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Humans deftly parse statistics from sequences. Some theories posit that humans learn these
statistics by forming cognitive maps, or underlying representations of the latent space which links
items in the sequence. Here, an item in the sequence is a node, and the probability of transitioning
between two items is an edge. Sequences can then be generated from walks through the latent space,
with different spaces giving rise to different sequence statistics. Individual or group differences in
sequence learning can be modeled by changing the time scale over which estimates of transition
probabilities are built, or in other words, by changing the amount of temporal discounting. La-
tent space models with temporal discounting bear a resemblance to models of navigation through
Euclidean spaces. However, few explicit links have been made between predictions from Euclidean
spatial navigation and neural activity during human sequence learning. Here, we use a combination
of behavioral modeling and intracranial encephalography (iEEG) recordings to investigate how neu-
ral activity might support the formation of space-like cognitive maps through temporal discounting
during sequence learning. Specifically, we acquire human reaction times from a sequential reaction
time task, to which we fit a model that formulates the amount of temporal discounting as a single
free parameter. From the parameter, we calculate each individual’s estimate of the latent space.
We find that neural activity reflects these estimates mostly in the temporal lobe, including areas
involved in spatial navigation. Similar to spatial navigation, we find that low dimensional represen-
tations of neural activity allow for easy separation of important features, such as modules, in the
latent space. Lastly, we take advantage of the high temporal resolution of iEEG data to determine
the time scale on which latent spaces are learned. We find that learning typically happens within
the first 500 trials, and is modulated by the underlying latent space and the amount of temporal
discounting characteristic of each participant. Ultimately, this work provides important links be-
tween behavioral models of sequence learning and neural activity during the same behavior, and
contextualizes these results within a broader framework of domain general cognitive maps.

INTRODUCTION

A diverse range of behaviors requires humans to parse
complex temporal sequences of stimuli. One can study
this ability by exposing individuals to sequences evinc-
ing precise statistics, and by measuring how individu-
als react to or remember the stimuli. Sequence statis-
tics can be fixed by (1) an underlying graph, or la-
tent space, defining allowable transitions between stim-
uli, and by (2) a walk through the graph that deter-
mines which of the allowable transitions are taken and
with what frequency (Fig. 1A). The graph represen-
tation of the latent space brings with it a rich toolbox

of methods to quantify latent space topologies that are
especially well-suited for abstract relational spaces con-
necting discrete objects[1]. Recent studies have revealed
that humans are sensitive to transition probabilities be-
tween neighboring elements[2, 3], higher-order statisti-
cal dependencies between non-neighboring elements like
triplets or quadruplets[4], and the global structure of the
graph[5, 6]. All of these relationships are important for
naturalistic learning. For example, when learning a lan-
guage, both human and artificial language processing al-
gorithms require knowledge of which words tend to follow
which others (transition probabilities), as well as about
the grammar of sentences, structures of thought, and de-
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signs of paragraphs (higher-order structure)[7, 8]. Ac-
cordingly, sensitivity to these relationships predicts lan-
guage ability and problem solving skills[9–11].

Computational models of behavior that require learn-
ing an underlying latent space bear a striking resem-
blance to those used for learning and navigating Eu-
clidean or abstract relational spaces[12, 13]. Moreover,
similar brain regions have been implicated in all three
kinds of cognitive tasks[14–16]. However, this level of
generalization across task domains has been difficult to
replicate in artificial intelligent systems and remains an
active area of research[17, 18]. Work in sequence, re-
lational, and spatial learning suggests that individuals
may represent internal estimations of the latent spaces
as cognitive maps that can be referenced during navi-
gation and problem solving[19–22]. Recent progress in
task generalizability in artificial systems has used similar
techniques[17, 18]. Uncovering the processes that guide
latent space estimation, and investigating how these pro-
cesses are implemented in the brain, will deepen our un-
derstanding of how humans map the world around them,
and provide suggestions for artificial intelligence.

Some mathematical models of latent space estimation
rely on individuals building internal estimates of which
stimuli in the space are likely to follow which others[23–
25]. Acquired through exploration, these estimates can
be used to make predictions about which stimuli are
likely to come next, and therefore allow individuals to
navigate the space to reach desired goals[23]. If we were
designing a system to learn latent spaces, one strategy
for building estimates would be to perfectly remember
and log each observed transition, and then to make pre-
dictions from that stored estimate. Although such esti-
mates are accurate, they require the learner to store each
observed transition, a requirement that is not evidenced
in or expected from human behavior[13, 23, 26]. Instead,
if estimates of future stimuli incorporate a broader, dis-
counted temporal context, then some of the speed and
flexibility of navigation can be restored, although at a
cost to the fidelity of the estimate of the latent space[13]
(Fig. 1B).

Temporally extended models do not recreate the ex-
act latent space of the true environment, but their mod-
ifications can have important behavioral benefits (Fig.
1C). For example, artificial intelligent agents using tem-
poral discounting can quickly navigate to rewards in new
environments and flexibly respond to changes in strate-
gies or goal locations by utilizing paths they have not
explicitly traveled before[23, 25]. Without the mod-
ifications from temporal discounting providing an ex-
tended context of future paths in space resulting from
a given action, agents would only be able to traverse
paths they had already encountered, which would limit
their flexibility. Additionally, when applied to the free
recall of word sequences, these models replicate the abil-
ity of humans to remember words presented in similar
contexts[27]. In these temporally extended models, when
predicting which state is likely to follow the current state,

the agent down-weights stimuli likely to occur far into
the future relative to those in the near future, hence the
term discounting. These temporally discounted estimates
of the latent space can be constructed by applying the
same discounting to the history of the previously visited
stimuli[13, 25] (Fig. 1B). Notably, temporal discounting
is a biologically feasible process and can be implemented
in brain regions thought to be important for building
and manipulating cognitive maps: the medial temporal
and prefrontal cortices[22, 28]. Activity in medial tem-
poral lobes has been shown to be more reflective of these
discounted estimates of the latent space than the true
latent space[29]. Taken together, these behavioral and
neural insights support the conclusion that humans use
temporally discounted estimates of latent spaces to solve
a diverse set of problems.

When constructing representations of latent spaces,
the brain must balance the need to accurately extract im-
portant features from the environment with the pressure
to minimize resource consumption[15, 30]. This balance
between compressing information and retaining impor-
tant features is evidenced behaviorally in the tendency
to better remember events or items that occur within a
given temporal context, rather than spanning multiple
contexts[31]. The medial temporal lobe is thought to
facilitate the separation and generalization of contexts
by identifying key features of estimated latent spaces
from low dimensional projections[22]. These lower di-
mensional projections can serve to identify important
features of the space that might be relevant for decision
making, such as modules of similar items in relational
spaces[32] and borders in physical spaces[22]. For cog-
nitive maps specifically, these processes are thought to
occur in the entorhinal cortex, although evidence of sim-
ilar low dimensional bases in humans have been found in
other regions[20, 22, 33]. Additionally, other medial tem-
poral structures including the hippocampus have been
modeled as variational autoencoders, which compress in-
coming sensory and structural information in order to
predict future stimuli across domains[18]. Further ver-
ification that important task features can be identified
from a low dimensional basis of neural activity outside
of Euclidean spatial navigation would help support the
generalizability of these processes. Additionally, explicit
mappings between individual variations in the estimates
of the latent space, and the identification of features in
low dimensional space, could help us better understand
the links between balancing the compression of neural
activity and the need for robust behavior. Behavioral
evidence suggests that all these features must be made
available after relatively few exposures of different stim-
uli so that they can be used to make decisions[34]. Neu-
ral recordings taken during latent space learning could
help clarify the timescale over which these neural fea-
tures arise.

Here, we seek to better understand the neurophysi-
ological basis of temporally discounted latent space es-
timation in humans. Additionally, we wish to test for
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similarities and divergences from processes of Euclidean
spatial learning. To accomplish these goals, we will use
an individual specific model of temporal discounting in
patients undergoing intracranial EEG (iEEG) monitor-
ing while completing a probabilistic serial reaction time
task. In this task, participants see cues generated from a
random walk on either a modular or lattice graph (Fig.
1A). To each individual’s reaction time data, we apply
a maximum entropy model which determines the steep-
ness of temporal discounting as parameterized by a single
variable β[13]. This parameter also determines the struc-
ture of the corresponding estimates of the latent space for
that individual. We then use representational similarity
analysis to identify the electrode contacts whose activity
is most similar to the estimated latent space and identify
common regions involved across participants. This anal-
ysis allows us to determine whether our model’s estima-
tion of latent spaces is reflected in neural activity, and
also whether the regions involved are consistent across
individuals and previously implicated in Euclidean space
navigation. We find that for activity aligned to the stim-
ulus (stimulus-locked), structures in the lateral and me-
dial temporal lobe most often reflect the estimated la-
tent space. In activity aligned to the response (response-
locked), this similarity with the latent space shifts to
frontal and premotor areas. We next tested whether low
dimensional neural activity could easily identify features
of the latent space, as it does in Euclidean spatial learn-
ing. We find robust separability of modules in neural
activity, consistent with the identification of borders and
clusters in Euclidean and relational learning. Lastly, we
wish to extend our understanding of the temporal dy-
namics of latent space estimation. In our sample of neu-
ral data, we find that neural activity reflects the latent
space within 500 stimulus exposures, and that the steep-
ness of temporal discounting and the structure of the
underlying graph influence the learning rate.

