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Abstract

A fundamental challenge in neuroscience is to uncover the principles
governing how the brain interacts with the external environment. How-
ever, assumptions about external stimuli fundamentally constrain cur-
rent computational models. We show in silico that unknown external
stimulation can produce error in the estimated linear time-invariant dy-
namical system. To address these limitations, we propose an approach
to retrieve the external (unknown) input parameters and demonstrate
that the estimated system parameters during external input quiescence
uncover spatiotemporal profiles of external inputs over external stim-
ulation periods more accurately. Finally, we unveil the expected (and
unexpected) sensory and task-related extra-cortical input profiles using
functional magnetic resonance imaging data acquired from 96 subjects
(Human Connectome Project) during the resting-state and task scans.
Together, we provide evidence that this embodied brain activity model
offers information about the structure and dimensionality of the BOLD
signal’s external drivers and shines light on likely external sources con-
tributing to the BOLD signal’s non-stationarity.

Keywords: Dynamical systems; BOLD fMRI; Multivariate time series
analysis; External Inputs; Non-stationarity

1 Introduction

Over the past few decades, functional MRI has widened our understanding
of the functional organization of intrinsic brain networks and their role in
cognition and behavior. Classical univariate (i.e., voxel-wise) analyses of
fMRI signal (i.e., blood-oxygenation level-dependent, or BOLD) have been
instrumental in probing the specialized function of brain regions. More
recent approaches using functional connectivity and network neuroscience
portray a complex and multi-scale set of interactions between brain struc-
tures. Following this view, a wide array of graph theoretical and complex
systems tools have been used to describe BOLD dynamics1;2;3.

Despite these efforts, we still lack a unified mechanistic framework that
overcomes three key limitations. First, the features of the BOLD signal that
are important for neural activity are unclear. Several prior studies demon-
strate a relation between BOLD and slow amplitude features of cortical
activity4;5;6, and between BOLD and the hemodynamic response function
(HRF)7;8. These studies imply that the low frequency component of the
BOLD signal contains information relevant to underlying neural dynam-
ics9;10, although it is also clear that the signal contains artifact11;12. Due
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to the mixture of signal and artifact in the BOLD time series, it is pos-
sible that the common practice of band-pass filtering the BOLD signal at
low frequencies may exclude functionally relevant signal13;14. Second, many
graph theoretic and network analyses are inherently descriptive in nature,
and lack the power to give a generative understanding of the relationship
between model inputs and outputs (for extensions of these approaches that
move beyond description into explanation and prediction, see15). Finally,
model-based approaches often treat the brain as an isolated system by ignor-
ing external input, or assuming an artificial profile of internal and external
noise.

To address these three limitations, we develop a generative framework
that explicitly includes exogenous input (e.g., external sensory or subcorti-
cal structures’ inputs), and provide evidence that the brain’s activity can
be fruitfully understood in the context of its natural drivers. Specifically,
we use a multivariate autoregressive model with unknown inputs to capture
the spatiotemporal evolution of the BOLD signal driven by extra-cortical
inputs. These models have been used to characterize and predict the evo-
lution of several synthetic and biological systems16;17;18;19. For instance,
Chang and colleagues (2012) leveraged a multivariate linear dynamical sys-
tem’s framework and the patients’ intracranial EEG to model the cortical
impulse response to the direct electrical stimulation. Many prior studies use
this20 and similar methods such as Granger causality and dynamic causal
modeling (DCM) for understanding the directed functional connectivity of
BOLD21;1;22;23. While some prior studies account for the effect of exogenous
input1;24, they typically assume a simple known and abstract form of the
input function19. Moreover, the inability of models such as DCM to cap-
ture signal variations beyond those caused by the external inputs makes the
connectivity estimation highly dependent on the assumed number and form
of the inputs25.

In this work, we treat the exogenous inputs to the cortex as unknown pa-
rameters of a linear time-invariant (LTI) system, which we estimate following
recent developments in linear systems theory26. We use these developments
to provide new insights into how the brain responds to ongoing task re-
quirements, and to shine a light on factors that contribute to the dynamics
of cortical functional connectivity. To demonstrate our approach’s utility,
we begin with a proof-of-concept where we consider synthetic examples for
which we retrieve the external inputs’ spatiotemporal profiles of a known
LTI system. We demonstrate that unknown external inputs result in appar-
ent changes in internal system parameters, and consequently, in estimated
external inputs’ error. Also, we show that using internal system parame-
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ters estimated from time windows without external stimulation significantly
improves our ability to extract external inputs’ profile from periods with ex-
ternal stimulation, expect for simulations with relatively low external inputs
and signal-to-noise.

Next, we test the hypothesis that variations in cortical dynamics dur-
ing different tasks or cognitive states can be accurately modeled as external
excitations on fairly stable interactions between cortical regions. Specifi-
cally, we recover the unknown external cortical inputs during resting-state
and task scans for 96 subjects with the lowest motion artifact from the
Human Connectome Project (HCP). Our results demonstrate that using
system parameters estimated from resting-state scans enables uncovering
the expected spatiotemporal profiles of external sensory (i.e., visual cues)
and task-related extra-cortical inputs, while system parameters estimated
from task scans result in highly inaccurate input estimations. In addition,
an in-depth examination of estimated inputs during task scans reveals the
spatiotemporal patterns of other task-related inputs that were not captured
by the abstract task regressors.

Lastly, we measure the non-stationarity of estimated external inputs
over resting-state scans to examine the assumption of the system’s time-
invariance and to identify exogenous determinants of the BOLD signal’s
non-stationarity. Recently, the nature of non-stationarity of BOLD signal
and dynamic functional connectivity has been a topic of scientific debate, as
several recent publications paint seemingly contrasting portraits of the pro-
cesses’ stationarity underlying the brain’s functional dynamics27;28;29;30;31;32.
However, to the best of authors’ knowledge, no study examines the BOLD
signal’s stationarity in the context of time-varying external inputs and their
effects. Our results show that the inputs to several brain regions, most
notably over default mode network, estimated from the resting-state scans
display significantly high non-stationarity compared to other brain regions.
Together, we demonstrate that our framework allows us to uncover spa-
tiotemporal patterns and dimensionality of unknown cortical drivers. These
findings offer insight into how a relatively static relation between brain re-
gions and exogenous drivers can give rise to complex cortical dynamics and
contribute to their non-stationarity.
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2 Materials and Methods

2.1 Linear time-invariant (LTI) dynamical systems with ex-
ternal inputs

Each region i of interest (ROI) from which the BOLD signal is collected
provided us with a time series described by xi[k] at sampling point k =
0, . . . , T . A total of n = 100 regions are considered and the collection of these
signals is captured by the vector x[k] = [x1[k] . . . xn[k]]ᵀ, with k = 0, . . . , T ,
which we refer to as the state of the system (i.e., it describes the evolution
of the BOLD signal across different regions). The evolution of the system’s
state is mainly driven by (i) the cross-dependencies of the signals in different
regions (not necessarily adjacent), and (ii) the external inputs that are either
excitation noise or inputs arriving from the environment surrounding the
regions captured by the state of the system (e.g., stimulus arriving from
subcortical structures not accounted for during BOLD signal collection).

