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Abstract 
 
The generation times of our recent ancestors can tell us about both the biology and social 
organization of prehistoric humans, placing human evolution on an absolute timescale. We 
present a method for predicting historic male and female generation times based on changes in 
the mutation spectrum. Our analyses of whole-genome data reveal an average generation time of 
26.9 years across the past 250,000 years, with fathers consistently older (30.7 years) than 
mothers (23.2 years). Shifts in sex-averaged generation times have been driven primarily by 
changes to the age of paternity rather than maternity, though we report a disproportionate 
increase in female generation times over the past several thousand years. We also find a large 
difference in generation times among populations, with samples from current African 
populations showing longer ancestral generation times than non-Africans for over a hundred 
thousand years, reaching back to a time when all humans occupied Africa. 
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Main text 
 
Knowledge of the human generation time (or “generation interval”) in the recent past is 
important for many fields. While genetic data has provided deep insights into human history, 
population genetic methods typically scale history in terms of generations (e.g. 1, 2). This makes 
knowing the generation time especially important for determining the absolute timing of historic 
events, including migrations to new continents (3) or gene flow with extinct hominids (4). In 
order to transform these population genetic estimates into absolute time, it is commonly assumed 
that current generation times have persisted across hundreds of thousands of years, or that studies 
of extant hunter-gatherer (forager) societies provide representative generation times across the 
span of human history (5, 6). However, neither assumption is likely to be correct: the average 
age at which males and females have children depends on many environmental, demographic, 
and cultural factors that can change rapidly (7), while contemporary hunter-gatherer societies 
differ substantially from each other and from past societies (8). It is also clear that generation 
times have evolved among the great apes (9), and may therefore have evolved along the branch 
leading to modern humans. 
 
Previous genetic approaches to estimating historical generation times (the average age at which 
individuals conceive children) have taken advantage of the compounding effects of either 
recombination (10) or mutation (11) on modern human DNA sequence divergence from ancient 
samples. While these estimates have provided significant insight, they are averaged both across 
the sexes and across the past 40-45 thousand years. Greater resolution is possible by examining 
the mutations that originated at specific times in the past, together with a model that accurately 
predicts the generation times of individuals producing those mutations. Here, we develop a 
model that uses the spectrum of de novo mutations as a predictor of parental age. By coupling 
this model with variants whose ages have been estimated from genome-wide genealogical 
information, we are able to separately estimate the male and female generation times at many 
different points across the past 250,000 years. 
 
As humans age, the number and type of de novo mutations they transmit to their offspring 
changes (12, 13). We use information on mutations from a large pedigree study with parents 
whose ages at conception are known (14) to model the relationship between parental age and the 
counts of the six different types of single-nucleotide mutations (Fig. S1). The mutation counts 
are modeled as a multinomial draw from a distribution with a probability vector that is itself 
drawn from a Dirichlet distribution (Supplemental Methods); we regress mutation counts on both 
paternal and maternal age in this Dirichlet-multinomial model (Fig. 1A; Fig. S2). After filtering 
mutations using the same criteria applied to segregating variants (see below), our model was 
trained on 27,902 phased mutations from 1,247 trios. To obtain mutation spectra from many 
different periods in the past, we used the estimated time of origin for current polymorphisms 
from the Genealogical Estimation of Variant Age (GEVA) approach (Fig. 1B; ref. (15)). This 
method estimates when in the past each of ~43 million variants from the 1000 Genomes Project 
arose by mutation. We excluded variants from mutation classes that may have been multiply 
mapped on genealogies (e.g., CpG→TpG mutations), as well as TCC→TTC transitions, which 
have been inferred to be the result of a recent mutation pulse (16, 17). After filtering, we retained 
25.3 million variants. More than 80% of the sampled variants arose in the last 10,000 
generations, but very few are from the last 100 generations (Fig. S4). Because the sampled 
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variants are so unevenly distributed through time, we divided the data from the past 10,000 
generations into bins with equal numbers of variants. Maternal and paternal ages were estimated 
by fitting the variant spectrum in each of these bins to our Dirichlet-multinomial model by 
minimizing compositional (Aitchison) distance between the observed spectrum and the model 
(Supplemental Methods). This set of parental ages form the estimate of the generation interval. 
 