Ultimately, our study provides a direct comparison be-
tween the distinct processes of latent space learning, cou-
pled with an evaluation of their neurophysiological under-
pinnings. Additionally, it provides preliminary measure-
ments of the timescales upon which latent space estima-
tions are formed, and an accounting of which factors in-
fluence their development. Lastly, we provide clear future
directions for model development, and point out areas
where neural data diverge from theoretical predictions.

METHODS

Participants

All participants provided informed consent as specified
by the Institutional Review Board of the University of
Pennsylvania, and study methods and experimental pro-
tocols were approved by the Institutional Review Board
of the University of Pennsylvania.

Amazon Mechanical Turk cohort

We recruited 50 unique participants to complete our
study on Amazon’s Mechanical Turk—an online market-
place for crowdsourced work. Worker identifications were
used to exclude any duplicate participants. Twenty-five
of the participants completed a task with a sequence gen-
erated from a modular graph, and the other 25 partici-
pants performed the same task with a sequence generated
from a ring lattice graph. All participants were paid $10
for their time (≈ 20 minutes). Three individuals started,
but did not complete the task, leaving the sample size at
47 individuals. Interested candidates were excluded from
participating if they had completed similar tasks for the
lab previously[6, 13].

iEEG cohort

There were a total of 13 participants (10 female, mean
age 33.9 years). See Supplemental Table T1 for full
demographics. This included 3 participants who com-
pleted a pilot version of the task that was largely similar.
These participants were included to increase the number
of participants when data collection paused during the
COVID-19 pandemic. Two of these 13 participants did
not have electrophysiological recordings that were syn-
chronized with the task recordings; accordingly, these two
participants were only included in behavioral analyses.

Behavior

We test each participant’s ability to learn the struc-
ture underlying a temporal sequence of stimuli by having
them perform a probabilistic motor response task using a
keyboard in both the iEEG and mTurk cohorts. We will
first outline elements common to both tasks here, and
then highlight differences.

Common experimental setup and procedure

First, participants were instructed that “In a few min-
utes, you will see 10 squares shown on the screen. Squares
will light up in red as the experiment progresses. These
squares correspond with keys on your keyboard, and your
job is to watch the squares and press the corresponding
key when the square lights up as quickly as possible to
increase your score. The experiment will take around 20
minutes”. For some participants, the sequence of stim-
uli was drawn from a random traversal through a mod-
ular graph (Fig. 1A, left); for other participants, the
sequence of stimuli was drawn from a random traver-
sal through a ring lattice graph (Fig. 1A,right). Both
graphs have 10 distinct nodes, each of which is connected
to four other nodes. Thus, the only difference between
the two graphs lies in their higher-order structure. In
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FIG. 1. Schematic of latent space learning. (A) Visualization of the two graph types used to generate stimulus sequences
in this study: modular (left) and lattice (right). An example sequence generated from a random walk on the graph, denoted by
arrows, is shown below each visualization. (B) A schematic of how temporal discounting of previous stimuli leads to different
predictions about which stimulus is likely to appear next in a sequence. As someone experiences each stimulus in a sequence,
they will update their estimation of the latent space with the context preceding the currently viewed stimulus. The amount
that each previous stimulus contributes to the context is given by the height of the colored line at the time that a given stimulus
occurred. Different colors correspond to different amounts of temporal discounting or β values. More yellow colors indicate
less temporal discounting. People can use their estimate of the latent space to predict an upcoming stimulus, indicated by a
‘(?)’. The size of each stimulus in the prediction indicates how likely that stimulus is to be the next node in the sequence. The
size of a stimulus in a colored box is proportional to the height of the line of the same color when it crosses that stimulus’s
presentation. We note that smaller values of β correspond to shallower discounting, leading to a larger range of predictions.
(C) A visualization of how different values of β result in different latent space estimations. As β approaches 0, all transitions
are estimated to be equally likely. As β approaches inf, estimations converge to the true structure.

the modular graph, the nodes are split into 2 modules
of 5 nodes each, whereas in the lattice graph, the nodes
are connected to their nearest and next-nearest neigh-
bors around a ring. For each participant, the 10 stimuli
are randomly assigned to the 10 different nodes in either
the modular or lattice graph. The random assignment
of stimuli to nodes ensures that modules are not dis-
tinguished by any stimulus features. Stimuli were each
represented as a row of ten gray squares. Each square
corresponds to and mimics the spatial arrangement of a
key on the keyboard (Fig. 2A). To indicate a target
key that the participant is meant to press, the corre-
sponding squares is outlined in red (Fig. 2B). If an
incorrect key was pressed the message “Error!” displayed
on the screen until the correct key was pressed. Partici-
pants had a brief training period (10 trials) to familiarize
themselves with the key presses before engaging in the
task for 1000 trials, which is a sufficient number of trials
for participants to learn the structure of a similarly sized
modular network[6]. To ensure that participants remain
motivated and engaged for the full 1000 trials, partici-
pants receive points based on their average reaction time
at the end of each of 4 stages (every 250 trials). The
duration of the task is determined by how quickly par-
ticipants respond, but on average it takes approximately
20 minutes. On average, participants in the mTurk co-

hort were 94.0% ± 3.76% accurate, and participants in
the iEEG cohort were 97.7%± 2.50% accurate.

mTurk experiment

Because no experimenter could be present for online
mTurk data collection, a few additional measures were
put in place to ensure that participants understood and
were engaged with the task. First, participants were
given a short quiz to verify that they had read and un-
derstood the instructions before the experiment began.
If any questions were answered incorrectly, participants
were shown the instructions again and asked to repeat
the quiz until they answered all questions correctly. Ad-
ditionally, participants were instructed that if they took
longer than 1 minute to respond to any given trial, the
experiment would end and they might not receive pay-
ment.

iEEG experiment:

A member of the Hospital for the University of Penn-
sylvania (HUP) research staff was present during the ex-
periment to ensure that participants understood the in-
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structions. De-identified demographic information was
collected and shared from all participants as part of the
HUP research protocol. This information included age,
race, and sex assigned at birth, as well as an estimate
of how much of their day the participant typically spent
typing at a computer. The iEEG experiment, unlike the
mTurk experiment, also needed to be synchronized to on-
going neural recordings. To synchronize task events with
neural recordings, the iEEG participants completed the
task with a photodiode attached to the laptop where the
test was being administered. A white square would ap-
pear in the lower corner of the screen when a stimulus
appeared on the screen, which would be replaced by a
black background when the correct response was made.
The photodiode would record these luminance changes
on the same system that was recording neural data, so
that the two could be synchronized.

Participants in the cohort were also given the option to
complete a second session of the same experiment with
the same graph the following day. This option was taken
by 2 participants. Because data collection was inter-
rupted by the global pandemic, we also include three
pilot iEEG participants who completed an earlier ver-
sion of the task that did not contain breaks or points,
but was otherwise identical.

Linear mixed-effects models

We used linear mixed-effects models to test whether
each participant’s reaction time decreased with increas-
ing trial number. We took this decrease in reaction time
as evidence that participants were learning the proba-
bilistic motor response task. Before fitting the mixed-
effects models, we excluded trials that were shorter than
50 ms, or longer than 2 standard deviations above that
participant’s mean reaction time. Short trials were re-
moved because 50 ms is not long enough to see and re-
spond to a stimulus. We also excluded any incorrect tri-
als. All participants in both cohorts had accuracy greater
than 80%.

Mixed-effects models were fit using the lme4 library
in R (R version 3.5.0; lme4 version 1.1-17), using the
lmer() function for continuous dependent variables and
the glmer() function for categorical dependent vari-
ables. Predictors were centered to reduce multicollinear-
ity. Some models of accuracy did not converge with
the full set of variables, so variables were removed via
backwards selection with reaction time model p-values
until the accuracy model converged. Due to the slight
task differences between iEEG and mTurk cohorts, dif-
ferent models were used to test for learning in each co-
hort. For the mTurk cohort, the reaction time model
was reaction time ∼ trial ∗ graph + stage ∗ graph +
finger+hand+hand transition+recency+(1+ trial+
recency|participant). The accuracy model was correct =
trial∗graph+stage∗graph+finger+hand transition+
recency+ (1 + trial|participant). Here, hand transition

indicated whether the current trial used a different hand
than the previous trial, and stage indicates the set of
250 trials, ranging from 1 to 4. For the iEEG co-
hort, the reaction times model was reaction time ∼
trial ∗ graph+ stage∗ graph+ sex+age+ typing skill+
finger + hand + hand transition + session + points +
recency + (1 + trial + recency|participant). The model
for accuracy was correct ∼ squared trial∗graph+stage∗
graph+finger+hand transition+session+ recency+
(1 + squaredtrial|participant). Here, session indicated
whether the data were taken from the first or second
recording session, points indicated whether these partic-
ipants were given points according to their reaction time
at breaks, and typing skill was a self-reported value of
how much time participants spent typing on a computer
in a typical day, scaled to range from 1-4.

The recency term is meant to account for changes to
reaction time based on the local properties of the current
sequence. Participants will tend to react more quickly
to items they have seen more recently[35]. To control
for this effect, we included the log transform of the num-
ber of trials since the current stimulus was last seen—or
the recency—as a covariate. The maximum number of
trials was 10. This particular covariate was found to ex-
plain more variance in reaction time than other similar
covariates in this data set, as well as a similar dataset
collected from Ref. [6] (see Fig S1). The specific covari-
ates tested were the number of times the current stimulus
was last seen (not log transformed, and not capped) (χ2

test χ2 = 2448, p < 2.2 × 10−16) and the number of
times this stimulus appeared in the last 10 trials (χ2 test
χ2 = 1295.8, p < 2.2× 10−16).