Subsequently, a first step towards modeling the evolution of the system’s
state is:

x[k + 1] = Ax[k] +Bu[k] + ωk, k = 0, . . . , T, (1)

where A ∈ Rn×n described the autonomous dynamics, B ∈ Rn×p is the input
matrix that describes the impact of inputs (i.e., external drivers) u[k] ∈ Rp×1

on the system state’s evolution, and ωk ∈ Rn is the internal dynamics noise
(i.e., internal drivers) at sampling point k. Notice that {x[k]}Tk=0 is the
BOLD signal at the different ROIs and is the only known. However, the state
of the underlying neural activity is unknown since we did not account for the
hemodynamic response function (HRF) in our reduced model. Therefore,
the input in the model captures the external drivers of regional BOLD and
only indirectly, the underlying neural activity. In order to determine the
parameters of the system (1), i.e., (A, B, {u[k]}Tk=0), we need to solve an
optimization problem that minimizes the distance between the system’s state
x[k] and the estimate of that state given by x̂[k] driven by the unknown
quantities. Specifically, we have the following optimization problem:

{x̂[k]}Tk=0 ∈ arg min
z[0],...,z[T ]

‖z[k]− x[k]‖22

s.t. z[k + 1] = Az[k] +Bu[k].

Notice that this problem is more challenging than the usual least squares
problem considered when the parameters of the system are known33. Thus,
similar to the method develop by26, we perform the following steps: (i) we
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assume that the state z[0] = x[0], and {u[k]}Tk=0 is identically zero, to find
an approximation to A;(ii) assuming A is given by the initial approximation,
we provide a sparse low-rank structure to matrix B and we find an approx-
imation to both z[0] and {u[k]}Tk=0, which suffices to obtain z[0], . . . , z[T ]
subsequently, {x̂[k]}Tk=0; and (iii) assume {z[k]}Tk=0 and {u[k]}Tk=0 are as ap-
proximated in step (ii) and determine an approximation to B. The process
consists of executing step (ii) and (iii) iteratively. Our experiments reveal
that the estimated parameters converge after a few iterations in both syn-
thetic and fMRI time series (Supplementary Fig. 18). Additionally, to force
the inputs to be used as little as possible, since otherwise they could contain
all the required information to obtain the sequence {z[k]}Tk=0 (e.g., consider
A to be zero and B to be the identity matrix), the optimization objective is
rather given by ‖z[k]− x[k]‖22 + λ‖u‖1 + λ‖B‖21, which penalizes the use of
the input with a weight λ > 0. – See section SI1 for algorithm details.

We will demonstrate in the following results section that unaccounted
external inputs result in error in estimation of system matrix A. There-
fore, in a modified version of this algorithm, in step (i) we estimate A from
x′[k] measured during an extended window without external stimulation
(e.g., resting-state). Next, we repeat steps (ii) and (iii) iteratively – as
detailed above. Since we did not know the true dimensionality of the ex-
ternal inputs, we approximated the dimensions of the input matrix B by
performing principal component analysis on the residuals of the models. As
seen in Supplementary Fig. 19, principal components 1–25 capture more
than 80% of variance in the average residuals and more than average 60%
of subject-level residuals’ variance across all tasks. In addition, we com-
pared the goodness-of-fit of the LTI model with and without external inputs
using Akaike information criterion (AIC)34. Our results demonstrate that
incorporating external inputs does not results in overfitting and improves
the model’s fit – an effect most pronounced in higher dimensional input
matrices (Supplementary Fig.20). Finally, we demonstrate that we identify
the external inputs during the motor task similarly at high-dimensional in-
put matrices (Supplementary Fig. 6), as indicated by the high correlation
(>0.8) of inputs estimated using input matrix dimensions higher than 25
(Supplementary Fig. 6I). Therefore, we select p = 25 for input matrix B to
estimate the inputs from task fMRI time series.

2.2 Spectral analysis of an LTI system

Provided an LTI description of the system dynamics (1), the autonomous
evolution of the dynamical system can be decomposed in a so-called eigen-
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mode decomposition. Briefly, consider the n eigenmodes (i.e., eigenvalues
and the corresponding eigenvectors) associated with A. Each eigenmode
corresponds to an eigenvalue-eigenvector pair (λi, vi) satisfying Avi = λivi,
and it describes the oscillatory behavior for a specific direction vi.

Specifically, for any given eigenvalue λi represented in polar coordinates
(θi, |λi|), we have that it captures the frequency characterized as

fi =
θi
2π
δt,

where δt corresponds to the sampling frequency, and the time scale given
by

ρi =
log(|λi|)

δt
,

which can be interpreted as the damping rate.
In particular, we can re-write A = V λV ᵀ, where V = [v1, . . . , vn] and

λ = diag(λ1, . . . , λn) are the matrices of eigenvectors and eigenvalues. Sub-
sequently, we can apply a change of variable as z[k] = V ∗x[k], where V ∗

is the transpose conjugate, which implies that zi[k] = vᵀi x[k] is a weighted
combination described by the ith eigenvector associated with the ith eigen-
value. Hence, this can be understood as the spatial contributions of the n
ROIs at a given (spatiotemporal) frequency fi. Additionally, we can revisit
the damping rate of the process in such direction vi by reasoning as follows:
first, we can recursively obtain |zi[k]| = |λi|t|zi[0]|. Therefore, we have the
following three scenarios: (i) |λi| < 1; (ii) |λi| > 1; and (iii) |λi| = 1. In case
(i) and (ii), we can readily see that |zi[k]| → 0 and |zi[k]| → ∞ as k → ∞,
respectively. Lastly, in scenario (iii), or practically, when |λi| ≈ 1, we have
that the process oscillates between stability and instability, and therefore
these dynamics are refer to as meta-stable.

In summary, the dynamical process z(k) describes the spatiotemporal
brain BOLD signal evolution. Specifically, the timescales are encoded in
the eigenvalues and the spatial contributions of the different ROIs are de-
scribed by the eigenvectors with a spatiotemporal timescale described by
the associated eigenvalues.

2.3 Dataset and Preprocessing

We used data from the Human Connectome Project (HCP). As part of the
HCP protocol, subjects underwent two separate resting-state scans along
with seven task fMRI scans, both of which included two sessions. All data
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analyzed here came from these scans and was part of the HCP S1200 release.
The fMRI protocol (both resting-state and task) includes a multi-band factor
of 8, spatial resolution of 2 mm isotropic voxels, and a TR of 0.72 sec (for
more details see35). Subjects that completed both resting-state scans and
all task scans were analyzed. Each of the scanning sessions included both
resting-state and task fMRI. First, two 15-minute resting-state scans (eyes
open and fixation on a cross-hair) are acquired, for a total of 1 hour of
resting-state data over the two-day visit. Second, approximately 30 min of
task-fMRI is acquired in each session, including 7 tasks split between the
two sessions, for a total of 1 hour of task fMRI (for details see36).