 
 

Figure 1. The mutation spectrum changes with human generation time. (A) Data on de novo 
mutations from 1,247 Icelandic trios (14) were used to train a model that predicts the effect of 
both maternal and paternal age on the mutation spectrum. (B) Data from 25.3 million 
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segregating variants whose date of origin was estimated using GEVA (15) were used to assess 
the mutation spectrum at different periods in the past. The mutation spectrum from each time 
period (bin) was used as input to the model from panel A in order to estimate the generation 
interval for males and females. (C) Differences in the frequency of each of the six different 
mutation types through time, as compared to the most recent time period (smoothed lines from 
local regression). Fig. S3 presents the absolute frequencies of the same mutation data over 
time.  
 
These data allow us to estimate generation times for males and females across the past 250,000 
years (Fig. 2A). Within this timeframe, we find the average human generation interval to be 26.9 
± 3.4 years (standard error) with an average for males of 30.7 ± 4.8 years and an average for 
females of 23.2 ± 3.0 years. The results show that human generation times have undergone a 
rapid increase in the recent past after declining for over a thousand generations. The average 
human generation interval was at a recent minimum of 24.9 ± 3.5 years at ~250 generations ago 
(6.4 kya), roughly concurrent with the historic rise of early civilizations. Before this, it had 
declined from a peak of 29.8 ± 4.1 years at ~1,400 generations ago (38 kya), just before the 
beginning of the Last Glacial Maximum. The trends found for human generation time were not 
affected by the stringency of mutation filters on the training set, nor by the effects of either 
biased gene conversion or linked selection on the variant spectrum (Fig. S5, S6). 
 
Our model estimates a longer generation interval for males than females across all analyzed time 
periods (Fig. 2B). These results are consistent with studies of contemporary cultures, more than 
99% of which show a longer male generation interval (5). Overall, there is a high correlation 
between the average generation interval and the male-female difference (Pearson’s r = 0.88; 
P < 1e-10), likely due to a relatively constant generation interval in females (σ2 = 0.9 years) and 
a large amount of variation in males across time (σ2 = 6.8 years). Males and females reach 
puberty at approximately the same age (18), but the reproductive age in males can extend more 
than 20 years beyond that in females. Sociocultural factors are likely to have acted in concert 
with the higher bound on male reproductive age to produce the greater variance observed in male 
generation interval. The male-female difference follows a similar pattern to that of the average 
generation time except for the most recent windows, which show a smaller increase in male-
female difference than expected during the recent uptick in generation times (compare Fig. 2A 
and 2B). This smaller difference appears to be driven by a relatively larger increase in recent 
female generation intervals: the most recent time period is significantly higher than at any point 
in the last 250,000 years (P < 0.005, z-test).  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2021. ; https://doi.org/10.1101/2021.09.07.459333doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459333
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Figure 2. Estimating the male and female generation interval across 250,000 years. (A) Male 
(blue points), female (red points), and sex-averaged (grey line) generation intervals over the 
past 10,000 generations. The data were divided into 100 time periods with equal numbers of 
variants; generation intervals in each were independently estimated using the Dirichlet-
multinomial model. Sex-averaged generation intervals are shown here as a line smoothed by 
local regression. Confidence intervals (±1 S.E.) displayed for all estimates were obtained by 
resampling both the de novo mutation data for bootstrapped models and the variants in each 
time period for bootstrapped spectra. The absolute timeline (black arrow) was calculated by 
integrating sex-averaged generation-time estimates across generations elapsed since the 
present (Supplementary Methods). (B) The smoothed difference (loess) between estimates of 
the male and female generation interval over time. 
 
To investigate differences in generation times among human populations, we repeated our 
analysis using four major continental populations within the 1000 Genomes Project. Variants are 
counted as part of a continental population as long as they are polymorphic among samples from 
that population. While the continental labels for each population are used across the span of the 
analysis, note that beyond roughly 2,000 generations ago all non-African populations were likely 
located in Africa and show little differentiation among themselves; coalescence among all 
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ancestral populations living in Africa does not occur until more than 10,000 generations ago 
(15).  
 

 
 
Figure 3. Change in generation interval across different human populations. Generation 
intervals were estimated in ancestors of four major continental human populations included in 
the 1000 Genomes Project; sex-averaged generation intervals are shown here as smoothed by 
loess (see Fig. S7 for full results). Confidence intervals for each population were obtained by 
bootstrapping, as in Figure 2. The inset shows results from including polymorphisms that date 
back to 78,000 generations ago, capturing the convergence of estimates in the most recent 
common ancestor of all populations. AFR: Africa. EAS: East Asia. EUR: Europe. SAS: South 
Asia. 
 