Maximum entropy model:β and Â

To estimate the amount of temporal discounting em-
ployed by each participant, we fit a maximum entropy
model to the residuals of the linear mixed-effects models
specified above. The model starts with the assumption
that the fastest reaction times on this task would arise
from accurate mental representations of the latent space.
This would allow participants to accurately predict which
stimuli could possibly follow any current stimulus, allow-
ing them to react quickly to all transitions. However,
these representations are costly to create and maintain
because they require perfect memory of the sequence of
stimuli. Allowing some inaccuracies in the memory of
previous stimuli simplifies the learning process, but at the
cost of erroneous predictions about future stimuli. In this
model, an exponentially decaying memory distribution
determines the time scale of errors in memory. The expo-
nential form results in the fact that mistakes in memory
will be temporally discounted—more likely to occur be-
tween stimuli that are temporally close than those that
are temporally distant. The steepness of this discount-
ing, and therefore the balance of cost and accuracy, is
determined by a single parameter β that was fitted to the
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residuals of each participant’s reaction times. Larger β
values result in more temporal discounting in the mem-
ory distribution, indicating that participants were less
likely to make memory errors, and the errors that were
made tended to occur between stimuli in close tempo-
ral proximity. By contrast, smaller β values would re-
sult in less temporal discounting, indicating that partic-
ipants made longer range errors in their estimates of the
transition graphs. Mathematically, this is achieved by
defining an individual’s estimation of the latent space as
Â = (1− e−β)A(I − e−βA)−1, where A is the true latent
space that defines transition probabilities between stim-
uli. We will explain how β is calculated from reaction
times below.

Given an observed sequence of nodes x1, ..., xt−1, and
given a parameter β, our model predicts each par-
ticipant’s internal estimates of transition probabilities
Âij(t − 1), where i and j are different stimuli. Given
a current stimulus xt−1, we then model the participant’s
anticipation, or expectation, of the subsequent node xt
by a(t) = Âxt−1,xt

(t − 1). In order to quantitatively de-
scribe the reactions of a participant, we related the ex-
pectations a(t) to predictions about a participant’s re-
action times r̂(t), and then learned the model parame-
ters that best fit that participant’s reaction times. The
simplest possible prediction was given by the linear re-
lation r̂(t) = r0 + r1a(t), where the intercept r0 rep-
resents a participant’s reaction time with zero anticipa-
tion and where the slope r1 quantifies the strength with
which a participant’s reaction times depend on their in-
ternal expectations. In total, our predictions r(t) contain
three parameters (β, r0, and r1), which must be esti-
mated from the data for each participant. To estimate
the model parameters that best describe a participant’s
reaction times r(t) (more specifically, their reaction time
residuals from the linear mixed-effects model described
above), we minimized the root mean squared prediction
error (RMSE) with respect to each participant’s ob-

served reaction times, RMSE =
√∑

t(r(t)− r̂(t))2. We
note that, for a given β, the parameters r0 and r1 can
be calculated using linear regression. Thus, the problem
of estimating the model parameters can be restated with
only one parameter; that is, by minimizing the RMSE
with respect to β.

Because we wished to compare results from these mod-
els to neural data, we only run this analysis on each of
the participants with neural data, and exclude trials that
contained interictal epileptiform discharges (IEDs). To
minimize the RMSE with respect to β, we began by
calculating the RMSE along 100 logarithmically spaced
values for β between 10−4 and 10. Then, starting at the
minimum value of this search, we performed gradient de-
scent until the gradient fell below an absolute value of
10−6. The search also terminated if β reached 0, or was
trending towards ∞ (greater than 1000). The β values
that were terminated at 0 or 1000 are referred to as ex-
treme values throughout the manuscript.

Once β values were fitted for each participant, the es-

timated latent space Â could be obtained with the equa-
tion: Â = (1− e−β)A(I − e−βA)−1, where A is the true
latent space that defines transition probabilities between
stimuli. This analytic prediction reflects the estimated
latent space for a participant that viewed an infinite ran-
dom walk, and does not take into account the statistics of
the particular sequence observed by a given participant.

In addition to calculating each participant’s estimated
latent space, we also wished to understand how the esti-
mate would evolve over time assuming a static β. A par-
ticipant’s expected likelihood of a transition between two

elements i and j at time t is given by Â(t) =
ñij(t)∑
k ñik(t) ,

where ñij is a participant’s recollection of the number of
times they have observed stimulus i transition to stimu-
lus j. We can then use β to solve for the expected number
of transitions as ñij(t+1) = ñij(t)+

∑t−1
∆t=0

1
Z e

−β∆tδ(i =
xt−∆t). Here, δ(.) is a delta function that gives a value
of 1 when its argument is true and 0 otherwise, and Z is
a normalization constant.

Intracranial Recordings

All patients included in this study gave written in-
formed consent in accord with the University of Penn-
sylvania Institutional Review Board for inclusion in this
study. De-identified data were retrieved from the online
International Epilepsy Electrophysiology Portal[36]. All
data were collected at a 512 Hz sampling rate.

Preprocessing

Electric line noise and its harmonics at 60, 120, and
180 Hz were filtered out using a zero phase distortion
fourth order stop-band Butterworth filter with a 1 Hz
width. This filter was implemented using the butter()
and filtfilt() functions in MATLAB. For impulse and step
responses of this filter, see Supplemental Fig. S2.

We then sought to remove individual channels that
were noisy, or had poor recording quality. We first re-
jected channels using both the notes provided and au-
tomated methods. After removing channels marked as
low quality in the notes, we further marked electrodes
that had (1) a line length greater than three times the
mean[37], (2) a z-scored kurtosis greater than 1.5[38], or
(3) a z-scored power-spectral density dissimilarity mea-
sure greater than 1.5[38]. The dissimilarity measure was
the average of one minus the Spearman’s rank correlation
with all channels. These automated methods should re-
move channels with excessive high frequency noise, elec-
trode drift, and line noise, respectively. All contacts se-
lected for removal were visually inspected by a researcher
with 6 years of experience working with iEEG data (JS).
The final set of contacts was also visually inspected to en-
sure that the remaining contacts had good quality record-
ings by the same researcher. Including removal of con-
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tacts outside of the brain, on average, 48.87% ± 22.50%
of contacts were removed, leaving 89± 30 contacts.

Data were then demeaned and detrended. Detrending
was used instead of a high-pass filter to avoid inducing fil-
ter artifacts[39]. Channels were then grouped by grid or
depth electrode, and common average referenced within
each group. Recordings from white matter regions have
sometimes been used as reference channels[40]. How-
ever, work showing that channels in white matter con-
tain unique information independent from nearby grey
matter motivated us to include them in the common av-
erage reference[41]. Following the common average refer-
ence, plots of raw data and power spectral densities were
visually inspected by the same expert researcher with
6 years of experience working with electrocorticography
data (JS) to ensure that data were of acceptable quality.

Next, data were segmented into trials. A trial consisted
of the time that a given stimulus was on the screen be-
fore a response occurred. iEEG recordings were matched
to task events through the use of a photodiode during
task completion (see iEEG experiment section). Periods
of high light content were automatically detected using
a custom MATLAB script. Identified events were then
visually inspected for quality. The times of photodiode
change were then selected as the onset and offset of each
trial. Two participants had poor quality photodiode data
that could not be segmented, and these participants were
accordingly not included in electrophysiological analyses,
leaving 11 remaining participants.

Lastly, trials were rejected if they contained interictal
epileptiform discharges (IEDs). IEDs have been shown
to change task performance[37] and aspects of neural ac-
tivity outside of the locus of IEDs[42, 43]. We chose to
use an IED detector from Ref. [44] because it is sensi-
tive, fast, and requires relatively little data per partic-
ipant. This Hilbert-based method dynamically models
background activity and detects outliers from that back-
ground. Specifically, the algorithm first downsamples the
data to 200 Hz, and applies a 10-60 Hz bandpass filter.
The envelope of the signal is then obtained by taking
the square of this Hilbert-transformed signal. In 5 sec-
ond windows with an overlap of 4 seconds, a threshold k
is calculated as the mode plus the median and used to
identify IEDs. The initial k value is set to 3.65, which
was determined through cross-validation in Ref. [44]. In
order to remove false positives potentially caused by ar-
tifacts, we apply a spatial filter to the identified IEDs.
Specifically, we remove IEDs that are not present in a 50
ms window of IEDs in at least 3 other channels. The 50
ms window was consistent with that used in other pa-
pers investigating the biophysical properties of chains of
IEDs, which tended to last less than 50 ms[45].

Contact localization

Broadly, contact localization followed methodology
similar to Ref. [46]. All contact localizations were ver-

ified by a board-certified neuroradiologist (JMS). Elec-
trode coordinates in participant T1w space were assigned
to an atlas region of interest and also registered in par-
ticipant T1w space. Brain region assignments were as-
signed first based on the AAL-116[47] atlas. This atlas
extends slightly into the white matter directly below grey
matter, but will exclude contacts in deeper white matter
structures. For a list of the number of contacts in each
region of this atlas, see Table T2. To provide locations
for contacts outside the AAL atlas, we use the Talairach
atlas[48]. Assignment of contacts to a hemisphere was
also done using the Talairach atlas label. For a list of the
number of contacts outside the AAL atlas in each Ta-
lairach region, see Table T3. If the contact was outside
of the Talaraich atlas, then the AAL atlas hemisphere
was used. If a contact was outside both atlases, then
the contact name taken from iEEG.org was used (con-
tact names include the hemisphere, electrode label, and
contact label).