The 96 subjects with the lowest mean frame wise displacement were
considered in our study, where we utilized a cortical parcellation with N =
100 parcels that maximizes the similarity of functional connectivity within
each parcel37. We preprocessed resting-state and task data using similar
pipelines. For resting-state, the ICA-FIX38;39 resting-state data provided by
the Human Connectome Project were utilized40, which used ICA to remove
nuisance and motion signals. For task data, CompCor41, with five compo-
nents from the ventricles and white matter masks, was used to regress out
nuisance signals from the time series. In addition, for the task data, the 12
detrended motion estimates provided by the Human Connectome Project
were regressed out from the time series. For both task and resting-state,
the mean global signal was also removed in an effort to remove the auto-
correlated non-physiological noise and reduce the model estimation error42.

2.4 Statistics

We performed student’s t-test and Welch’s t-test43 to test the statistical
significance of the differences between the distributions of interest. Non-
parametric Wilcoxon rank-sum test44 were utilized for comparisons of dis-
tributions with non-normal profiles. We corrected calculated test statistics
for multiple comparisons using false discovery rate (FDR) method45, as
well as the more conservative Bonferroni method46. To identify the task-
specific fluctuations in the average estimated inputs, for each brain regions
we compared task-related inputs to those estimated from resting-state time
series (paired t−test, p < 0.05, FDR). In addition we also generated phase-
randomized null time series from each subjects’ BOLD times series for the
task time series. Next, for each brain region, we compared the average em-
pirical and null estimated inputs for each time point (paired t−test, p < 0.05,
FDR).

To identify estimated inputs that display changes that correspond to
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different task conditions in the motor paradigm, we first performed a prin-
cipal component analysis (PCA) on all estimated inputs (U) concatenated
over all subjects. Next, we identified a single input with the highest absolute
principal component (PC) loading for every component. We then multiplied
the selected inputs with negative PC loadings by −1. Next, we separately
fitted a multiple linear regression model for each PC’s inputs (U) using the
known task-regressors. We created task-regressors for different conditions
by assigning every sample to baseline (0) or one of six events (i.e., visual cue,
left hand, right hand, left foot, and right foot movements) based on their
temporal proximity to events’ onsets and offsets. We repeated this analysis
by shifting task-regressors by different lags (0–12 TRs) to identify the lag
that produces the best fit (i.e., highest R2 values) for each region. Finally,
we performed t−tests on estimated coefficients at the group-level to identify
task conditions similarly echoed in estimated inputs associated with each
PC across participants. We also identified brain regions that correspond to
the identified inputs by performing group-level region-wise t−tests on input
matrix B elements that correspond to inputs U identified by PCs.

We examined the estimated inputs’ non-stationarity using two methods.
First, we used a sliding window approach to examine temporal fluctuations
of estimated inputs’ means over resting-state scans for all brain regions,
measured from the windowed-means’ standard deviation. Second, we used
the nonlinear non-stationarity index introduced by47, with α = 0.9 and
β = 1 exponent parameters following their study, where α and β param-
eters control the relative weighting between the importance of long versus
large excursions in time series. Therefore, non-stationarity indexes with our
selected parameters give marginally greater weighting to excursions’ height.
Finally, to test the group-level significance of both non-stationarity metrics,
we first normalized the values across all brain regions. Next, we used the
t−test (FDR corrected for multiple comparisons across all brain regions) to
establish the statistical significance of the measured non-stationarities across
patients. Traditionally, researchers have commonly used the 0.05 as the sta-
tistical significance level, though the choice is largely subjective. Therefore
to convey the probabilistic nature of the statistical analysis and the proper
interpretation of statistical test results, in the manuscript, we refer to results
of the commonly accepted statistical threshold of 0.05 as “significant” and
the more conservative thresholds of 0.0005 or lower as “highly significant”.
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Figure 1: Synthetic LTI system with unknown inputs (A) A schematic of the brain
as a network, where the nodes represent brain regions, and the edges represent connections
between regions. The activity of four observed regions is modeled as a four-dimensional
LTI system, and the influence of the unobserved regions and external stimuli into each
node as an unknown driver. The synthetic system matrix is designed with eigenmodes
oscillating at 0.01 and 0.06 Hz to mimic the frequencies of BOLD signal’s neurophysiolog-
ical component. (B) Simulated time-evolution of each node’s activity (sampling rate =
1.4 Hz) is color-coded and shown in the presence of drivers, namely the internal noise and
the external input (brighter colors). Only the blue node receives external input indicated
by the magenta line. Three periods (I–III) are highlighted dashed lines. At period I (3–6
min), there is no external stimulation. At period II (9–12 min), the blue node is stimu-
lated in 25 samples = 18 seconds blocks, interleaved with similarly sized rest periods. At
period III (15–18 min), the blue node is stimulated for 7 samples = 5.04 seconds, with
inter-stimulus intervals of 3 samples = 2.16 seconds. (C) Left panels show the estimated
inputs to the blue node (green line, arbitrary units AU) estimated from a single simu-
lation. The panels on the right show the average input and its standard error over 100
simulations. (D) The average 2-norm and standard error of the difference between the
system’s true and estimated matrices of a 3-minute sliding window. (E) The color-coded
lines show the average (and standard error) loading of each node on input matrix B.

3 Results

3.1 Retrieving the external inputs to a synthetic LTI system

We use the proposed method to explicitly model the contributions of internal
system dynamics and external inputs on the BOLD signal during rest and
task. To build intuition, we begin by estimating the internal system param-
eters and unknown inputs using data simulated from a synthetic LTI model
(Eq. 1) with four states representing four brain regions. We first simulate
the dynamics of our model (Fig. 1A), where each region is driven by random
internal noise, and only one region is driven by an additional square pulse
train (Fig. 1B). For details regarding the simulation see the Supplementary
Information (SI) section SI2. Next, we estimate internal system parameters
(4× 4 matrix of interactions) and unknown inputs from the simulated time
series, and to recover the spatial and temporal profiles of the pulse train
input (Fig. 1C). Although the estimated inputs (green line) fluctuate time-
locked to the ground-truth input, their temporal profiles notably differ. We
hypothesize that this divergence arises from the error in system matrices
estimated during periods with external stimulations. In Fig. 1D, we show
that the LTI system parameters receiving time-varying external inputs can
falsely appear to change and diverge farther from the ground-truth when
examined over periods with external stimulation.

Consequently, we hypothesize that system matrices estimated from pe-
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riods without external inputs would improve our ability to capture the un-
known inputs’ profile accurately. Fig. 1C shows that using a fixed sys-
tem matrix estimated from periods without external inputs significantly
increases the similarity (correlation) to the ground-truth inputs. We also
demonstrate that although estimated inputs contain noise, averaging in-
puts estimated over 100 simulations results in highly accurate estimations
(correlation = 0.99). The significant (Wilcoxon rank-sum test, Bonferroni
p < 0.0001) changes in the input matrix B’s loading for estimation windows
overlapping the external stimulation periods, reveals the unknown external
inputs’ spatial profile (i.e., the blue input node) (Fig. 1E). Together, these
results demonstrate that external inputs can increase estimation error in
system matrices, and consequently, input parameters. More importantly,
these results also show that identifying system matrices from periods with-
out external stimulation allow an accurate estimation of unknown external
inputs’ spatiotemporal profiles.