We find subtle changes to the average human generation interval among populations in the last 
1,000 generations (Fig. 3; Fig. S7). Average generation times in European and South Asian 
populations have increased slightly, while generation times in African and East Asian 
populations have changed little. Similar results in the recent past were observed when using only 
private alleles (Fig. S8). We estimate a shorter sex-averaged generation interval for Europeans 
(26.1 years) than East Asians (27.1 years) over the past 40,000 years, supporting a recent 
estimate derived from divergence to archaic DNA (11). Beyond this most recent timeframe, the 
average generation interval in each of the ancestral non-African populations grows progressively 
shorter into the past. The dominating pattern across the past 10,000 generations is a significantly 
shorter sex-averaged generation interval for East Asian, European, and South Asian populations, 
20.1 ± 3.9, 20.6 ± 3.8, and 21.0 ± 3.7 years, compared to the African population, 26.9 ± 3.5 years 
(P < 1e-10, t-test). The estimated generation times do not converge between populations until we 
expand our analysis to at least 78,000 generations ago (Fig. 3, inset). 
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The large difference in generation times between populations suggests that different timescales 
are needed to estimate events outside of Africa (20-21 years/generation) versus those in Africa 
(27 years/generation). These results are consistent with the prediction of a shorter generation 
time in non-Africans, based on the observation of a slightly elevated per-year mutation rate in 
these populations (19). Note that the difference among populations beyond 2,000 generations ago 
reflects population structure in humans before their dispersal out of Africa, structure that is not 
fully captured by the 1000 Genomes AFR sample (3, 15, 19, 20). This implies that the simple 
labels of "African" and "non-African" for these populations conceal differences in generation 
times that existed on our ancestral continent. 
 
Our study builds upon advances in understanding the characteristics of de novo mutations (14) 
and in estimating genome-wide genealogies (15) to create a model for generation times that can 
be applied to ancient populations. While it is clear that the frequency of individual mutation 
types can evolve rapidly (16, 17), even small changefs to the generation interval can reshape the 
overall mutation spectrum (21, 22). Our results are consistent with previous estimates of the 
average generation time over the past 40-45 thousand years (10, 11), but offer unprecedented 
resolution of sex-specific generation times across 250,000 years of human history. While 
information on the mutation spectrum far into the past (>10k generations ago) is limited by the 
coalescent process (and subsequent lack of ancient polymorphisms), fine-scale estimates of 
generation times from the most recent 100 generations will be possible with larger population 
samples (cf. 23). Large enough samples will bring estimates from population genetic data close 
enough in time to overlap with historical birth records (e.g. 24). As it stands, our results offer a 
unique look into the biology of our ancestors and provide a more detailed picture of human 
demographic history. 
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S1. Modeling the mutation spectrum as a function of parental age 

S1.1. Data from Icelandic trios 

We developed a parental age model for the mutation spectrum based on data from a large study 
of de novo mutations in an Icelandic population (Jónsson et al. 2017). We briefly summarize the 
findings from this study here as background for the development of our model. The study 
detected 101,377 single-nucleotide de novo mutations from 1,548 trios with known parental ages 
at conception. In general, they found an increasing number of mutations with both paternal and 
maternal age, with different rates of increase for different mutation classes. The parent-of-origin 
was determined for a subset of these mutations (n = 41,899), allowing inferences for the 
mutation spectrum to be made separately for mothers and fathers. Figure S1 summarizes these 
findings for each of the six different classes of single-nucleotide mutations (A→C, A→G, A→T, 
C→A, C→G, C→T; each class includes counts from their complements). 
 

 
 
Figure S1. Frequency of mutation classes with parental age 
A summary of the number of de novo mutations as a function of age. Phased mutations can be 
assigned to either the paternal or maternal lineage, so are shown separately for the six different 
types of single nucleotide changes (and their complement). Data from Jónsson et al. (2017). 