Similarity analysis

In this work, we sought to identify which electrode con-
tacts have neural activity that reflected a participant’s
estimate of the latent space in a data driven manner.
To identify these contacts, we used a similarity analysis
that compared Â, the participant’s estimation of latent
space, to the similarity of neural activity evoked by each
stimulus. This approach was used to abstract similarity
patterns in high-dimensional neural activity into dissim-
ilarity matrices, and allowed us to answer the question
“Where does neural activity reflect the latent space?”
[49]. These matrices can then be compared with simi-
larity patterns obtained from our computational model,
Â.

Here, we chose the cross-validated Euclidean distance
as our neural similarity metric because it was shown to
lead to more reliable classification accuracy when com-
pared to other dissimilarity metrics[50]. To compute sim-
ilarity matrices for each contact, we first truncated all
trials of preprocessed iEEG recordings to be the same
length as the trial with the shortest reaction time. If the
shortest reaction time was less than 200 ms, we instead
used 200 ms as the minimum length and discarded tri-
als shorter than that. This truncation was done in three
ways: (1) stimulus aligned, where the end of trials was
truncated; (2) middle aligned, where the middle of trials
was truncated; and (3) response aligned, where the be-
ginning of trials was truncated. We then calculated the
leave-one-out cross-validated Euclidean distance between
activity evoked from each of the 10 unique stimuli. This
procedure resulted in one dissimilarity matrix for each
contact. To compare these matrices to the estimated la-
tent space, we then calculated the correlation between
the lower diagonal of the neural dissimilarity matrix and
Â. Because Â reflects similarity rather than dissimilarity,
we then multiplied the resulting correlation by -1.
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To identify electrode contacts with high similarity to
the latent space, we compared (1) the correlations be-
tween the neural dissimilarity and the estimated latent
spaces to (2) correlations between a distribution of 100
null neural dissimilarity matrices and estimated latent
spaces. Null matrices were calculated from permuted
data created by first selecting a random trial number
and then splitting and reversing the order of trials at
that point. For example, if 128 were drawn as a random
trial number, the corresponding permuted dataset would
be neural data from trials 129 − 1000 followed by neu-
ral data from trials 1 − 128 matched with stimuli labels
from the correct order of trials (1 − 1000). This model
preserved natural features of autocorrelation in the neu-
ral data, unlike trial shuffling models[51]. Contacts were
determined to have activity similar to the latent space
if they met two criteria: (1) the correlation between the

neural dissimilarity matrix and the Â was greater than at
least 95 null models, and (2) the correlation between the

neural dissimilarity matrix and the Â was greater than
the correlation between the neural dissimilarity matrix
and the exact latent space A.

To test the specificity of our findings, we also exam-
ined the correlation between the dissimilarity matrices
and a similarity space related to the lower-level features
of the stimuli. We calculated a spatial similarity matrix
that reflected the physical distance between stimuli on
the screen. Since each stimulus consists of a single red
square among 9 black squares on the screen, we calcu-
lated the Euclidean distance between each square, and
used this matrix as an estimate of spatial similarity. We
then repeated the process detailed above for obtaining
correlations relative to permuted neural data.

Low dimensional projections and linear discriminability

For visualization purposes, we sought to obtain low di-
mensional representations of the neural dissimilarity ma-
trices. Classical multidimensional scaling (MDS) obtains
low dimensional (here, 2 dimensions) representations of
Euclidean distance dissimilarity matrices that seek to
preserve the distances of the original higher-dimensional
data[52]. Classical multidimensional scaling was imple-
mented using the cmds() function in MATLAB. For neu-
ral data, we first calculated a single neural dissimilarity
matrix, rather than a single matrix per contact. This
calculation was done by concatenating activity from ev-
ery contact whose activity was similar to the latent space
(see Similarity analysis section), and then by repeating
the process outlined above.

For some analyses, we wished to compare the low di-
mensional representations of neural dissimilarity matri-
ces with the low dimensional representations of estimated
latent spaces. Since estimated latent spaces are not Eu-
clidean distance matrices, classical MDS is not an appro-
priate dimensionality reduction technique[52]. Instead,
we use principal components analysis (PCA). PCA yields

the same low dimensional embedding as classical MDS
when the high dimensional data are Euclidean distances,
but not otherwise. We computed the principal compo-
nents of the neural dissimilarity matrices and estimated
latent spaces in MATLAB using the pca() function. The
scaled and centered data were then projected onto the
first 2 principal components to obtain 2 coordinates for
each node.

From these low dimensional data, we next sought
to assess estimates of discriminability between modules.
Module discriminability was calculated as the loss from
a linear discriminant analysis. A linear classification
model was fit to the low dimensional coordinates using
the fitdiscr() function in MATLAB. The proportion of
nodes that were incorrectly classified using the best linear
boundary, or the loss, was then reported as an estimate
of the linear discriminability of modules.

Statistical Analyses

Linear mixed-effects models were used to analyze reac-
tion time data, and the results are displayed in Fig. 2.
Mixed-effects models were used to account for the fact
that trials completed by the same participant constitute
repeated measures and are not independent. The esti-
mated β values were evaluated with t-tests, and appear
to be approximately normally distributed. Extreme val-
ues of β (0 or 1000) were removed from any statistical
tests to ensure normality (see Figs. 1 and 5). Lin-
ear mixed-effects models were used to analyze changes in
neural similarity over time, with participant included as
a random effect (Fig. 5). A paired t-test was used to
analyze changes in loss from a linear classifier (Fig. 6).

Data and Code

Code is available in the github repository
github.com/jastiso/stistical learning. Electrophysio-
logical data will be made available upon request from
the IEEG Portal.

RESULTS

Quantification of learning and temporal discounting

In this work, we are interested in the neural underpin-
nings of latent space estimation. Before investigating the
neural dynamics directly, we tested whether participants
learned the latent space and responded both faster and
more accurately to stimuli over time. Our cohort of in-
terest, the iEEG cohort, were all undergoing monitoring
for medically refractory epilepsy. Due to the rarity of this
population, it is often difficult to get large cohorts suit-
able for good estimates of behavioral effect sizes. Addi-
tionally, the epileptic population in the iEEG cohort has
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been shown to have cognitive impairments[53], which re-
quires tasks that have been designed to be comparatively
easy and quick to complete. Due to these challenges, we
also collected data from 50 participants from Amazon’s
Mechanical Turk (mTurk).

In both cohorts, we were interested in the change over
time of two estimates of learning: accuracy and reaction
time. Across participants, we found that the average ac-
curacy for the mTurk cohort was 94.0%± 3.76%, with a
median reaction time of 602.5± 134.0ms. For the iEEG
cohort, the mean accuracy was 97.7% ± 2.50% with a
median reaction time of 721.2 ± 180.9ms. We were also
interested in determining whether the rate of learning dif-
fered between two graph types (Fig. 1A). We used linear
mixed-effects models to assess learning based on increases
in accuracy and decreases in reaction times on two time
scales. The first, shorter timescale is that of individual
trials; to examine learning on this timescale we tested
for decreases in reaction time associated with increasing
trial number. Since this task provided breaks at 250 trial
stages, we also assessed learning at the longer timescale of
individual stages. To examine learning on this timescale,
we tested for decreases in reaction time with increasing
stages. In the mTurk cohort (n = 47), we found that re-
action times tend to decrease only at the trial level (linear
mixed-effects model Ftrial = 16.1, ptrial = 9.51 × 10−5,
Fstage = 0.005, pstage = 0.946; Fig. 2C). In the
iEEG cohort (n = 13), we found that reaction times de-
crease only at the stage level (linear mixed-effects model
Ftrial = 1.16, ptrial = 0.320, Fstage = 3.86, pstage =
0.049; Fig. 2C). For accuracy, we found that the mTurk
cohort shows a significant decrease in accuracy with trials
(linear mixed-effects model ztrial = −2.48, ptrial = 0.013,
zstage = 1.93, pstage = 0.054; Fig. 2D). For the iEEG
cohort we observe no significant linear change with trial
(linear mixed-effects model ztrial = −0.025, ptrial = 0.98,
zstage = 0.289, pstage = 0.773; Fig. 2D). However,
we qualitatively observed a quadratic relationship, where
accuracy initially increased before decreasing with trial
number. We tested the statistical significance of this ob-
servation with a mixed-effects model that relates accu-
racy to trial2. We found that the quadratic trial estimate
is a significant predictor of accuracy (linear mixed-effects
model ztrial2 = −2.6, ptrial2 = 0.009; Fig. 2D).

We also sought to determine whether these effects dif-
fered by graph type. In the mTurk cohort, we found that
there was no difference in reaction time (linear mixed-
effects model Fgraph = 0.013, pgraph = 0.910) or in
learning rate (Ftrial∗graph = 0.043 ptrial∗graph = 0.834,
Fstage∗graph = 0.002, pstage∗graph = 0.966; Fig. 2C)
between the graphs. There were also no significant
changes in accuracy associated with graph type (linear
mixed-effects model zgraph = −0.186, pgraph = 0.853,
ztrial∗graph = −0.818, ptrial∗graph = 0.414, zstage∗graph =
1.121, pgraph∗stage = 0.225; Fig. 2D). In the iEEG co-
hort, we found no differences in reaction time (Fgraph =
1.63, pgraph = 0.300), but there was a significant in-
teraction between learning rate and graph type at the

stage level (Fgraph∗trial = 4.70, ptrial∗graph = 0.072,
Fstage∗graph = 14.3, pstage∗graph = 1.52 × 10−4; Fig.
2C). There was also a significant interaction between
accuracy and graph type (linear mixed-effects model,
zgraph = −2.6, pgraph = 0.711, ztrial∗graph = 2.30,
ptrial∗graph = 0.022, zstage∗graph = 1.94, pstage∗graph =
0.052; Fig. 2D). Overall, we found that the iEEG co-
hort showed evidence of learning in both accuracy and
reaction time. While the mTurk cohort showed quicker
decreases in reaction time, these were coupled with de-
creases in accuracy. Additionally, this analysis supported
steeper learning on the lattice graph within the iEEG co-
hort, although it is important to note that only 4 partic-
ipants were exposed to lattice graphs.

