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4

8 September, 20215

Abstract6

The Kem Kem beds are well-known palaeontological deposits. Among the7

species that lived there, there are some large theropods, such as Deltadromeus8

agilis, Carcharodontosaurus saharicus, and Spinosaurus aegyptiacus. It is possible9

that these large predators were facultative scavengers, and they could compete10

for carrion. In the present paper, I simulate a small community module of this11

environment, consisting of Carrion, Fishes, Spinosaurus, and a functional group12

composed of large terrestrial Theropods. I assume that these top predators feed13

on carrion, but they also have exclusive food sources. I show that these exclusive14

food sources could have assured the possibility of coexistence, and in their absence,15

one top predator could be locally extinct.16

Keywords: top predators, carrion dynamics, niche partitioning, models of ecology,17

Spinosaurus aegyptiacus.18

1 Introduction19

The Kem Kem deposits in Morocco are a rich palaeocommunity composed of diverse20

groups [1]. One peculiar feature of this palaeocommunity is that palaeontologists find more21

fossils of large-predators dinosaurs than the corresponding herbivores, which led some authors22

to name this patter as “Stomer’s riddle” [1, 2]. Some authors have suggested that the rea-23

soning behind this pattern is a collecting bias [2, 3]. However, other authors suggest that the24

pattern can be indeed a natural phenomenon in opposition to collecting bias [1]. Assuming25
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that the pattern is caused by actual biological processes (i.e., not a collecting artefact), one26

potential explanatory mechanism is resource partitioning among large predators [4, 5], which27

is evidenced by calcium isotopes [6]. Among the coexisting large-bodied theropod predators28

of this environment, there are, for instance, Deltadromeus agilis Sereno et al., 1996 [7], Car-29

charodontosaurus saharicus Stromer, 1931, and Spinosaurus aegyptiacus Stromer, 1915 sensu30

Smyth et al., 2020 [8].31

In extant communities, as the African savannah, large predators interact with each32

other in several ways. These interactions can be fulfilled by direct contact or, likely more33

commonly, indirect dispute through scents and display [9]. The most evident direct interaction34

is the interspecific competition, which in fact occurs for some pairs of species [10]. Another35

important interaction is the intraguild predation, which involves both interspecific competition36

and predation among the involved species, and this type of interaction also potentially occurs37

in African savannah [9]. Regarding indirect disputes, a top predator can inhibit the foraging38

behaviour of mesopredators or shift their foraging range [11, 12, 13]. This latter mechanism39

of avoidance is of particular interest for the Kem Kem palaeocommunity, since it does not40

necessarily involve actual clash, something that to my knowledge was not yet found in the41

fossil record among the large predators.42

In this paper, I study a resource competition system between top predators of the Kem43

Kem Group from the Cretaceous period. I assume that much like modern African predators,44

the top predators of that time also were opportunistic scavengers, and also displayed resource45

competition for carrion. I also assume these top predators had indirect contact displaying46

density-mediated interactions [14]. Because scientists can not directly observe the dynamics47

of extinct communities, they have an extra complication compared with extant communities.48

In this circumstance, mathematical models of population dynamics may be useful tools for49

palaeoecology due to the scarcity of data these systems possess [15, 16]. Within this framework,50

the objective of this work is to answer the following questions: (i) how does the density-mediated51

interaction influence the coexistence of two top predators living in the same environment?; (ii)52

how does an increase in food input of one top predator affect its competitor?; and (iii) how53

does a variation in the shared resource can affect the top predators’ densities?54

2 Methods55

2.1 System description56

The interactions studied in this paper are presented in Figure 1. The analysed system57

is a fragment of the potential palaeocommunity modules of that ecosystem, consisting of two58

top predators, Spinosaurus (S) and other Theropods (T ); “Fishes” (F ) that represent the59

community of fish species that are consumed by Spinosaurus; “Sauropods and others” that60

are items consumed by other Theropods. Carrion dynamics have an important role in extant61

ecosystems [17, 18, 19], and could also be important in the Kem Kem palaeoenvironment. Given62
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that, I assume that the two top predators compete by resource competition for the Carrion63

(C), and may influence each other through a density-mediated interaction (DMI, hereinafter)64

regarding this consumption.65

Figure 1: Hypothetical interactions of the Kem Kem palaeoenvironment studied in the
present work. Red arrows indicate consumption, while green arrows are the top preda-
tors’ density-mediated interaction (DMI).