20 30 40 50 20 30 40 50 20 30 40 50

0

5

10

15

20

25

0

5

10

15

20

25

parental age

nu
m

be
r o

f p
ha

se
d 

m
ut

at
io

ns

A>C A>G A>T

C>A C>G C>T

Maternal
Paternal

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2021. ; https://doi.org/10.1101/2021.09.07.459333doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459333
http://creativecommons.org/licenses/by-nc-nd/4.0/


S1.2. Description of the Dirichlet-multinomial regression 

The mutation spectrum is a form of compositional data: comparisons between spectra focus on 
differences in the relative abundance of each mutation class. Because of the small number of 
mutations produced by any one set of parents, observations from a single trio are insufficient to 
reliably determine the spectrum. A model for the mutation spectrum must therefore incorporate 
the probabilistic nature of mutation counts from a given trio while inferring the relationship 
between the underlying spectrum and given covariates. We apply a Dirichlet-multinomial 
regression to mutation count data to capture the relationship between the underlying mutation 
spectrum and parental ages, which are treated as covariates in the analysis. 
 
Let 𝐲! = #𝑦!,#→%, 𝑦!,#→&, 𝑦!,#→', 𝑦!,%→#, 𝑦!,%→&, 𝑦!,%→'& be the vector of mutation counts for each 
of the six respective mutation classes from trio i. The distribution for m mutation counts from a 
trio, yi, is modeled as a multinomial, conditional on the probability vector pi, 
 

𝐲! 	|	𝐩! 	~	Multinomial(𝑚, 𝐩!) 
 
where pi is defined on the 6-dimensional simplex, 𝑆 = 8(𝑝#→%, 𝑝#→&, 𝑝#→', 𝑝%→#, 𝑝%→&, 𝑝%→') ∶
𝑝( ≥ 0,∑ 𝑝( = 1( ?. 
 
We then impose a conjugate Dirichlet prior on p, such that 𝐩	~	Dirichlet(𝛂), and 
𝛂 = (α#→%, α#→&, α#→', α%→#, α%→&, α%→'), α) > 0. The probability mass function for the count 
vector y over 𝑚 = ∑ 𝐲!!  trials under this Dirichlet-multinomial model can be represented as 
 

𝑓(𝐲	|	𝛂) = I
𝑚
𝐲J

∏ (α()𝑦((

#∑ α(( &𝑚
 

 
(see Kim et al. 2018).  
 
The parental ages for each trio are incorporated as covariates for the Dirichlet-multinomial 
regression, 𝐱 = #𝐱*+,-./+0, 𝐱1+,-./+0&, an n × 2 matrix of parental ages. They are related to the 
Dirichlet parameter 𝛂 by the inverse link function, 
 

α( = 𝑒𝐱!𝛃" 
 
where 𝛃( = #𝛽(,*+,-./+0, 𝛽(,1+,-./+0& is the vector of regression coefficients for each mutation 
class. 
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S1.3. Subset of mutations and trios for model fitting 

For our main analysis we used a subset of mutations from the Icelandic dataset to model the 
mutation spectrum with parental age: we used only the set of phased mutations for which the 
parent-of-origin was determined by either read-tracing or transmission to a third generation. 
Further restrictions on the mutations used for modeling were made to mirror the filters placed on 
dated variants from the 1000 Genomes Project dataset. These include removing mutations at 
CpG sites and C→T transitions with a trinucleotide context associated with a putative mutation 
pulse (see section S2.2). We also restricted trios to those that had a minimum of at least 10 
mutations. This was done to avoid matrix degeneracy when fitting the maximum likelihood 
mutation spectrum model (see below). After all filters, we fit the model on 27,902 mutations 
from 1,247 trios. 
 

S1.4. Fitting the model to mutation data 

We used the R package MGLM (Kim et al. 2018) to fit the Dirichlet-multinomial regression 
model to the filtered mutation dataset. MGLM implements several methods for multivariate 
generalized linear models, including the Dirichlet-multinomial. We used it to fit the regression 
coefficients for our covariates (parental age) that maximize the log-likelihood of our model. The 
result is a predictive model that gives the expected mutation spectrum for a set of parental ages. 
Figure S2 demonstrates a set of simple predictions from the fit model, showing the expected 
changes to the mutation spectrum when paternal and maternal age are individually adjusted. 
 

 
 
Figure S2. Predicted change in mutation frequency with paternal and maternal age 
Data from Icelandic trios (Figure S1) were used to parameterize the Dirichlet-multinomial model. 
Figures are centered on the average paternal and maternal ages among the trios, so that 
predicted changes in each type of mutation can be visualized as a change relative to this age. 
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S2. Variants from the 1000 Genomes Project dated by GEVA 

S2.1. GEVA and the Atlas of Variant Age 

Human variants dated by the Genealogical Estimation of Variant Age (GEVA) approach are 
publicly available in the Atlas of Variant Age, an online database 
(https://human.genome.dating/). We used dated variants in this database collected from the 1000 
Genomes Project (Phase 3; GRCh37). This set includes autosomal variants sampled from 2,504 
individuals in 26 worldwide subpopulations within 5 continental populations. Ancestral and 
derived states were determined in the Atlas of Variant Age through multispecies alignments from 
the Ensembl database (see Albers and McVean 2020). Throughout our analysis, we use the 
median estimated allele age from the database as a point estimate of each variant’s age. 