After we confirmed that participants learned the task,
we quantified each participant’s steepness of temporal
discounting. For both cohorts, we calculated the param-
eter β by fitting a maximum entropy model to the resid-
uals of reaction times from the linear mixed-effect model
discussed above. This parameter indicates the prioritiza-
tion of accurate latent space estimations against the cost
of those accurate representations, as evidenced by each
participant’s behavior (Fig 2A). The parameter β was
fit with gradient descent, assuring that the fit for each
participant was comparable, with the exception of the
extremes of the distribution of possible β values (β = 0
and β = ∞). A fitted value of β = 0 indicated that
there is no evidence of temporal discounting in a partici-
pant’s behavior, and the corresponding estimate Â of the
latent transition probabilities would show equally likely
transitions between all nodes. A fitted value of β = ∞
indicated no influence of the cost of building accurate
representations, resulting in an Â that converges to the
true latent space. Because the gradient descent algorithm
terminated if β approached 0 or ∞, we assessed the sim-
ilarity of temporal discounting—operationalized as simi-
lar β values—between cohorts with 2 measures: (1) the
percent of participants where β approached one of these
extremes; and (2) the distribution of β values found be-
tween these two extremes. Additionally, all parametric
statistical tests that used β values were applied after ex-
treme values were removed, thus ensuring the normality
of the β distribution.

We first examined the percentage of participants who
had β values at the extremes of the distribution. In
the mTurk cohort, we found that 55.3% (or 27 partic-
ipants) had extreme β values. Thirteen of these values
were from participants with lattice graphs, and thirteen
were from participants with modular graphs. For the
iEEG cohort, we found that 27.3% (or 3; 2 lattice, 1
modular) of participants had extreme β values. We next
assessed differences in the distribution of β values in both
cohorts. The mTurk cohort had a mean β value of 0.94,
and showed no differences across graph type (permuta-
tion test: p = 0.11) (Fig. 2E). The iEEG cohort had
a mean β value of 0.17 and was not statistically differ-
ent from the mTurk cohort (permutation test: p = 0.53)
(Fig. 2E). As these data indicate, we found similar tem-
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FIG. 2. Task performance. (A) The hand position the participants use to complete the task. (B) An example of 4 trials
from the experiment. The first stimulus (S1) shows the third key highlighted in red, which corresponds to the letter E. This key
maps to the light green node in the graph to the right. After the participant presses the correct key, they will advance to next
trial, which in this case is the key B. (C) Average reaction time over trials for the mTurk (top) and iEEG (bottom) cohorts.
Reaction times are shown for both modular (pink) and lattice (blue) graphs. For visualization purposes, reaction times were
averaged across participants for each trial. Those average reaction times were then binned into 25-trial bins. Shaded regions
indicate the average standard error across participants for each bin. (D) The same plots as in panel (C), but for accuracy. (E)
Distributions of β values for both cohorts. Participants who saw modular graphs are shown in pink on the top; participants
who saw lattice graphs are shown in blue on the bottom. Plots were separated spatially to avoid overlap between individual
data points. iEEG cohort β values are shown with tick marks rather than as a population density due to the small sample size.

poral discounting levels amongst both groups, although
the mTurk cohort had more participants with extreme
values. We note that β values tend to be less than 1,
indicating a high prioritization of the costs of building
accurate representations. Since this amount of temporal
discounting resulted in estimated latent spaces that are
different from true latent spaces, we next investigated
neural activity reflecting these estimated latent spaces.

Anatomical areas where activity reflects latent space
estimation

We used a similarity analysis in a data driven manner
to identify which contacts showed activity with a similar
structure to the estimated latent space. First, we calcu-
lated the similarity structure of neural activity by calcu-
lating the cross-validated Euclidean distance between the
activity evoked for each stimulus (Fig. 3A). To ensure
that all stimuli had activity of the same length, the last
time points of all trials were removed to create epochs
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the length of the shortest trial. We also report results
based on removing the first and middle time points to
reach the same length. We then selected the contacts
where this neural similarity structure was closest to the
estimated latent space. These contacts were selected by
two criteria (see Methods): (1) the correlation with the
estimated latent space must be larger than correlations
from 95 out of 100 null models; and (2) the correlation
with the estimated latent space must be larger than the
correlation to the exact latent space. The null matrices
were calculated from neural data where the trial order
had been split and reordered. We wished to compare the
contacts selected for similarity to the latent space with
contacts that showed similarity to other task-relevant fea-
tures that were not selected from behavior. Thus, we re-
peated the null model comparison described above, but
compared neural dissimilarity matrices to a matrix of Eu-
clidean distances between stimuli on the screen, rather
than the estimated latent space (Fig. 3A). We refer to
this distance as the visual distance. Because we only re-
quire that contacts have similarity values greater than
95% of null models and the correlation with the exact
latent space, we expect that a rate of false positives
amongst contacts of close to (but less than) 5%. There-
fore, we focus our discussion on regions where greater
than 5% of the total contacts were retained.

The resulting contacts from all participants are visu-
alized on a shared space (MNI; Fig. 3B). Between 2
and 10 contacts displayed activity whose dissimilarity
matrices were similar to those of the latent space per
participant (Fig S3). Qualitatively, we observed that
contacts that reflect latent and Euclidean space appear
in the frontal and temporal lobes, with some overlap be-
tween the two groups. Overall, 46 (5.0%) contacts span-
ning all participants were identified as reflecting the la-
tent space, and 76 (8.3%) were identified as reflecting the
Euclidean space. For the latent space, 32 (5.1%) contacts
were from the right hemisphere and 14 (4.5%) contacts
were from the left hemisphere (Fig. S3). We note that
we expect to select more visual than latent space sensi-
tive contacts because visual space correlations were not
required to be larger than the correlations to the true la-
tent space. We also show separate visualizations for par-
ticipants with modular and lattice graphs, respectively
(Fig. 3B). Qualitatively, we observe a large overlap in
the identified regions between the two graph types.

We next sought to localize identified contacts in each
participant’s native space. The most common AAL atlas
labels for latent space contacts are shown in Fig. 3C.
We found the most common regions identified were the
middle temporal lobe (6 contacts 5.0%), fusiform gyrus
(5 contacts, 11.0%), inferior temporal lobe (5 contacts,
4.6%) and amygdala (3 contacts, 27.3%). The middle
temporal lobe and amygdala also showed the most selec-
tivity for the latent space compared to the visual space.
Contacts located in white matter were localized with the
Talaraich atlas. Most often, these contacts are in extra-
nuclear, frontal or temporal sub-lobar white matter. In-

formation for all regions is given in Supplemental Table
T3. We note that the most common regions identified for
latent space contacts were in lateral, ventral, and medial
temporal lobe. While frontal contacts still showed neural
dissimilarity consistent with that of the latent space, the
specific anatomical location of these contacts were not
consistent across participants.

The above similarity analysis was based on data that
was aligned to stimulus presentation, and hence cap-
tured the initial evoked response to the stimulus. To
examine whether other portions of the response data
produced the same structure, we repeated this analy-
sis with response-aligned trials (removing the first time
points), and middle-aligned trials (removing the middle
time points) (Fig. S4-S5). When trials were aligned to
the response, we found that fewer contacts were identified
whose activity reflected the latent space, although such
contacts were still identified in each participant. Over-
all, we found 36 (3.9%) contacts showed activity sim-
ilar to the estimated latent space, and 44 (4.8%) con-
tacts showed activity similar to the visual space. For
latent space contacts, 24 (3.9%) were in the left and 12
(4.0%) in the right hemisphere. We found one region, the
fusiform gyrus (5 contacts 10.9% for response-aligned),
that included multiple contacts for both response- and
stimulus-aligned activity. Unlike the stimulus-aligned
similarity, the response-aligned similarity also identified
the inferior frontal gyrus (the pars orbitalis, pars tri-
angularis, and pars opercularis) (4, 7.7%), insula (3,
14.3%), and supplemental motor area (3, 60%) as impor-
tant regions. For the middle-aligned activity, we found
52 (5.7%) contacts showed activity reflecting the latent
space and 65 (7.1%) showed activity reflecting the visual
space. Among these latent space contacts, 39 (6.3%)
were in the left hemisphere and 13 (4.4%) were in the
right hemisphere. We found that most identified regions
overlap with those identified for stimulus- and response-
aligned activity. Specifically, we found that the areas
most commonly displaying activity that reflects the la-
tent space are located in the middle temporal lobe (10,
8.3%), the fusiform gyrus (4, 8.7%), the inferior frontal
gyrus (4, 7.7%), and the inferior temporal cortex (4,
3.7%). These results suggest that our findings from
response- and stimulus-aligned activity are not driven
by the activity of the middle of the trial. Overall, we
found that early stimulus-evoked activity shows greatest
similarity to the estimated latent space in higher-order
temporal regions, whereas later response-locked activity
shows more similarity to the estimated latent space in
frontal and especially pre-motor regions.

