA [15]. 457

For single-sample analyses, we demonstrated that the CBEA approach (unadjusted with 458

mixture normal parametric assumption) was able to control for type I error at the 459

nominal level of 0.05 under the global null (Fig 2) while also demonstrating adequate 460

power (Fig 4). This performance is consistent across different set sizes as well as our 461

prior distributional fit analyses (Fig 1), where the mixture normal displayed superior fit 462

to the null distribution. Unfortunately, other variants of CBEA demonstrated neither 463

good type I error control nor power. Interestingly, while the adjusted methods showed 464

poor performance in real data evaluations (Fig 2), in simulation studies (S1 Fig, S3 Fig) 465

these approaches were able to control for type I error well with the trade-off of much 466

lower power. For the population-level inference task, CBEA also performed very well. 467

Under the permutation global null, representing genera abundance using CBEA scores 468

in combination with Welch’s t-test controls for type I error at the correct α threshold 469

while also keeping respectable power. Since the population level enrichment test is 470

equivalent to a differential abundance test using set-based features, we compared the 471

CBEA approach against using element-wise summations with corncob [61] and 472

DESeq2 [21] to test for set-level differential abundance. We chose DESeq2 because it is 473

an older approach from the bulk RNA-seq literature that has strong support for usage 474

in microbiome taxonomic data [47]. Alternately, corncob is a newer method developed 475

specifically for microbiome taxonomic data sets, where taxonomic counts are modeled 476

directly using a beta-binomial distribution instead of relying on normalization via size 477

factor estimation. We observed that using this approach resulted in an inflated type I 478

error compared to all variants of CBEA (Fig 2), yet did not improve power (Fig 4). 479

Results for CBEA approaches were replicated in simulation analyses, however for 480

corncob and DESeq2 we observed an opposite effect: in simulation experiments, both 481

methods show good type I error control but low power (S2 Fig, S4 Fig). 482

We hypothesized that the discrepancy between simulation and real data evaluations 483

could be due to differences in our assumptions regarding the data generating process 484

that informed our simulation schema. For the non-zero component of each taxon, we 485

sampled from the same negative binomial distribution where designated enriched taxa 486

were generated with inflated means (but the same dispersion). These marginals were 487

simulated to account for block exchangable correlation within the enriched set only. 488

This might have affected our results in two ways. First, our simulation scenario ensures 489

that all designated non-enriched taxa are identical to each other. This is not the case 490

for real data, where our null scenario involves randomly sampled sets that might by 491

chance all have taxa with inflated means compared to remainder taxa. This is 492

represented in S7 Fig, where the distribution of type I error across 500 replications is 493

right skewed for underperforming CBEA variants, indicating that these approaches are 494

much more sensitive compared to the Wilcoxon rank sum test or unadjusted CBEA 495

with mixture normal distribution. Second, as described in the Introduction section, we 496

did not consider taxon-specific biases that distort the observed relative abundance of 497

taxa compared to true values [25]. In the context of sum-based aggregations, the 498

resulting bias of the aggregated taxon-set is dependent on the relative abundances of 499

the contributing taxa (Appendix I in [25]). Conceptually, this means that measurement 500

error for a taxon-set is different across samples as relative abundance of contributing 501

taxa changes, leading to issues when attempting to perform inference. As such, we 502

expect methods like corncob or DESeq2 when performed on such sum aggregates in the 503

presence of taxon-specific biases to have inflated type I error compared to our 504

multiplication based approach. This also explains why conversely in simulation studies, 505

where taxon-specific biases are absent, corncob and DESeq2 performed better. 506
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Downstream analysis using predictive models 507

The sample-level enrichment scores generated by the CBEA method can be used in 508

downstream analyses such as disease prediction. We evaluated whether CBEA can be 509

used to generate set-based features for disease prediction models. 510

We fit a basic random forest model [58] to predict continuous and binary outcomes 511

using CBEA generated scores as inputs. Similar to our inference analysis, we compared 512

CBEA against both ssGSEA and GSVA. Additionally, we also evaluated CBEA with 513

the approach where counts of a set were aggregated using sums and applied the 514

centered log-ratio transformation (CLR). This is because CLR is considered standard 515

practice in using microbiome variables as predictors for a model [9]. Results showed 516

that CBEA generate scores perform well across both real data and simulation scenarios. 517

Since predictive models consider the effect of variables jointly (and in the case of 518

random forest, consider interactions as well), good performance indicates that CBEA 519

scores can capture joint distribution of sets, enabling both uniset and multi-set type 520

analyses. Comparatively, CBEA generated scores outperformed other enrichment score 521

methods (GSVA and ssGSEA), suggesting that it is more tailored for microbiome 522

taxonomic data sets. This is consistent with our sample ranking analysis (Fig 4), where 523