 

S2.2. Filtering dated variants 

We took several additional filtering steps to ensure variants were appropriate for estimating 
generation time. We considered only biallelic single-nucleotide sites that were not singletons—
variants that exist on only a single chromosome across samples. We also discarded variants with 
a derived allele frequency higher than 98% to reduce the possibility of ancestral state 
misidentification. 
 
CpG sites are more likely to have arisen more than once, and therefore to have been multiply 
mapped on genealogies; their frequency is much less consistent across time periods as a result 
(Fig. S3). As in the model for mutation spectrum with parental age, all variants at CpG sites were 
discarded from consideration. 
 
Several C→T transitions have been inferred to be part of a recent mutation pulse, particularly in 
European populations (Harris and Pritchard 2017). To reduce the potential effect of this mutation 
pulse on estimates of generation time, we discarded all triplet C→T transitions that have been 
found to be associated with this pulse. These include ACC→ATC, CCC→CTC, TCC→TTC, 
TCT→TTT, and their respective reverse complements. 

 

S2.3. Binning data into time periods 

After all filtering, there were 25.3 million variants from the Atlas of Variant Age for which there 
were estimates of allele age. Of these, 20.9 million were estimated to have arisen in the last 
10,000 generations. Because there are very few young variants and a long tail for the number of 
older variants (Fig. S4), we estimated spectra in bins that were supported by equal numbers of 
variants rather than in equally spaced time periods. We divided the 20.9 million variants equally 
among 100 bins based on their estimated age. Bins were filled starting with the youngest 
variants, leaving a small number of the remainder of oldest variants unplaced.  
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The estimated spectrum for each bin was calculated as the count of variants in each of the six 
mutation classes divided by the total number of variants in the bin. The age of each bin was 
calculated as the mean of estimated ages from all variants in the bin. Figure S3 shows the 
spectra, as a frequency of each mutation class, across 100 bins from the past 10,000 generations. 
The same procedure was used to estimate historic spectra for each of the continental population 
groups, for which there were 11.0 (AFR), 4.3 (EAS), 4.4 (EUR), and 5.4 (SAS) million variants 
included after filtering (see section S4.1). 
 

 
 
Figure S3. Mutation frequency by age of origin 
For each of 100 time periods, the frequency of each type of mutation having been inferred to 
arise in that bin is plotted. In addition to the six types of mutations used in the Dirichlet-
multinomial model, we also show the behavior of CpG→CpT mutations for comparison (these 
were not used in the model). 
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Figure S4. Density of variants by age of origin 
Variants dated by GEVA (Albers and McVean 2020) are plotted according to the time at which 
they are estimated to have arisen via mutation. The plot includes all data from the 1000 
Genomes Project, regardless of which population(s) they are found in.  
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S3. Estimating generation times 

S3.1. Fitting variant data to the Dirichlet-multinomial regression model 

We jointly estimate separate male and female generation times from the historic mutation spectra 
calculated from the counts of variants in each time period. To do this, the parental ages in the 
Dirichlet-multinomial model were treated as parameters in a search for a predicted mutation 
spectrum that best fit the observed historic spectrum. We minimized the distance between each 
predicted spectrum and each observed historic spectrum. 
 
Because a mutation spectrum is a composition underlain by count data, comparisons between 
spectra using simple Euclidean distance can be misleading. Like all compositional data, mutation 
spectra are mathematically constrained by the possible values for the frequency of each count 
class, distorting the simple Euclidean distance between compositions. To deal with this, we 
perform a centered log-ratio transformation (clr) on each spectrum before calculating the 
distance between them (Aitchison 1986). The transformation can be obtained as 
 

clr(𝐱) = Plog
𝑥4
g(𝐱) , … , log

𝑥5
g(𝐱)T 

 
for a composition vector x with D elements, where g(x) is the geometric mean of the 
composition. The Aitchison distance between two given spectra, x1 and x2, can then be 
calculated as 𝑑 = ‖clr(𝐱4) − clr(𝐱6)‖. 
 