Module discriminability in low dimensional space

Many of our hypotheses about low dimensional pro-
jections of neural activity build upon prior evidence in
the medial temporal lobe. To be more consistent with
this literature, the remaining analyses considered only
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dissimilarity matrix and both the estimated latent space Â and the visual space are assessed with Pearson’s correlation co-
efficients. Because the estimated latent space is a similarity matrix, rather than a dissimilarity matrix, the correlations are
multiplied by -1. (B) Visualization of contacts with similar activity spaces on an MNI brain for all participants (left), only
those who saw sequences from a modular graph (middle), and only those who saw sequences from a lattice graph (right).
Contacts whose neural dissimilarity matrices are similar to those of the latent space are shown in gold; contacts whose neural
dissimilarity matrices are similar to those of the visual space are shown in grey. The quantity N is the number of participants
in each plot, and the quantity n is the number of contacts in each plot. (C) Anatomical localization of grey (top) and white
(bottom) matter contacts. Grey matter contacts are localized with the AAL atlas, and white matter contacts are localized
with the Talaraich atlas. ITL: inferior temporal lobe, MTL: middle temporal lobe, STL: superior temporal lobe, Fus: fusiform,
pHPC: parahippocampal gyrus, Amy: amygdala, HPC: hippocampus, IFGt: inferior frontal gyrus (pars triangularis), IFGo:
inferior frontal gyrus (pars orbitalis), MFG: middle frontal gyrus, SFG: superior frontal gyrus, preCent: precentral, postCent:
postcentral, pCing: posterior cingulate, PL SMG: parietal lobe supramarginal gyrus.

the stimulus-locked neural dissimilarity matrices, where
the temporal lobe contacts most reflected the estimated
latent space. We visualized low dimensional projections
of neural activity across all of the contacts that demon-
strated similarity to the estimated latent space (Fig. 4).
These low dimensional projections were obtained for each
participant by first creating a single dissimilarity ma-

trix for all contacts whose activity was similar to the
latent space, and then computing classical multidimen-
sional scaling on those matrices. From these low dimen-
sional projections, we can observe the diversity of es-
timated structures, and the ways in which they reflect
and differ from the exact latent space that generated the
sequences of images (Fig. 4). One notable property
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of participants who experienced sequences from modu-
lar graphs is that modules (green and pink) appear to
be mostly separable. All participants appear to highly
accurately separate the two modules, even when activity
from diverse regions is included.

We next wished to test whether this modular separa-
bility in low dimensional neural activity is also present
in latent spaces estimated from behavior. If modules
are separable in both spaces, then temporally discounted
space estimations might be sufficient to explain separa-
bility. If separability is only present in neural spaces,
then further computations are likely needed to explain
separability. We test for module discriminability using
a linear discriminant analysis on low dimensional coor-
dinates obtained from principal components analysis ap-
plied to neural distance matrices and on the estimated
latent space. The linear discriminant analysis consists
of training a linear classifier to label each node as being
in the pink or green module based on the two dimen-
sional coordinates. We then test how accurately that
model predicts the true labels of the same data. The re-
ported loss from this model is the proportion of stimuli
that were misclassified. We find that for most partici-
pants, discriminability varied little between the data from
neural dissimilarity and from the estimated latent space
(Fig. 5A, paired t-test t = −1.04, p = 0.344). How-
ever, 2 participants showed much lower discriminability
for the estimated latent space, compared to the neural
dissimilarity space (Fig. 5A). We next sought to test
whether discriminability for estimated latent spaces was
specific to a particular range of β values. We find that
participants with higher β values show perfect discrim-
inability whereas participants with lower β values do not
(Fig. 5B). Visualization of the low dimensional projec-
tions from different β values shows that the poor dis-
criminability was driven by the nodes with connections
to other modules (Fig. 5C). More specifically, at a β
value close to 0.1, we see an abrupt shift where nodes
connecting two modules switch from being closer to their
corresponding module, to being closer to the contrasting
module. Taken together, these findings provide evidence
for module discriminability in neural activity. However,
whether that discriminability is predicted by the esti-
mated latent space alone depends on the participant and
diminishes for those participants characterized by low β
values.

Temporal dynamics of latent space formation

In a final investigation, we sought to model how the es-
timated latent space might change during learning, and
test whether neural activity showed similar temporal pat-
terns. Assuming that β values are static during the
course of learning, we can simulate how the estimated
latent space Â changes on each trial due to each new tran-
sition observed between stimuli. We then calculated the
correlation between the current estimated latent space at

each trial Â(t) and the estimated latent space obtained

using the infinite trial limit Â (Fig. 6A). Since par-

ticipants only observed a finite walk, the quantity Â(t)

does not converge to exactly Â. However, most partic-
ipants quickly show high agreement between the finite
and infinite-time estimates as they learn. Qualitatively,
we see that larger β values result in a faster convergence
towards the final Â regardless of the graph type (Fig.
6A-B).

Informed by these data, we hypothesized that neural
activity structure would also reflect the estimated latent
space Â fairly early during learning. In order to ensure
that we had enough trials to get stable estimates of activ-
ity structure, we tested this hypothesis by recalculating
the correlation between the latent space and neural dis-
similarity matrices in sliding blocks of 500 trials with a
100 trial offset. This process provided a total of 6 blocks.
We recomputed these correlations only in individual con-
tacts (n ranged from 2 to 10) whose activity was deter-
mined to be similar to the estimated latent space (see
Fig. 3). We also calculated the correlation to the vi-
sual space in these same contacts as a comparison (Fig.
6C). Since we wished to capture the dynamics of con-
tacts converging to their final values rather than differ-
ences in those final values, we normalized all correlation
coefficients to the values calculated using all trials. We
then averaged similarity values over all contacts and used
a linear mixed-effects model to assess whether partici-
pants’ neural activity was more similar to the estimated
latent space than the visual space, and if that similar-
ity grew over time. In line with our hypothesis, we found
significantly larger increases in correlation coefficients be-
tween the neural space and the latent space than in cor-
relation coefficients between the neural space and visual
space (linear mixed-effects model Fwindow∗space = 6.755,
pwindow∗space = 0.011), even in the first 500 trials (paired
t-test t = 3.81, p = 0.004).

We next asked whether these changes in similarity were
modulated by β values or by graph type. Our sim-
ulations suggest that participants with larger β values
should show greater similarity to the latent space early
during learning. Accordingly, we tested whether β val-
ues predicted the magnitude and rate of change of the
normalized correlation coefficients between neural activ-
ity and the estimated latent space. We found significant
changes in the magnitude of the normalized correlations
associated with β values, as evidenced by a significant
interaction between β values and the change in similar-
ity over blocks (linear mixed-effects model Fβ = 2.65,
pβ − 0.110, Fwindow∗β = 6.12, pwindow∗β = 0.017) (Fig.
6D). Specifically, smaller β values have positive relation-
ships between the neural similarity to the estimated la-
tent space and the trial window (increasing with learn-
ing), whereas larger β values have negative relationships.
While the observed variation in the convergence of neural
data to Â by β value was recapitulated in our simulations,
we saw an additional trend towards less convergence over
time that is not present in the model.
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FIG. 4. Diversity of low dimension projections of neural activity. The contacts used to create the underlying dis-
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different shades of orange. (B) The same information as that displayed in panel (A), but now colored by graph type. Walks
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neural activity dissimilarity matrices and two spatial templates in two blocks of 500 trials. The correlation to the estimated
latent space template is shown in yellow, and the correlation to the visual template is shown in grey. Error bars indicate the
standard error of correlations over contacts. (D) Change in correlation of neural dissimilarity matrices to the latent space as
a function of trial window, colored by the β value of the participant. Each line shows a linear fit of one participant’s change
in correlation over time. Shaded regions indicate the 95% confidence interval. (E) The same information as that displayed in
panel (D), but now separated by graph type rather than by β value.

We also wished to determine whether changes in simi-
larity (between neural activity and the latent space) over
time were consistent across graph types, as predicted
by our simulations. We found a significant interaction
between the change in similarity over blocks and the
graph type, which was not predicted by our model (lin-
ear mixed-effects model Fgraph = 5.06, p = 0.029) (Fig.
6E). Participants who saw sequences from lattice graphs
tended to have more positive slopes, whereas participants

who saw sequences from modular graphs tended to have
more negative slopes. It is worth noting that this sep-
aration by graph type reflects the significant interaction
observed between reaction time and graph type in this
same cohort.

Lastly, we sought to examine whether the discrepancies
between our simulations and observations could be nar-
rowed by relaxing the assumption that β values remain
static during learning, and instead hypothesizing that
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finite-time estimates of β per block would diverge more
from the infinite-time estimates of β in the later win-
dows. To test this hypothesis, we recalculated β values
for each participant in the same blocks of 500 trials. We
then tested whether β values changed consistently across
the population over blocks of trials. While we observed
substantial variability in β values for some participants,
there were no consistent differences across the population
(Fig. S6, linear mixed-effects model Fwindow = 0.14,
pwindow = 0.714).