Next, we generate synthetic time series by stimulating LTI systems, pa-
rameters of which were estimated from subjects’ resting-state BOLD time
series. We set external inputs’ magnitude such that the global average
stimulus-induced changes in normalized simulated outputs match the largest
average task-related changes in a sample (social) task. We confirm that
similar to the low-dimensional example in Fig. 1, our approach is able to
extract synthetic external inputs to high-dimensional LTI models of BOLD
signal dynamics (Fig. 2). Likewise, employing system parameters estimated
from periods without external stimulation results in a significant (t−test,
p < 0.05, p = 6.6 × 10−65 and p = 2.9 × 10−66 for 1000 TR- and 250 TR-
long estimation windows, respectively) increase in the similarity between the
ground-truth and estimated inputs (Fig. 2F). The notably higher similarity
between the average estimated to ground-truth inputs than that of subject-
level estimated inputs suggests that profiles of external inputs are correctly
approximated although with noise. Together these results demonstrate the
utility of our framework in identifying external inputs to LTI systems, and
highlight the importance of accurate estimation of model parameters.

So far, we have examined the LTI system’s response in a low recording
noise level (signal-to-recording noise =1000). Next, we examine the accu-
racy of the retrieved model and input parameters at different recording and
internal noise levels. The contributions of the recording and internal noise to
the BOLD signal, for the most part, are unknown quantities. However, they
play an essential role in our ability to capture external inputs accurately.
Simulating the system’s response magnitude and variance (i.e., t-values) at
various recording and internal noise levels show how different noise levels
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Figure 2: Extracting spatiotemporal profiles of unknown external drivers in
simulated brain dynamics. (A&D) Estimated external inputs (i.e., B × U) to all
brain regions from synthetic time series generated from a sample subject’s internal system
parameters and (B&E) the average estimated external inputs across all subjects (input
matrix B dimension = 7, regularization factor = 0.5). Brain regions (y-axis) are sorted
based on resting-state networks identified by48, namely the visual (Vis), sensory/motor
(SM), dorsal attention (DN), ventral attention/salience (VN/Sal), limbic, executive con-
trol (ECN), and default mode network (DMN). System parameters in panels D&E are
estimated from the stimulation window, however system parameters in panels A&B are es-
timated from same-length windows without external inputs. (C) Ground-truth synthetic
inputs over 1000 samples (TR = 0.72 sec). (F) The similarity between ground-truth and
estimated inputs. The system matrix A estimated from windows without external stimula-
tion results in a significantly higher correlation between the vectorized estimated external
and ground-truth input matrices (t−test, p < 0.05, p = 6.6 × 10−65 and p = 2.9 × 10−66

for estimation windows with 1000 and 250 samples, respectively), compared to system
matrix A estimated from the stimulation windows (indicated by ‘*’ markers). The smaller
estimation windows significantly (t−test, p < 0.05, p = 1.15×10−45) reduce the estimated
and ground-truth inputs’ similarity, only for the system matrix A estimated over stimula-
tion windows (indicated by ‘*’ markers). The correlation values between the ground-truth
and group average estimated inputs are indicated by ‘o’ markers.

can lead to seemingly similar outputs.

Moreover, at high noise levels, the error increases notably in the sys-
tem parameters estimated from periods without external inputs, and conse-
quently, in the estimated input parameters during stimulation periods. In-
terestingly, at such high noise levels, the system matrices estimated during
stimulation periods more accurately recover external inputs than those es-
timated during periods without stimulation (Supplementary Fig. 1). These
observations suggest that the choice of system matrices and the goodness-of-
fit of the estimated inputs can further provide insight into the empirical noise
levels. In the following, we consider the proposed methodology in the con-
text of quantifying important spatial and temporal features of the internal
system dynamics and external inputs estimated from the HCP resting-state
and task fMRI scans.

3.2 Capturing external drivers of BOLD signal

3.2.1 Brain’s large-scale oscillatory modes display heterogeneous
spatiotemporal profiles

We begin by showing that the estimated system parameters during resting-
state reliably capture and reproduce known brain functional organization.
Further, because these parameters reside within a quantitative dynamical
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Figure 3: Eigenmodes estimated from the full (1200 TR ≈ 14.5 min) resting-
state time series. (A) Distribution of frequency versus stability of eigenvalues during
resting-state. Clustering the eigenvalues based on their eigenvector’s similarity highlights
the spectral profile of different systems. All eigenvectors from all subjects were normalized
and grouped into 4 clusters using the k-means clustering algorithm. We color-coded the
clusters identified across subjects and all resting-state sessions (n = 4). (B) the inset plot
shows the eigenvalues’ distribution. (C) The brain overlays represent the spatial distribu-
tion of the eigenvector associated with an eigenvalue (displayed with the same color code)
that is at the centroid of each cluster.(D) The similarity between eigenvector clusters’
centroids and the resting-state networks . We performed spatial multiple linear regres-
sion analyses using all resting-state networks identified by48, namely the visual (Vis),
sensory/motor (SM), dorsal attention (DN), ventral attention/salience (VN/Sal), limbic,
executive control (ECN), and default mode network (DMN) as the explanatory variables,
to show which resting-state networks overlap with the eigenvector clusters’ centroids shown
in the panel. The color-coded matrix shows the estimated normalized (divided by max-
imum value at each row) coefficients of the regression, calculated separately for every
eigenvectors’ cluster’s centroid. The plot on the right shows the p-value and R2 calculated
for each cluster centroid.

model, we simultaneously capture both spatial (regions that are co-active)
and temporal (oscillation frequency) information through the eigenmodes
of our estimated system. Specifically, each eigenvector indicates an inde-
pendent pattern of co-active regions, and its corresponding eigenvalue de-
termines both the oscillation frequency and the change in amplitude of the
activation patterns. Intuitively, if we initialize our estimated system state
to a pattern of activity corresponding to an eigenvector, then the system
states would oscillate and dampen according to the associated eigenvalue’s
characteristics (see more details in Materials and Methods section).

To capture the spatial and temporal patterns of activity, we use our
method to estimate the internal system parameters from the resting-state
time series (1200 TR ≈ 14.5 min). The high stability of the (i.e., slow damp-
ing rate) low-frequency eigenvalues as seen in Fig. 4A indicates that the
system’s outputs are dominated by lower frequency oscillations. To identify
the eigenmodes with similar spatial patterns across subjects, we aggregate
all subjects’ eigenvectors and perform k-means clustering analysis. We pro-
vide the course (k = 2) and finer scale (k = 4) clusters in Supplementary
Fig. 2.A and Fig. 3, respectively (for details regarding clustering method
see SI5 and Supplementary Fig. 3). To test the spatial inhomogeneity in
the frequency and damping of these clustered eigenvectors, we performed a
pairwise comparison between the distribution of eigenvalues corresponding
to the eigenvectors in each of the clusters (bootstrap n = 50, 000, Bonferroni
corrected p < 0.05). We found significant differences in the frequencies and
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Figure 4: Matching the spectral profile of the known and estimated external
inputs. (A–F) The difference between the average Fourier transform of the estimated
inputs to all brain regions during tasks compared to that of other task conditions (see
Materials and Methods for details). Top panels display the average (two sessions) spectral
profile of the known boxcar regressors for each task (see Supplementary Fig. 4). Note
the significant changes in the spectrum at expected task-specific frequency peaks across
several brain regions, at low (< 0.1 Hz) and high (> 0.1 Hz) frequencies represented with
red and green arrows, respectively. Frequencies for which brain regions did not pass the
significance level (Wilcoxon rank-sum test, FDR p < 0.0005) are represented in black.

damping rates between all cluster pairs, except for the comparison between
the frequencies in clusters 3 and 4).