CBEA scores are on average more informative when used to rank samples based on 524

their propensity to have inflated counts. However, CBEA did not outperform the CLR 525

approach across our simulation studies, and only marginally performed better in the 526

real data analysis with WGS data. Fortunately, in simulation studies, this performance 527

gap between CLR and CBEA decreases with higher sparsity and correlation, especially 528

in low effect saturation scenarios. 529

Limitations and future directions 530

These above results demonstrate the applicability of CBEA under different data 531

analysis scenarios. If researchers are interested in performing inference, they can decide 532

between an unsupervised sample level approach (i.e. screen samples for enrichment of 533

certain characteristics) or a supervised population level approach (i.e. identifying 534

characteristics that are differentially abundant across case/control status). For the 535

unsupervised approach, utilizing the unadjusted CBEA with the mixture normal 536

distribution provides a good initial starting point. In the case where researchers only 537

want to screen samples with mean-inflated taxon sets (instead of additionally detecting 538

taxon sets with increased correlation), they can apply the adjusted approach, which can 539

be effective at conserving type I error even for high correlation scenarios. However, the 540

trade off for this adjustment is power, which decreases with increasing correlation. For 541

the supervised analysis, all CBEA variants control for type I error and provide adequate 542

statistical power. However, using raw CBEA scores with difference-in-means test such 543

as Welch’s t-test is preferable since is the least computationally expensive (no 544

estimation process) while still outperforming the use of a sum-based approach with a 545

standard differential abundance test. 546

Beyond inference, CBEA scores are flexible and can be useful for downstream analysis. 547

We demonstrated that for a given number of set-based features, CBEA can produce 548

informative scores that contribute to competitive performance of prediction models even 549

in low signal-to-noise ratios with high inter-taxa correlation and sparsity. This is 550

especially true for whole genome sequencing data sets, where CBEA outperfrorms the 551

standard approach of applying a CLR transformation. Researchers might find CBEA 552

useful under situations of high sparsity and inter-taxa correlation, or if the property of a 553

singular covariance matrix (a byproduct of the CLR transformation [9]) is undesired. 554

Even though we only evaluated prediction models, researchers can benchmark their own 555
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usage of CBEA for other downstream tasks such as sample ordination. 556

However, there are various limitations to our evaluation of CBEA. First, our simulation 557

analysis may not capture the appropriate data-generating distributions underlying 558

microbiome taxonomic data. There is strong evidence to suggest that our zero-inflated 559

negative binomial distribution is representative [63], however other distributions such as 560

the Dirichlet multinomial distribution [64] have been used in the evaluation of prior 561

studies. More recent studies have suggested utilizing the hierarchical multinomial 562

logistic normal distribution to model microbiome data sets [65,66]. As such, there is 563

space to evaluate and adapt CBEA to these different distributional assumptions that 564

underlie the data generating process. Second, we were not able to evaluate the 565

phenotype relevance of enrichment results as in Geistlinger et al. [41] due to limited 566

consistent annotations for microbiome signatures in health and disease, especially those 567

that are experimentally verified (and not just from differential abundance studies). We 568

attempted to perform this evaluation by leveraging the gingival data set similar to [63]. 569

However, we acknowledge that this is not a perfect solution, since the oxygen usage 570

label of each microbe in the data set is only available at the genus level, and the 571

difference in counts for obligate aerobes and anaerobes across the supragingival and 572

subgingival sites might not be as clear cut. As such, results from power analyses using 573

this data set is only relative between the comparison methods and cannot be treated as 574

absolute measures of power or phenotype relevance. Third, fitting the mixture normal 575

distribution to raw CBEA scores using the expectation-maximization algorithm is 576

difficult, as the convergence rate is slow when there is high overlap between the 577

mixtures, resulting in small mixing coefficient for one of the components and increased 578

runtime (S6 Fig) [67]. In our implementation, we attempted to account for this by 579

increasing the maximum number of iterations and relaxed the tolerance threshold. 580

Finally, we assumed that taxa within a set are all equally associated with the outcome. 581

This limits our ability to evaluate the performance of CBEA when only a small number 582

of taxa within the set is associated with the outcome, or if there are variability in effect 583

sizes or association direction of taxa within a set. 584

Our evaluation also showed various drawbacks of the CBEA method itself. First, 585

inference with CBEA at the sample level is limited, and can be affected by inter-taxa 586

correlation if users wish to only detect mean-inflated sets. Second, for downstream 587

analyses, CBEA might not always perform better than competing methods, especially 588

when being used to generate inputs to predictive models. We hypothesized that this 589

might be due to the lack of fit for the underlying null distribution in high correlation 590

settings, especially the identifiability problem associated the estimation procedure 591

associated with adjusting the mixture normal distribution. As such, we hope to refine 592

the null distribution estimating procedure by either choosing a better distributional 593

form, or to further constrain the optimization procedure of the mixture normal 594

distribution by fixing the third and fourth moments. 595

In addition, CBEA itself did not consider other aspects of microbiome data. First, 596

across all analyses, we relied on adding a pseudocount to ensure log operations are valid. 597

Users can directly address this by incorporating model-based zero correction methods 598

prior to modelling such as in [68] or [69]. However, in our simulation studies, sparsity 599

seems to not have a significant impact on the overall performance of our approach. 600