DISCUSSION

In this work, we sought to better understand the neural
correlates of latent space estimation from temporal se-
quences of stimuli that evince particular transition prob-
ability structures encoded as graphs. We utilized behav-
ioral modeling to identify individual variations in tempo-
ral discounting and iEEG data recorded during learning
to answer four main questions: (1) Do individuals in our
iEEG cohort show behavioral evidence of learning an es-
timate of the latent space? (2) Which brain regions have
neural activity that reflects these estimates? (3) Does
the structure of neural activity facilitate the identifica-
tion of task-relevant features? (4) Upon what time scale
does neural structure appear, and is that timescale mod-
ulated by temporal discounting or graph structure? To
answer question (1), we first had participants respond to
cues generated from 2 different latent spaces: one with
a modular structure, and one with a lattice structure.
We found evidence that our iEEG cohort became faster
and more accurate over time, consistent with participants
learning the latent space and better anticipating upcom-
ing stimuli. To answer question (2), we fit a model of
learning that utilizes temporal discounting during latent
space estimation, and found regions where neural activity
has a similar structure to these estimates. For stimulus-
evoked activity, most regions identified—regardless of the
graph used to generate the sequences—were located in
the temporal lobe, with some additional involvement of
frontal structures.

Previous work investigating Euclidean spatial repre-
sentations found that low dimensional projections of the
estimated space readily identified task-relevant features
like boundaries and modules[22]. This work motivated
us to ask question (3), and accordingly to test whether
there was evidence for the same identification of mod-
ules in our neural data. We found that for each partic-
ipant who saw sequences drawn from a modular graph,
low dimensional projections of neural activity in the se-
lected temporal and frontal regions accurately separated
each module, misidentifying at most one stimulus. In-
terestingly, this separability was not achieved as consis-
tently in the estimated latent space itself, suggesting the
possibility that neural processing enhances the separa-
bility of task-relevant features such as modules. Lastly,
we leveraged the neural recordings taken during latent

space learning to ask question (4), and accordingly to
test predictions about how quickly participants acquire
their estimates of the latent space. Our model predicted
that estimates of the latent space would be formed within
the first 500 trials, and that participants with stronger
temporal discounting would converge faster. We found
evidence in support of these hypotheses, and also addi-
tional differences in latent space learning based on graph
type that were not predicted by our model. Ultimately,
we determined where and when neural activity during
a sequential reaction time task reflects individual varia-
tion in behavior, and how that activity related to recent
theories that extend concrete cognitive maps to abstract
spaces.

Insights into probabilistic sequence learning

Previous work in probabilistic sequence learning has
demonstrated that participants reacting to cues drawn
from a random walk on a graph become sensitive to fea-
tures of latent structure for a wide variety of graphs, with
different numbers of stimuli, and across different sensory
domains[5, 6, 10, 35, 54, 55]. Here, we significantly ex-
tend this literature by adapting a version of these tasks
for use in patient populations with iEEG recordings. Us-
ing our adapted task, we find that both a healthy cohort
recruited via Amazon’s Mechanical Turk and an iEEG
cohort show evidence of learning, albeit with some dif-
ferences in the nature of that learning.

We found that our mTurk cohort shows significant de-
creases in reaction time with increasing trial number,
while our iEEG cohort shows decreases only across longer
timescale blocks of 250 trials. While learning rates varied
across the two cohorts, iEEG patients still performed the
task with high accuracy (Fig. 2A and B), as expected
given their cognitive capacities[53]. The slower learn-
ing is consistent with other work demonstrating poorer
task performance in participants with epilepsy compared
to controls[53, 56]. Patients with drug-resistant epilepsy
were shown to have statistically significant decreases in
task performance assessing motor function and cognitive
attention[57], both of which are required for our exper-
iment. However, our 2 cohorts are not matched on de-
mographics or testing environment, making it difficult
to determine whether differences are due to underlying
epilepsy-related cognitive deficits or other factors.

We next tested for evidence of learning based on an
increase in accuracy over time. While the mTurk co-
hort had relatively high accuracy throughout the ex-
periment, their performance significantly decreased over
time. While increasing speed and decreased accuracy
are not necessarily indicative of disengagement from the
task[58], this finding raises the possibility that some of
the observed decreases in reaction time might be due to a
decrease in correct responses. One possible explanation
is a decrease in cognitive demand and arousal, leading
to task disengagement and lower accuracy[59, 60]. In
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contrast to the mTurk cohort, the iEEG cohort shows
an initial increase in accuracy, followed by a decrease in
accuracy during later trials. Individuals with temporal
lobe epilepsy tend to perform worse on tasks that demand
higher order cognition and attention [61], and therefore
it may be easier to engage with simpler tasks. While
this quadratic relationship with accuracy still suggests a
lower engagement with the task as time goes on, it cor-
roborates the conclusion that the task is better suited for
the iEEG cohort.

Lastly, we tested for differences in reaction time based
on graph type. Previous research has found that par-
ticipants tend to react faster to cues drawn from modu-
lar graphs than to those drawn from lattice or random
graphs[6]. We do not recapitulate this finding in our
mTurk population, possibly because the task we used
was significantly simpler than that previously employed
in Ref. [6], and hence did not entail the same learning
complexity. There were also design differences between
previous work and the current study; for example, here
we used simpler motor commands (using one rather than
two fingers at a time), fewer trials, breaks with rewarding
feedback, and fewer unique stimuli. In our iEEG cohort,
we found different rates of learning based on underlying
graph type. However, future work with either a more
complex task or a larger number of subjects is necessary
to further validate this result.

Insights into neural involvement in latent space
estimation

To complement our study of behavior, we next probed
the neural correlates of latent space estimation. We iden-
tified regions whose activity has a structure most simi-
lar to each individual’s estimated latent space (rather
than to the true latent space). In performing this iden-
tification, we used a short window of activity locked to
the stimulus, to the response, or to the middle of all
trials. In contrast to the slower temporal resolution of
metabolic neuroimaging techniques, iEEG allows for the
use of short temporal windows to investigate neural ac-
tivity structure in a time-resolved manner thereby pro-
viding insight not only into where, but also into when,
structural representations emerge. We also compared 2
different similarity matrices to rule out possible alterna-
tive explanations of the observed structure that were un-
related to the estimated latent spaces. The first is a null
model that takes the empirical trial data, and reorders
it around a single point. Unlike shuffling trial order, this
model preserves autocorrelative features of the data, and
ensures that the observed similarity is specific to the ob-
served walk sequence[51]; the second comparison is to
a lower-level feature of stimulus appearance: the visual
distance between highlighted stimuli on the screen. We
expected this structure to be reflected in neural activ-
ity, and indeed many regions included contacts that were
similar to both latent and visual spaces. Including these

comparisons allows us to assess the selectivity of regional
activity for structural, rather than visual, information.

Stimulus and response-locked activity implicate different
brain regions

We found that for stimulus-locked activity, the most
common regions identified were in the lateral, medial,
and inferior temporal lobes. It is important to note that
the temporal lobes also have more electrode coverage,
and the identified regions made up between 4.6% and
27.3% percent of contacts in those areas; though not
all highly sampled areas (e.g., superior temporal lobe)
showed any contacts that were similar to either space.
The presence of structure in this early evoked response
is consistent with work demonstrating that changes in
tuning curves of neurons in the medial temporal lobe (in
both human and non-human primates) reflect statistical
similarities between stimuli[62, 63]. For response-locked
contacts, common areas still include the fusiform gyrus,
but also include the inferior frontal gyrus, somatomotor
area, and insula. This anatomical distribution is consis-
tent with work showing that later stages of processing
involve frontal regions receiving structural information
from medial temporal regions. Further, the involvement
of motor regions is certainly intuitive during response
planning[64, 65].

Amygdala involvement in cognitive map formation

The region with both the highest percentage of con-
tacts identified and the highest selectivity for the la-
tent space was the amygdala, followed by the middle
temporal lobe. The amygdala is a region often associ-
ated with processing of emotional and rewarding stim-
uli, and is highly connected to the hippocampus, with
which it interacts during emotional memory[66]. No-
tably, some previous work using single unit human iEEG
recordings has also shown activity reflective of cognitive
map building in the amygdala[67, 68]. For example, in
a study of single cell place selectivity in patients under-
going iEEG recording, the hippocampus demonstrated
the most place-selective activity, yet cells in other parts
of the medial temporal lobe, including the amygdala,
showed selectivity as well[68]. Additionally, non-human
primate studies have shown representations of abstract
contexts for non-emotional stimuli in the amygdala[69].
Ultimately, our results corroborate these findings that
amygdala activity can reflect abstract spaces.

Middle temporal lobe involvement in cognitive map formation

The second region identified, the middle temporal lobe,
has also been identified in other iEEG studies of statisti-
cal learning. Previous work studying lower-level statisti-
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cal learning using iEEG also identified primarily lateral
temporal cortex, and little involvement of the hippocam-
pus and entorhinal cortex[70]. Much work in human
iEEG and fMRI implicates a broader range of tempo-
ral regions than comparable work in rodents[5, 16, 70].
This trend is likely partially due to the different cogni-
tive and behavioral demands between species, but also
raises the possibility of compensatory mechanisms in co-
horts undergoing iEEG monitoring due to pathology in
medial temporal lobes. This possibility cannot be ruled
out completely, and therefore findings should ideally be
corroborated in recordings from a healthy population.
Some evidence of the role of lateral temporal lobe ac-
tivity in learning a latent space from sequences exists in
non-epileptic populations. Specifically, fMRI studies us-
ing similar tasks have also identified the interior temporal
cortex to be reflective of some features of higher-order
structure, but not reflective of the estimates of latent
spaces as a whole[5].