3.2.2 Task-specific increases in the extra-cortical input’s power

Up to now, we provided evidence that the system dynamics can capture
the spatial and temporal behavior of resting-state brain networks. Next, we
try to assess if the task-induced dynamics are driven by the external inputs,
retrieved by the proposed method. The sensory inputs to the brain are some
of the major drivers of cortical dynamics. Therefore, we hypothesize that
the external inputs to the subjects’ brains, as estimated by the proposed
method, will mirror real-time changes present in these task regressors (see
Supplementary Fig. 4 for details regarding the task regressors).

To test this hypothesis, we apply our method to the fMRI activity to
estimate the internal system parameters and external inputs for each subject
during task performance (i.e., social, gambling, motor, working memory,
language, and relational). Then, we compare the average estimated inputs’
frequency spectrum for each task. Statistical tests (Wilcoxon rank-sum test,
FDR corrected , p < 0.0005) reveal highly significant unique peaks, matching
the expected external task-specific frequencies (Fig 4). Note that the distinct
task-induced peaks are identified at low (< 0.1 Hz) and high (> 0.1 Hz)
frequencies, even as high as 0.3–0.4 Hz (Fig 4B-C.)

3.2.3 Task-specific profiles of extra-cortical inputs

Next, we consider an LTI framework to quantify spatial and temporal fea-
tures of external inputs to the brain using HCP’s motor task dataset. The
motor task comprises 3-second long visual cues, where participants are asked
to either tap left or right fingers, squeeze left or right toes, or move their
tongue over 12-second long periods following the visual cue’s offset. We se-
lect the motor task since the high dimensionality of input and various task
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conditions in this paradigm allows us to evaluate our framework’s ability to
estimate external inputs’ complex spatiotemporal structure. We aim to as-
sess if we can retrieve the external inputs that drive task-induced dynamics.
We hypothesize that subjects’ estimated external inputs will mirror real-
time changes present in known task regressors. Moreover, due to relatively
lower levels of structured external stimulations during resting-state scans,
we hypothesize that the system parameters estimated from subjects’ full-
length resting-state time series will increase the accuracy of external inputs
estimated from motor task datasets.

Fig. 5 demonstrates estimated inputs (input matrix B dimensions = 25,
regularization factor = 0.5) to all brain regions (i.e., B×U) averaged across
all subjects during the motor task. These results highlight the brain-wide
significant task-specific changes in the estimated inputs when system param-
eters are estimated from the resting-state time series Fig. 5A-B. We provide
evidence of the robustness of these results to changes in the regularization
parameter (Supplementary Fig. 5), and to increase the input matrix B’s
dimension (Supplementary Fig. 6). Conversely, the identified inputs using
the system parameters estimated from the subjects’ motor task time series
notably reduces our ability to capture the task-related changes (Fig. 5C-D).

We establish these observations’ statistical significance by comparing the
external inputs estimated from task datasets against those from subjects’
resting-state scans (paired t−test, p < 0.05, FDR corrected for multiple com-
parisons). Comparisons against the phase-randomized null time series also
provide converging observations (Supplementary Fig. 7). We also use multi-
ple linear regression analyses to assess the estimated inputs’ similarity to the
known temporal profile of the task regressors. Our results demonstrate that
external inputs estimated using the full-length resting-state system param-
eters result in significantly (paired t−test, p < 0.05, Bonferroni corrected
for multiple comparisons) improved fit (measured by R2 values), compared
to system parameters estimated from the motor task (Supplementary Fig.
8). We also find similar results when resting-state system parameters were
estimated from a short (250 sample) window that match task scans’ length
(Supplementary Fig. 8B). Together these results highlight the importance of
the modeled system’s accuracy in capturing a reliable picture of the brain’s
external inputs.

Next, we examine the temporal (i.e., U matrix) and the spatial (i.e., in-
put matrix B) profiles of the external inputs (estimated using resting-state
system parameters), to demonstrate how the estimated inputs reveal the
dimensionality and the spatiotemporal dependencies of the task-related in-
puts. Prior works using univariate and multivariate analyses of HCP task
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Figure 5: Average estimated external inputs in the motor task. Internal system
parameters (i.e., A matrices) during full-length resting-state and motor scans were used to
estimate the external inputs in panels A and C, respectively. Panels B and D show time
points form panels A and C with significantly higher or lower average inputs estimated
during motor task than resting-state scans (paired t−test, p < 0.05, false discovery rate
(FDR) corrected for multiple comparisons). Top plots in panels A&B show onsets and
durations of visual cues and motor task conditions – left foot, left hand, right foot, right
hand, and tongue movement blocks.

datasets have demonstrated that activation induced by the hand, foot, and
tongue movements can be localized over the somatomotor network. There-
fore, we expect the dimensionality of the external inputs to roughly match
or exceed those of task conditions (i.e., six dimensions). As mentioned in
the Materials and Methods section, the principal component analysis reveals
that in all HCP task conditions, principal components (PCs) 1–25 explain
more than 80 % of the variance in the model’s average residuals. Therefore,
we choose p = 25 as the input matrix B dimension in Fig. 6.

We performed principal component analysis on external inputs estimated
temporal profiles (i.e., U) concatenated across all subjects to identify the
input patterns similarly identified over the group. Fig. 6A shows the tem-
poral profile of the concatenated inputs’ PCs 1–15. As seen in Fig. 6B, the
first few PCs (≈ 9) explain a relatively larger portion of the variance. Fig
6A shows the high similarity between known task regressors and PCs’ tem-
poral profiles. We quantify this similarity using subject-level multiple linear
regression analysis of the estimated inputs using the known task (motor)
regressors. We note apparent time lags between the known and estimated
inputs. Therefore, we perform the multiple linear regression analysis using
various lags. Fig 6D shows distributions of lags (samples) that yield the
highest R2 values for PCs 1–9. Fig. 6B shows the group average coefficients
estimated from external inputs associated with each PC (i.e., external inputs
with highest PC weights). We used the group average optimal lag (based
on R2 values) identified in Fig. 6E in Fig. 6B . Estimated coefficients have
significant values, only in PCs 1–9. These results demonstrate that the esti-
mated inputs provide insight into the extra-cortical drivers’ dimensionality.