We found that the mutation spectrum from the Icelandic trios (Jónsson et al. 2017) differs from 
the variant spectrum inferred from the 1000 Genomes Project data across all time periods. This 
difference is relatively constant across the time periods we considered. Therefore, to obtain 
absolute generation times for historic periods, we center the observed spectra on the most recent 
bin, subtracting the difference between it and the average mutation spectrum estimated in 
Jónsson et al. (2017) from each historic spectrum. This has the effect of assuming that parental 
ages in the Icelandic dataset reflect generation times in the most recent historic bin. We find this 
assumption to be robust for both the relative difference in generation time between the sexes as 
well as the overall pattern of historic generation times (see section S3.4). 
 
The generation time was then estimated from each historic mutation spectra by distance 
minimization as 
 

argmin	
7#,7$

X	clr#𝑭(𝑡*, 𝑡1)& − clr#𝐱( − Δ&	X 

 
where F gives the predicted spectrum from the Dirichlet-multinomial model for a set of paternal 
and maternal ages, tp and tm, xj is the historic mutation spectrum from a given time period, and Δ 
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is the centering difference described above. The parental ages that minimized this distance were 
found by applying the L-BFGS-B optimization algorithm as implemented in the R stats package 
(Nocedal and Wright 1999). We used the default convergence tolerance, maximum number of 
iterations, and set bounds for both parental ages to be: [0, 100]. None of the searches returned a 
minimum distance at these bounds. The maternal and paternal ages that minimized the distance 
from each time period were taken to be the respective estimates of the generation time. These 
ages, as well as the sex-averaged generation time, for all time periods are provided in 
Supplementary Data File 1. 
 

S3.2. Calculating confidence intervals by double-bootstrap 

There are two major sources of uncertainty in our estimates of the generation time: (1) the 
mutation data that specifies the Dirichlet-multinomial regression model, and (2) the dated 
variants that are used to calculate the variant spectrum in each time period. This led us to 
construct confidence intervals around the generation time estimates with a double-bootstrap 
resampling strategy. 
 
The 1,247 trios from the Icelandic dataset were resampled with replacement and fit to the 
Dirichlet-multinomial regression model. We discarded cases where the likelihood search for the 
regression model failed to converge, but restricting the dataset to include only trios that had at 
least 10 mutations greatly reduced instances of failure to converge due to matrix singularity. The 
variants in each time period of the analysis were also resampled with replacement and the 
spectrum was recalculated for each bin. Finally, generation times were estimated by fitting the 
bootstrapped spectrum to the bootstrapped model by distance minimization as described above. 
The resampling steps were each repeated 100 times, resulting in a total 100 × 100 = 10,000 
bootstrap estimates of generation time for each time period included in the analysis. 
 

S3.3. Calculating averages and absolute generation times 

The sex-averaged generation time was calculated as the mean of the maternal and paternal ages 
estimated for each time period. In figures plotting this sex-averaged estimate, we performed local 
polynomial regression (loess) to produce a smoothed curve across the past. We used the default 
smoothing parameter, α = 0.75, in the R stats implementation of loess to smooth both sex-
averaged estimates and their confidence intervals.  
 
We calculated the absolute time scale (Fig 2A in main text) on which generation times change by 
integrating the estimated sex-averaged generation time across the age of mutations. We 
employed a Riemann sum, calculating the cumulative sum of estimated generation times in 
single generation steps from the smoothed sex-averaged curve. We added a small constant to this 
integration to account for the time between the present and the first estimate by assuming there 
has been no change to generation times in this short period. 
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A related strategy was used to calculate the average generation times across the period of our 
analysis. Because ranges for each time period were based on an equal number of variants, older 
bins span a greater amount of time. We weighted the estimate from each time period by the span 
of the bin when calculating the average generation times reported in the main text. 
 

S3.4. Limited effect of recombination on generation time estimates 

Recombination could distort our generation time estimates if linked selection or biased gene 
conversion affects the inferred date of origin of variants in a way that nonuniformly changes 
historic spectra. Linked selection will change the shape of genealogies (Barton 1998), especially 
in regions of low recombination. GC-biased gene conversion will change the population 
frequency of specific variants, but has a greater effect in regions of high recombination 
(Lachance and Tishkoff 2014; Glémin et al. 2015). 
 