Medial temporal lobe involvement in cognitive map formation

Much of the work in rodent and human latent space
learning has focused on the hippocampal and entorhi-
nal cortices, rather than lateral temporal lobes and
amygdala[16]. Here, the hippocampus and sublobar tem-
poral white matter are both implicated in our similarity
analysis, supporting evidence of their important role in
latent space learning. However, these areas are less com-
mon and less selective than lateral temporal structures
and the amygdala in our data.

Other brain regions’ involvement in cognitive map formation

While the most common regions identified in our study
and in previous work were in the temporal or frontal
lobes, we observed multiple contacts in a wider dis-
tributed set of regions, including the insula, supple-
mentary motor area, and precentral gyrus. Frontal ar-
eas, especially those in the medial prefrontal and or-
bitofrontal cortices, have been implicated in latent space
learning, and are thought to be required at later stages
than are medial temporal regions[71–73]. Consistent with
these observations, we found that response-locked activ-
ity shows more involvement of these frontal areas. Ad-
ditionally, some work in humans has shown that activity
that reflects the estimated latent structure (e.g., in place
and grid cells) is much more spatially distributed than
in rodents, leading to theories that most of the cortex is
actually capable of forming these representations[33, 74].
Our results are in line with these theories, and support
the conclusion that diverse brain regions could support
temporally discounted estimates of latent space. Taken
together, neural activity most represented latent space
estimates in the amygdala and middle temporal lobe
when locked to the stimulus, whereas they most repre-

sented latent space estimates in the supplementary mo-
tor area and inferior frontal gyrus when locked to the
response. These observations indicate that brain repre-
sentations of learning are spatially distributed.

Importance of low dimensional separation of task
features

Studies investigating representations of spatial envi-
ronments have pointed out the usefulness of low dimen-
sional representations for learning to navigate[18, 22].
Evidence for dimensionality reduction of neural signals
has been observed in neural structures at 3 distinct
scales: single neurons, anatomical regions, and the whole
brain[75–78]. Broadly, dimensionality reduction of neural
signals is thought to enable the brain to easily extract im-
portant, often changing information and facilitating the
development of a sparse, efficient neural code for items
in the environment[77, 79]. For dimensionality reduction
of cognitive maps specifically, much work has focused on
the medial temporal lobe. For example, the hippocampus
has been functionally modeled as a variational autoen-
coder that continuously compresses incoming structural
and sensory information to identify similar contexts[18].
Additionally, properties of grid cells[22], commonly but
not exclusively found in the entorhinal cortex[80], can be
explained by the eigenvectors of a temporally discounted
estimate of the latent space. Importantly, these low di-
mensional bases identify borders and modules in simu-
lated spaces, the same features thought to be useful for
successful navigation[22].

We asked whether these modeling observations were
recreated in an abstract relational space. Using linear
discriminant analysis, we found that modules are highly
discriminable in individuals who saw sequences drawn
from a modular graph. Interestingly, many of the esti-
mated latent spaces show the same level of discriminabil-
ity, although some show levels far lower. Upon further
investigation, we find that the discriminability of esti-
mated latent spaces was determined by the associated
β value. We chose linear discrimination as a conserva-
tive estimate of separability, which is biologically imple-
mentable in theory by few neurons whose firing mimics
the low dimensional bases[81]; however, other methods
of identifying modules are theoretically possible[82].

The discussion of these findings raises the possibility
that neural systems are transforming or building esti-
mates of latent spaces in a way that enhances the sepa-
rability of modules. One hypothesis is that the increased
separability in low dimensional space arises from neurons
with high dimensional, combinatorial responses to indi-
vidual stimuli[82]. These types of neurons are thought
to be present in associative areas such as the frontal cor-
tex and medial temporal lobes[82]. It is hence intuitively
plausible that regions in lower-order areas are less able
to separate modules, but potentially more able to dis-
tinguish individual stimuli[82]. While these theories are
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based on the function of individual neurons, similar ideas
can be extended to neuronal populations. Accordingly,
future work could test whether divergences of neural ac-
tivity from the estimated latent space increase the sepa-
rability of modules at all places on the neural processing
hierarchy, or only at more transmodal areas. The obser-
vation that neural dissimilarity better separates modules
than the corresponding latent space estimation presents
interesting directions for further investigation indepen-
dent of validations of those theories.

Limitations

Here, we have put forth new evidence for neural cor-
relates of latent space learning, although these results
should be interpreted in light of the various limitations
of our study. Many of our analyses focused on indi-
vidual participants, an approach that is especially well-
suited for iEEG analysis given the small and heteroge-
neous samples. However, some results—including evi-
dence for learning and temporal changes in neural sim-
ilarity structure—were assessed at the group level. To
supplement these findings, we also present larger be-
havioral cohorts and numerical simulations. Despite
these techniques, our group level results would be fur-
ther strengthened by replication in larger samples.

Additionally, we sought to identify the regions whose
activity was structured most similarly to the estimated
latent space. This involved selecting contacts with
stronger correlations than 95% of null models. This se-
lection process means that there is a chance that some
contacts would be retained due to basic features of neu-
ral activity, and not due to task structure. Because of
this fact, we highlight the regions where multiple con-
tacts were identified, reducing the likelihood that our
conclusions depend on false positives. We approached
identifying contacts with activity structure similar to the
latent space in a data driven manner, and therefore ex-
pected the same pattern of activity in all regions. We
also grouped all identified regions together when investi-
gating properties of low dimensional projections of neural
activity structure. However, there is good evidence that
specific regions, or even locations within the same re-
gion might be active at different times[72] or use slightly
altered transformations of the estimated space[29]. Iden-
tifying these differences is an important pathway for fu-
ture analysis, but would require a larger cohort, where
more individuals reliably show activity in the regions of
interest, or a hypothesis-driven rather than data-driven
assessment of regional contributions.

Lastly, we show evidence that some predictions of how
latent spaces are learned over time are borne out in neural
data. However, our model only uses one relatively simple
learning rule. Other work has tested a variety of learning
rules that all give rise to temporally discounted latent
space estimations, and has shown that some are more
consistent with neural activity than others[83]. Here, we

do not intend to claim that the implemented rule was
more accurately reflecting changes in neural activity than
others, but simply to identify the ways that estimated
latent spaces appear in neural activity. Future work in-
vestigating and comparing different learning rules would
be a welcome contribution to the field.

Future directions

Studying latent space learning presents an exciting op-
portunity in neuroscience to connect theoretical models
to both behavior and hypothesized neural mechanisms
for the implementation of these models. Work in rodents
has suggest that temporally discounted estimates of re-
lational spaces are built through synchronization of cell
populations to θ rhythms (4-10 Hz)[84]. Distinct popula-
tions of cells in the CA1 subfield of the hippocampus syn-
chronize their firing to the peaks of θ rhythms; the firing
of different cells then becomes bound together via plas-
ticity to represent unique temporal contexts[85]. Within
the hippocampus, map-like firing patterns of these linked
assemblies of neurons reflect physical relationships after
exploring new environments[86]. The phase of θ rhythms
also synchronizes with activity in cortical areas such as
the prefrontal cortex where information about tempo-
ral context is used for other processes[65]. In humans,
θ rhythms have been implicated in tasks requiring esti-
mates of an underlying latent space, including episodic
memory, spatial navigation, and semantic memory[87].
However, there is also evidence that these rhythms are
less important for human learning than for rodent learn-
ing, and some investigators even hypothesize that other
mechanisms, such as saccades, are responsible for the
synchronization of cell populations[16]. Similar studies
to clarify the role of θ rhythms during latent space learn-
ing would extend the field appreciably.

Beyond connections to mechanistic neural implemen-
tations of these models, further extensions to more eco-
logical contexts would also benefit our understanding of
latent space learning, and how they influence diverse cog-
nitive processes. Extensions of this theory to ecological
network structures, and to different exploration strate-
gies and walk types have already been discussed and
implemented[35, 88, 89]. Nevertheless, our work sug-
gests that further advancements could expand the the-
ory to incorporate temporal variability in learning strate-
gies. Here, we show preliminary evidence for a change
in learning rates based on the extent of temporal dis-
counting, and also a shift in the extent of temporal dis-
counting used over time (Fig. S6). One would expect
that different amounts of temporal discounting might be
better suited to different tasks, tasks occurring at dif-
ferent timescales, or even different stages of the same
task. This intuition is consistent with work demonstrat-
ing that different brain regions, or even different parts
of the hippocampus, are sensitive to different timescales
of information[72], which could potentially be related to
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different amounts of temporal discounting. Extension of
this work to incorporate more dynamic models of learning
would help us better understand domain-general latent
space learning, and further align the models of these be-
haviors with the evidence of their implementation in the
brain.

CITATION DIVERSITY STATEMENT

Recent work in several fields of science has identi-
fied a bias in citation practices such that papers from
women and other minority scholars are under-cited rela-
tive to the number of such papers in the field [90? ? ?
? –94]. Here we sought to proactively consider choos-
ing references that reflect the diversity of the field in
thought, form of contribution, gender, race, ethnicity,
and other factors. First, we obtained the predicted gen-
der of the first and last author of each reference by us-
ing databases that store the probability of a first name
being carried by a woman [94, 95]. By this measure
(and excluding self-citations to the first and last au-
thors of our current paper), our references contain 10.55%
woman(first)/woman(last), 15.43% man/woman, 18.83%
woman/man, and 55.18% man/man. This method is lim-
ited in that a) names, pronouns, and social media pro-
files used to construct the databases may not, in every
case, be indicative of gender identity and b) it cannot
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differential biases due to the ambiguous racialization or
ethnicization of their names. We look forward to future
work that could help us to better understand how to sup-
port equitable practices in science.
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