Next, we examine spatiotemporal profiles of subject-level estimated in-
puts associated with these components to understand their relationship to
the external stimuli. Fig. 6D demonstrate that compared to other PCs, the
inputs associated with PCs 1-4 and 6 fit task regressors relatively better,
indicated by significantly (Wilcoxon rank-sum test, p < 0.05, FDR corrected
for multiple comparisons) higher R2 values. Fig. 6C reveals that PCs 1-4
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Figure 6: Principal component analysis of estimated external inputs.(A) Group-
level principal components (PCs) 1–15 calculated from concatenated estimated inputs (in-
put matrix B dimension = 25) across all subjects. Top plots show onsets and durations of
visual cues and motor task conditions. (B) Percent variance explained by PCs. Insets de-
pict the percent variance explained by PCs 1–25. (C) t-values calculated from coefficients
of multiple linear regression models of estimated external inputs associated with each PC
(see methods for details). The average coefficients that fail to pass the significance-level
across subjects (t−test , p < 0.05, Bonferroni corrected for multiple comparisons) are de-
picted in gray. (D) Distributions of R2 values of multiple linear regression models in panel
B for components with significant coefficients. White circles and color-coded horizontal
bars indicate the medians and means of distributions, respectively. Pairwise comparison
(Wilcoxon rank-sum test, p < 0.05, FDR corrected for multiple comparisons) between
distributions reveal that R2 values for principal components marked by red ‘*’ are sig-
nificantly higher than those marked by black ‘o’ (except for the non-significant difference
between PC 1 and PC 9). (E) Distributions of the number of lags (samples) that results
in best fit (i.e., maximum R2) for PCs 1–9. We used the mean (round to nearest integer)
of optimal subject-level lags for analysis in panels C and D.

and 6 are associated with the visual cue, hand and feet movements (maxi-
mum coefficient in left hand), all movements (maximum coefficient in right
hand), feet movements (maximum coefficient in left foot), and tongue move-
ments, respectively. Supplementary Fig. 9 shows that the brain regions with
the highest average absolute input matrix B values corresponding to PCs
2, 4, and 6 reveal the same regions identified in the somatomotor cortices
using general linear model analysis of BOLD time series for hand, foot, and
tongue movements.

The input matrix B also captures the spatiotemporal relationship be-
tween the inputs across different conditions. For instance, Supplementary
Fig. 9A shows that hand or feet movements are associated with simulta-
neous positive and negative (e.g., inhibition or deactivation) inputs to the
contra- and ipsilateral somatomotor cortices, respectively. Fig. 7 also shows
that PCs 5, 1, and 3 reveal the temporal order of inputs to visual, dorsal at-
tention, and finally, somatomotor cortices following the onset of visual cue.
Note that the spatial and temporal profile of PC 5 demonstrates the inverse
relationship between inputs to visual and somatomotor cortices. This un-
expected temporal profile contributes to the low similarity of PC 5 to task
regressors in Fig. 6D. We show that changing the delay between estimated
inputs and task regressors changes the coefficient patterns with significant
loading (Supplementary Fig. 10). These results demonstrate an early pos-
itive relationship of PC 5 input with visual cue blocks, followed by a later
positive (negative) relationship with left-hand movements (visual) blocks.

Finally, in Fig. 6C we demonstrate that PCs 7, 8, and 9 are primarily
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Figure 7: Temporal and spatial profiles of estimated external inputs associated
with visual cues. (A) Color-coded lines show the mean and standard error (shaded area)
of estimated inputs with the highest subject-level loadings for PCs 1 (green), 3 (orange),
and 5 (blue). Time points with significant (t−test, p < 0.05, FDR corrected for multiple
comparisons across time points) divergence from zero are marked with color-coded dots.
The black and dashed red lines show the visual cue and motor task blocks, respectively.
Color-coded panels (B-D) show the t−test values of brain regions with significant (t−test,
p < 0.05, FDR corrected for multiple comparisons across ROIs) loadings on input matrix
B rows corresponding to the aforementioned PCs.

associated with the right foot movement blocks. However, the significantly
smaller R2 values of these PCs than other PCs in Fig. 6C indicates the lower
similarity of corresponding estimated inputs’ temporal profiles to those of
task regressors. Closer examination of these inputs’ spatiotemporal profiles
reveals that in addition to changes related to left-hand movements, these
PCs capture the rapid sequence of inputs to frontal and somatomotor cor-
tices following the motor task block’s offset and the baseline (i.e., no task)
onset (Supplementary Fig. 11). Together, these results suggest that an LTI
model of cortical dynamics can reveal the unknown spatiotemporal profiles
of the BOLD signal’s external task-related drivers.

We provide additional analysis and discussion on model parameters and
their effect on the reported results in the Supplementary Information (SI)
document. We explored sparsity constraints on the system and input param-
eters in SI5. Supplementary Fig. 12 demonstrates that increasing the system
matrices’ sparsity reduces the model’s goodness-of-fit (measured using the
AIC criterion). In the same vein, the increased spatiotemporal sparsity of
the inputs overall reduces the accuracy (measured using the R2 value of the
linear regression) of the estimated inputs (Supplementary Fig. 13). Never-
theless, estimated inputs’ group-level PCA reveals that the higher sparsity
constraints can improve the accuracy of specific empirically identified input
patterns (Supplementary Fig. 14). In addition, we examined the effect of
the estimation window’s size on the input’s accuracy in SI6. These results
show that a smaller estimation window (3 min) provide comparable results
to the full-length window, however overall it increases the accuracy of mean
inputs to many brain regions (Supplementary Fig. 8) and several main input
patterns (Supplementary Fig. 15). Finally, we explored the sensitivity of
the identified input patterns to the factorizations method in the SI7. These
results demonstrate that PCA decomposition of the model’s residuals reveals
the analogous primary input patterns (Supplementary Fig. 16) uncovered
by our spatiotemporal regularization scheme.
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Figure 8: Non-stationarity of estimated external inputs over resting-state
scans.(A) Brain overlays on top panels highlight regions with significantly (t−test,
p < 0.05, FDR corrected for multiple comparisons) high normalized (z-scored over all
brain regions) fluctuations (i.e., standard deviation) in the normalized (z-score) estimated
inputs’ means, measured using sliding windows (6, 24, and 50 samples window length,
TR = 0.72 sec). (B) Brain overlays on top panels highlight regions with significantly
(t−test, p < 0.05, FDR corrected for multiple comparisons) high normalized (z-scored
over all brain regions) nonlinear non-stationarity index developed by47, calculated from
the normalized (z-score) estimated inputs. The color-coded regions in the bottom plots
in panels A and B highlight the allegiance of brain regions in top panels to the seven
resting-state networks identified by48.

3.2.4 Non-stationarity of inputs to resting-state networks

So far, we showed that adopting a time-invariant model of the intrinsic
relationship between large-scale brain regions allows us to extract the un-
known external drivers of cortical dynamics. Our results demonstrate that
the resting-state paradigm serves as a viable option for a more accurate es-
timation of internal system parameters. However, sensory and other extra-
cortical inputs are still present during resting-state scans, resulting in system
parameters and input estimation errors. Despite the estimation error in the
external inputs’ profile, we hypothesize that quantifying the non-stationarity
of the estimated resting-state inputs provides information on the external
factors that contribute to resting-state BOLD signal non-stationarities.