Second, CBEA also treated all taxa within the set as equally contributing to the set. 601

Incorporation of taxa-specific weights (similar to PhILR [35]) could reduce the influence 602

of outliers, such as rare or highly invariant taxa. Finally, even though for a given set of 603

a priori annotations CBEA can generate useful summary scores, such values are limited 604

in their utility if the annotations themselves are not meaningful. As such, curating and 605

validating sets (similar to MSigDB [12]) based on physiological or genomic 606

February 16, 2022 18/25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2022. ; https://doi.org/10.1101/2021.09.07.459294doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459294
http://creativecommons.org/licenses/by-nc-nd/4.0/


characteristics of microbes [70] or their association with human disease (in beta 607

BugSigDB https://bugsigdb.org/Main_Page) can allow for incorporating functional 608

insights into microbiome-outcome analyses. 609

Conclusion 610

Gene set testing, or pathway analysis, is an important tool in the analysis of 611

high-dimensional genomics data sets; however, limited work has been done developing 612

set based methods specifically for microbiome relative abundance data. We introduced a 613

new microbiome-specific method to generate set-based enrichment scores at the sample 614

level. We demonstrated that our method can control for type I error for significance 615

testing at the sample level, while generated scores are also valid inputs in downstream 616

analyses, including disease prediction and differential abundance. 617
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Supporting information

S1 Fig. Simulation results for type I error evaluation for CBEA
sample-level inference. Type I error rate (y axis) was estimated for each approach
across data sparsity levels (x axis) across different set sizes (horizontal) and inter-taxa
correlation within the set (vertical). We compared variatns of CBEA against a
Wilcoxon rank sum test at α of 0.05. For each scenario, a data set of 10,000 samples
(equivalent to 10,000 hypotheses) was utilized. Confidence bounds were obtained using
Agresti-Couli approach.

S2 Fig. Simulation results for type I error evaluation for CBEA
population-level inference. Type I error (y-axis) was estimated as the average
proportion of sets with significant enrichment at 0.05 across 10 replications per
simulation condition under the global null. Error bars were estimated using standard
errors computed across 10 replicated data sets. Performance was evaluated across
different sparsity (x -axis) and inter-taxa correlation levels. For CBEA methods,
enrichment analysis was performed using a Welch’s t-test across case/control status
with single sample scores representing set-based features generated by CBEA (across
different output types and distributional assumptions). For corncob and DESeq2,
set-based features were constructed using element-wise summations.

S3 Fig. Simulation results for phenotype relevance evaluation for CBEA
sample-level inference. (A) demonstrate statistical power (y-axis) across different
data sparsity levels (x -axis) and power (B) for differential abundance test across
different parametric simulation scenarios. For CBEA methods, differential abundance
analysis was performed using a difference in means test (either Wilcoxon rank-sum test
or Welch’s t-test) across case/control status using single sample scores generated by
CBEA (across different output types and distributional assumptions). CBEA associated
methods demonstrated similar type I error to conventional differential abundance
analysis methods but with more power to detect differences even at small effect
sizes.

S4 Fig. Simulation results for phenotype relevance evaluation for CBEA
population-level inference. Power (y-axis) was estimated as the average proportion
of sets correctly identified as significantly enriched (at 0.05) across 10 replications per
simulation condition under the global null. Error bars were estimated using standard
errors computed across 10 replicated data sets. Performance was evaluated across
different sparsity (x -axis) and inter-taxa correlation levels. For CBEA methods,
enrichment analysis was performed using a Welch’s t-test across case/control status
with single sample scores representing set-based features generated by CBEA (across
different output types and distributional assumptions). For corncob and DESeq2,
set-based features were constructed using element-wise summations.

S5 Fig. Simulation results for predictive pefromance evaluation for
CBEA. Predictive performance of a random forest model (with no hyperparameter
tuning) trained on set-based features as inputs. Methods to generate these features
include CBEA, ssGSEA, GSVA, and the CLR transformation applied on
sum-aggregated sets. Simulation data was generated across different levels of data
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sparsity, inter-taxa correlation, effect saturation, and signal-to-noise ratio. Panel (A)
presents performance on a regression task using RMSE (root mean squared error) as the
evaluation measure. Panel (B) presents performance on a classification task with
AUROC as the evaluation measure.

S6 Fig. Runtime performance. Overall runtime of CBEA under different
parameters for a data set of 500 samples, 800 taxa (40 sets of size 20 each). This data
set was generated via simulations.

S7 Fig. Distribution of type I error values across all replications in real
data random set evaluations for CBEA inference at the sample-level.
Density (y-axis) for type I error values (x -axis) of each evaluated approach for
sample-level inference using real data across 500 replications. Here, type I error was
estimated as the proportion of samples where a randomly sampled set of different sizes
where identified to be statistically significant at p-value threshold of 0.05.

S1 File. Supplemental derivations. Includes additional details on addressing
variance inflation due to correlation in CBEA, simulation analyses, and run-time
performance.
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