We did not expect either process to affect the dating of variants within genealogies, but carried 
out additional analyses to ensure the robustness of our results. We assessed whether 
recombination might have affected generation time estimates by repeating our analysis with 
dated variants from regions with different recombination rates in the human genome. We split 
variants into quintiles based on the interpolated human map of recombination 
(https://github.com/joepickrell/1000-genomes-genetic-maps). While our estimates of generation 
time appear to show a slight increase with increasing recombination (Fig. S5A), the pattern 
across history remains the same and estimates from all quintiles fall within the bootstrapped 
confidence intervals. This slight increase seen in estimates from regions of higher recombination 
did not correspond with any bias toward G or C alleles in the inferred mutation spectra from 
these regions (Fig. S5B). It is therefore not clear how recombination leads to the small observed 
changes in generation time estimates.  
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Figure S5. Generation intervals estimated from variants with different recombination 
rates 
A) Inferences of sex-averaged generation times for data taken from variants binned according to 
the local recombination rate. Variants were binned into five quintiles of recombination rate, 
ranging from the lowest recombination rate regions (quintile 1) to the highest recombination rate 
regions (quintile 5). B) Change in the frequency of mutations to G and C over time, binned by 
local recombination rate. 
 

S3.5. Additional effects of relaxing filters and assumptions 

We examined several ways in which data or modeling choices might have affected our results. 
Rather than using only the set of high-quality phased mutations, we fit the Dirichlet-multinomial 
regression model to a much larger dataset that included unphased mutations from the Icelandic 
trios (n = 72,573 de novo mutations). The results from this analysis are shown in Figure S6A. 
The male-female difference is slightly accentuated, but the overall pattern for generation times 
remains the same. 
 
As mentioned in section S3.1, the main results were anchored by absolute generation time 
estimates from the most recent time period. We relaxed this assumption by anchoring to the 
mean spectrum across all dated variants. This effectively asserts that the Icelandic dataset has a 
generation time equivalent to the mean generation time across thousands of generations. While 
estimates of absolute parental age were slightly lower under this assumption, the patterns across 
human history were unaffected (Fig. S6B). 
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Figure S6. Generation intervals estimated from model that includes unphased mutations  
A) All de novo mutations from the Icelandic trio dataset (not just phased mutations, as in Fig. 2 
in main text) were used to re-parameterize the Dirichlet-multinomial model, and then to re-
estimate generation times. B) Generation times estimated by anchoring the Icelandic mutation 
frequency spectrum to the average frequency spectrum across all historic time periods. 
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S4. Estimating population-specific generation times 

S4.1. Separating the 1000 Genomes Project data into continental populations  

We separated variants as belonging to one of four continental populations (AFR: Africa, EAS: 
East Asia, EUR: Europe, and SAS: Southeast Asia) based on their geographic sampling in the 
1000 Genomes Project. Variants were placed into continental populations using an inclusive 
criterion: as long as more than one copy exists among samples from a population, it is included 
in that population. We analyzed each set of variants separately to arrive at population-specific 
estimates of generation times (Fig. S7). That is, we repeated each step of the previously 
described analysis with only the subset of variants included in each population. 
 

 
Figure S7. Population-specific estimates of male and female generation interval 
Generation intervals were estimated for four major continental populations. These results are 
the same as those shown in Figure 3 in the main text, but with separate maternal and paternal 
generation times plotted. 
 

S4.2. Estimates from private alleles 

In contrast to the broadly inclusive criteria, we also separated variants into each continental 
population by including only the private alleles exclusive to each population. The proportion of 
variants that are private to each continental population drops rapidly going back in time, and they 
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make up a very small proportion of variants by 2,000 generations ago (Fig. S8B). Nevertheless, 
we estimated generation times after creating a subset of variants for each population using only 
the private alleles. Figure S8A shows the results of this analysis for the first 1,000 generations, 
before private variants for most populations disappear. These results are very similar to those 
found using the more inclusive criteria for variants (Fig. 3 in the main text).  
 

 
 
Figure S8. Population-specific estimates from private variants 
A) Estimates of the generation interval for each of the four major continental populations using 
only variants private to each population. These results can be compared to Figure 3 in the main 
text, but note that here we only plot estimates up to 1000 generations ago. B) The proportion of 
all variation that is private to one continental population, as a function of time in the past. Almost 
all variation private to one of the non-African samples has arisen in the most recent 1000 
generations. 
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