We quantify estimated inputs’ non-stationarity for every brain region
(i.e., B × U) from the temporal fluctuations (i.e., standard deviation) of
external inputs’ means, measured using a sliding window. Fig. 8 shows
brain regions that exhibit significantly high input means’ fluctuation across
different sliding window sizes (see methods for details). We demonstrate
the results for sliding windows of 6, 24, and 50 samples (TR = 0.72 sec)
lengths and half window-length shifts. We also measure the non-stationary
of external inputs during resting-state scans using the nonlinear measure
developed by47 and find converging results (Fig. 8B). We find several brain
regions within DMN consistently display high non-stationarity values. Sta-
tistical comparisons between the quantified non-stationarity of estimated
inputs to identified brain regions in Fig. 8 reveal the significantly (Welch’s
t-test, p < 0.05, Bonferroni corrected for multiple comparisons) higher non-
stationarity of external inputs to identified DMN regions relative to several
other resting-state networks (Supplementary Fig. 17). Together, these re-
sults reveal that time-varying external inputs may partly contribute to the
previously reported resting-state BOLD signal’s non-stationary, and the LTI
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model offers an avenue to determine the spatiotemporal profiles of these un-
known external sources.

4 Discussion

Based on the theory of embodied cognition, the evolution and emergent
function of the brain can be best understood in the context of the body
and its interactions with the environment49;50;51;52. In this view, the in-
formation does not exist in an abstract form outside the agent, instead, it
is actively created through the agent’s physical interaction with the envi-
ronment52. Therefore, understanding the native structure of the external
inputs to the brain, as well as the interaction between the brain and its
exogenous drivers, is germane to understanding the functional dynamics of
the embodied brain53.

What are the external drivers of BOLD signal? Current theories suggest
that cortical outputs reflect changes in the balance between the strong recur-
rent local excitation and inhibition connectivity, rather than a feedforward
integration of weak subcortical inputs54. Changes in this balance heavily
affects the local metabolic energy demands and consequently the regula-
tion of cerebral blood flow and the BOLD signal, despite the net excitatory
or inhibitory output of the circuits55. Inhibition in principle can lead to
both increases55 and decreases56;57;58 in metabolic demands59. Moreover,
cortical afferents and microcircuits can function as drivers by transmitting
information about the stimuli, or alternatively as modulators by modulat-
ing the sensitivity and context-specificity of the response60;61;62. Excitatory
sensory information, transmitted mostly via glutamatergic or aspartergic
drivers, combined with the strong evoked recurrent GABAergic interneurons
are a major part of neurotransmission dynamics, which in turn affect the lo-
cal cerebral blood flow (CBF)55. Likewise, regulation of cortical excitability
mediated by neuromodulatory neurotransmitters including acetylcholine63,
norepinephrine64;65;66, serotonin63, and dopamine67;68 can also significantly
effect CBF and the BOLD signal.

What do input parameters of an LTI model capture in BOLD fMRI?
We show that an LTI system acts predominantly as a high-pass filter and
highlights the rapid transient fluctuations in the BOLD signal. We provide
evidence that the influence of sensory inputs is identifiable in the estimated
inputs to sensory cortices. More importantly, the task-related changes that
are temporally decoupled from the sensory stimuli, such as the motor cor-
tex’s activation following the offset of visual cues and onset of behavioral

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2021. ; https://doi.org/10.1101/2021.09.07.459325doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459325
http://creativecommons.org/licenses/by/4.0/


outputs, are also captured as external inputs to the LTI system.
Prior research has reported brain-wide and heterogeneous task-related

changes in the BOLD signal power spectrum69;70;10 and estimated system
parameters2;71. However, we provide evidence that the time-varying un-
known exogenous (i.e., extra-cortical) inputs also likely contribute to non-
stationarities in the cortical dynamics. Specifically, we demonstrate in silico
that determining the LTI system’s parameters from periods with unknown
stimuli can lead to high estimation errors in system and input parameters.
We verify these observations empirically by showing that LTI system pa-
rameters identified from resting-state, instead of task BOLD time series,
result in notably more accurate identification of unknown extra-cortical in-
puts’ spatiotemporal profiles in task scans. Together, these results highlight
the importance of modeling and interpreting the brain’s dynamic functional
connectivity and non-stationarity as an open system

Can the brain during resting-state scans be fully described as a lin-
ear and time-invariant system? Prior studies demonstrate that temporal
fluctuations in the BOLD signal (< 0.1 Hz) cannot be fully attributed to
linear stochastic processes72;73;74, and suggest that the nonlinearities in the
BOLD signal could be attributed to the presence of a strange attractor73.
Additionally, other neuroimaging studies using paradigms such as “temporal
summation” have more directly probed the system and provide evidence of
system nonlinearities75;76;77;78.

Model-based approaches such as work by79;78 have concluded that non-
linear transduction of rCBF to BOLD is sufficient to account for the nonlin-
ear behaviors observed in the BOLD signal. However, care should be taken
in the interpretation of these results as in the temporal summation frame-
work, where the profile of input is assumed to be known and is approximated
by an abstract stimulus representation. We believe our framework provides
a novel avenue for testing the system linearities through the examination
of the estimated unknown inputs in summation paradigms. Specifically, the
delay between estimated and known external inputs can be further leveraged
to tease out the nonlinear components of hemodynamic response function
(e.g., vascular) from the neural impulse response function.

Stationary signals are characterized by time-invariant statistical proper-
ties, such as mean and variance80. To date, several tests have been proposed
to examine the non-stationarity of BOLD time series and the presence of dy-
namic functional connectivity, including test statistics based on the variance
of the FC time series81;82, the FC time series’ Fourier transform83, multi-
variate kurtosis of time series27;28, non-linear test statistics47, and wavelet-
based methods31;29, among others32. These methods commonly compare
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measured properties between the time series of empirical data and a suitable
surrogate or null time series that is designed to lack time-varying properties
through non-parametric resampling84;85, phase-randomization86;83, or gen-
erative models31;47, and the choice of measured properties and null models
profoundly impact on the outcomes of stationarity tests in conflicting reports
on BOLD signal29;30;27;28.

Notably, the presence of non-stationarity in the outputs does not directly
imply the underlying system’s non-stationarity. An LTI system’s outputs,
for instance, while receiving non-stationary external inputs, can also display
time-varying properties. As mentioned earlier, using internal system param-
eters of an LTI system estimated over resting-state scans enables more ac-
curate identification of exogenous inputs’ spatiotemporal profile task scans.
These results suggest that a large-scale stationarity model of the brain with
time-varying external inputs can, in theory, account for a large portion of
the observed task-related changes in cortical dynamics. It is worth noting
that any possible task-related changes in the underlying system parameters
are also captured as external inputs in an LTI framework. Therefore, from
the system identification and model-fitting perspective, it is likely that a
linear switching system with higher degrees of freedom would improve the
fit. Beyond the goodness-of-fit of the model, care should be taken in inter-
preting the epiphenomenal large-scale models’ parameters and their changes
at the micro-scale biophysical level.

However, the impetus for this work is to highlight the estimates’ no-
table sensitivity to the unknown, and thus, unaccounted external inputs.
More practically, when simulated with a wideband unknown external in-
puts, our results suggest that an open LTI model estimated during resting-
state allows us to uncover the influence of these unknown drivers of BOLD
dynamics. Nevertheless, participants’ cortices receive external stimulation
even during resting-state scans, contributing to estimation inaccuracy and
the system’s outputs’ non-stationarity. In this work, we aim to disentan-
gle the non-stationarity of the system from its outputs over resting-state by
examining estimated inputs’ non-stationarity. Our results show that exter-
nal inputs’ non-stationarity over resting-state scans are spatially inhomoge-
neous, with identified DMN regions showing the highest levels consistently
across different analyses. These observations are in line with prior reports of
higher dynamic functional connectivity of these brain structures over rest47.
Despite the presence of possible confounding factors such as unaccounted
nonlinearities and non-stationarities in the recording noise87;88, our frame-
work and observations provide new insight into the external drivers of cor-
tical dynamics and factors that contribute to their non-stationarity. Recent
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system-identification89 and control-theoretic90 work have also demonstrated
the utility of a stationary system in explaining BOLD dynamics. Together
these findings pave the way for principled model-based control of patholog-
ical brain dynamics, such as depression and schizophrenia, using open-loop
external or closed-loop neurofeedback stimulation.

Historically, a narrow band of slow frequencies between 0.01 to 0.1 Hz was
thought to contain information relevant to underlying neural activity, and
that the higher frequency (> 0.1 Hz) BOLD activity considered mainly as an
artifact9;91. Our results also demonstrate that the primary oscillatory modes
of the LTI model of the resting-state BOLD display similar slow frequencies
heterogeneously over the brain. In addition, the hemodynamic response
function (HRF) is also expected to dampen the higher frequency neural
activity significantly. More recent evidence, however, portrays a broadband
picture of BOLD signal fluctuations with frequencies up to 0.25 Hz92;93;10;13

and even higher14. We also provide converging evidence that despite the
expected low-pass filtering of HRF, information about the stimulus-related
activity can still be extracted from the BOLD signal even as high as ≈
0.4 Hz. Future work can leverage acquisition protocol with higher sampling
rates than HCP and rapid stimuli capable of inducing brain-wide activations
to accurately delineate the inputs’ attenuation profile by HRF at higher
frequencies.

However, the HRF plays another critical role in biophysical models where
it enables the approximation of the latent neural states from the BOLD
signal. This is one of the main limitations of our simplified model, as it
incorrectly assumes that the BOLD signal in one region (instead of the
underlying neural activity) can cause changes in the BOLD signal in the
connected regions. This assumption for spatially inhomogeneous HRF func-
tions can, in theory, lead to incorrect identification of the external inputs’
focus and error in the direction and speed of the interactions within func-
tional networks . We believe the overlapping patterns of inputs and the task
activation maps identified using the conventional univariate general linear
model analysis suggest that the above-mentioned error is likely tolerable.
To improve the estimated unknown inputs’ accuracy, future work should
leverage the formulated quantitative spatiotemporal94;79;95;96 models, or the
more recent models informed by the precise mechanisms of neurovascular
coupling97. Nevertheless, care should be taken in these or other related
deconvolution-based inferences98;99;100, since as mentioned earlier, they rely
on the assumption of a known profile of HRF or inputs. Future work can
also leverage neural adaptation paradigms to influence the neural response
timing and help tease out the neural and vascular components’ contributions
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to the modeled inputs.
Structured recording noise such as autocorrelated noise can negatively

impact the modeled system87;88, and the estimated input. Although we have
included global mean signal regression (GSR)42 as a preprocessing step to
account for the shared global noise that is present in many of the functional
networks101;102;103, our model is unable to account for other unknown struc-
tured (e.g., autocorrelated) and time-varying recording noise87;88. Moreover,
GSR may also introduce artifact, as in addition to the shared noise, it also
removes any global activation patterns (e.g., vigilance104 or arousal105) and
can alter the correlation structure. These limitations are the source of on-
going controversy around this noise reduction method106. Having weighed
the potential drawbacks of GSR against the major concerns regarding the
significant global artifacts such as the cardiac and respiratory noise, we
adopted this preprocessing step. Nevertheless, it would be beneficial to in-
vestigate the spectral profile of the global signal and the impact of GSR on
the estimated system and inputs’ spectral characteristics.

One of the current limitations of our proposed framework is that the
estimated inputs’ accuracy depends on the internal and recording noise lev-
els. We show that group-level analysis and repeated measurement designs
are effective strategies to increase signal-to-recording noise and to increase
the estimated inputs’ accuracy. In addition, although we can not accurately
tease out the contributions of internal noise from other sources of noise, our
simulations and experimental results suggest lower levels of internal noise
relative to external drivers in task fMRI. We draw this conclusion based on
the relatively large input estimation errors associated with system parame-
ters identified during external stimulation.

Finally, it is worth highlighting that model-based data-driven methods
such as our proposed framework and the hypothesis-driven methods such as
DCM1 are complementary approaches, suited for interrogation of different
aspects of system and output dynamics. For instance, DCM can also be
leveraged fruitfully for a more accurate estimation of the system, and con-
sequently, external input parameters using highly controlled experimental
designs with known external input profiles. Though, as mentioned before,
care should be taken in the interpretation of the results produced by methods
that incorporate priors, as the boxcar regressors commonly used to model
the profile of external inputs are merely abstractions and do not account for
other possible factors such as anticipatory responses, adaptation, or other
unknown drivers that shape the profile of external inputs. However, data-
driven approaches are particularly advantageous when the brain is driven
by extensive complex inputs, for instance, during naturalistic stimuli (e.g.,
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watching a movie), or in general, if we lack a priori information or hypoth-
esis on the structure of external inputs – for instance, during the healthy
resting-state or pathological brain activity such as epileptic discharges107.

5 Conclusions

We show that the proposed framework provides an avenue to uncover the
structure of the unknown drivers of BOLD signal fluctuations and shines
light on factors that contribute to its apparent non-stationarities. However,
more significantly, our results highlight the importance of modeling and
interpreting the brain’s dynamic functional connectivity as an open system.
Broadly, our approach provides a framework for understanding the brain’s
large-scale functional dynamics and non-stationarities, mechanistically via
the modeled system and its time-varying drivers.

6 Data Availability

Data were provided [in part] by the Human Connectome Project, WU-Minn
Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil;
1U54MH091657) funded by the 16 NIH Institutes and Centers that support
the NIH Blueprint for Neuroscience Research; and by the McDonnell Center
for Systems Neuroscience at Washington University. All data analyzed in
this manuscript came from part of the HCP S1200 release from the resources
available in the public domain. All data used in this study are available for
download from the Human Connectome Project
(https://www.humanconnectome.org). The resting-state and task fMRI
dataset are Open Access, therefore first-tier permission must be granted
by the HCP to access the data. We provide list of all participants’ ID used
in this study in supplementary table 1.

7 Code Availability

The costume scripts for estimating the LTI system and external input pa-
rameters are available at
https://github.com/aashourv/LTI BU.
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A Supplementary Information

In the Supplementary Information document, in addition to the supplemen-
tary figures, we provide details of our proposed joint-estimation algorithm
(SI1),the LTI system’s output simulation (SI2), the dimensionality of the ex-
ternal inputs (SI3), determining the optimal number of eigenvector clusters
(SI4), the sparsity of system matrix and external inputs (SI5), the effect of
estimation window’s length on input’s accuracy (SI6), principal component
analysis of LTI model’s residuals (SI7), and the list of de-identified HCP
subjects used in this study in supplementary table 1.
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