2.1.1 Environment66

The location of the study system is named the Kem Kem Group in Morocco [1]. This67

palaeoenvironment is characterized by having several microhabitats, which could provide op-68

portunities for niche diversification [20, 21]. The vertebrate fauna is represented by elas-69

mobranchs, osteichthyes, sarcopterygians, amphibians, lepidosauromorphs, turtles, crocodyli-70

forms, pterosaurs, non-avian dinosaurs, and possible others [1] (and references therein).71

2.1.2 Spinosaurus72

It has been showed that Spinosaurus had anatomical adaptations to pursue [22] and73

catch fish [23, 24, 25]. There is also evidences indicating that this species was mainly piscivo-74

rous [6]. Despite these adaptations for active pursuing, Spinosaurus probably was a shoreline75

generalist [26]. This is in line with some observations that spinosaurids were not strictly pis-76

civorous [20, 25]. There is, for instance, evidence of hunting or scavenging of pterosaurs [27].77

Probably for these specializations to catch fish and also having a broad diet, Spinosaurus was78

highly abundant in comparison to other top predators in some sites [28].79

2.1.3 Other Theropods80

In addition to Spinosaurus, the Kem Kem beds have at least two other large predators,81

Carcharodontosaurus saharicus and Deltadromeus agilis [1]. These large-bodied predators were82

probably opportunistic scavengers, as evidenced for large Theropods in general [16, 29, 30]. In83

the present work, I consider that Spinosaurus can interact with Carcharodontosaurus and/or84

Deltadromeus. For the sake of simplicity, I consider these latter two to belong to the functional85

3

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 9, 2021. ; https://doi.org/10.1101/2021.09.07.459352doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459352
http://creativecommons.org/licenses/by-nc-nd/4.0/


group of large land predators, and in the context of this work I call this group “non-Spinosaurus86

Theropods” (NST, hereinafter).87

2.2 Models88

Krivan and Schmitz [14] proposed a model with DMI in which the density of one species89

exerts a reduction in the foraging activity of the other species. Furthermore, O’Bryan et al.90

[31] proposed a model for carrion-scavenger dynamics. These two models are general, meaning91

that they can be applied to a vast class of biological systems that share the assumptions of92

each model. Taking this into consideration, based on the building blocks from [14] and [31], I93

propose the following model:94

dC

dt
= p− dC −

(
aSCS

1 + aShSC + aShSF

)
−
(

aTCT

1 + aThTC + aThTO

)
dF

dt
= rFF

(
1 − F

KF

)
−
(

aSFS

1 + aShSC + aShSF

)
dT

dt
=

(
aT (S)CT + aTOT

1 + aT (S)hTC + aThTO

)
−mTT − qTT

2

dS

dt
=

(
aS(T )CS + aSFS

1 + aS(T )hSC + aShSF

)
−mSS − qSS

2

(1)

in which the four compartments are Carrion C, Fishes F , NST T , and Spinosaurus95

S. The generation of carrion biomass p is due to terrestrial animal death, and d is the rate96

of decomposition. I consider the following model components: a Holling type-II multispecies97

functional response [32, 33] for both top predators, in which aS and aT are the attacking rates98

of Spinosaurus and the NST, respectively, with hS and hT their manipulating time; a logistic99

growth for the fish community with rF the intrinsic growth rate and KF is the carrying capacity100

of the fish community; a linear density-independent mS and mT for Spinosaurus and the NST,101

respectively; and also a quadratic density-dependent mortality qS and qT for each top predator.102

This density-dependent mortality can mean, for example, effects of intraspecific competition103

or cannibalism [34]. The functions aT (S) and aS(T ) can assume two forms, representing two104

distinct scenarios: resource competition with DMIs, and purely resource competition. They are105

displayed in Table 1. The parameters λS and λT are the attacking coefficients of Spinosaurus106

and NST in the absence of its competitor, respectively; and α is the intensity of the DMI107

that Spinosaurus exerts on NST, and β is the NST intensity over Spinosaurus. The results108

concerning the scenario of no DMI are presented in Supplementary Material A.109
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Type Equations

DMI
aT (S) = λT exp (−αS)
aS(T ) = λS exp (−βT )

No DMI
aT (S) = aT
aS(T ) = aS

Table 1: Considered mathematical functions for aT (S) and aS(T ) in the present work.
Two scenarios are evaluated: the occurrence of DMI and the lack of DMI.

2.3 Model settings110

Regarding the parameter values, they were chosen to yield coexistence in the two studied111

scenarios. To understand the effects of the parameters, I employed numerical continuation of112

parameter [35, 36] to understand the influence of two parameters, rF and O, on the system.113

The increase of rF means enrichment of resources in the aquatic environment, and the increase114

of O means an increase in the availability of terrestrial food sources. In addition, the numerical115

continuation of p is presented in Supplementary Material B.116

I also analysed the extreme case in which one or more food sources are not available117

for the top predators. With this purpose, I simulated four cases: (i) the terrestrial herbivores118

are absent; (ii) the fish community is absent; (iii) both terrestrial and aquatic food sources119

are absent; (iv) variation of the carrion availability, i.e., the shared resource. These results are120

presented in Supplementary Material B. In order to complement the study, I also employed a121

Sensitivity Analysis of parameter [37, 38], which is presented in the Supplementary Material C.122

The ordinary differential equations are solved using the LSODA method [39] from SciPy123

[40]. The Jupyter notebook code to solve the models is available at https://github.com/124

Tungdil01/palaeoEcologyKemKem.125

3 Results126

A simulated time series of model (1) with top predator’s DMI is presented in Figure 2.127

In this hypothetical scenario, all species / functional groups coexist in a stable equilibrium128

dynamics. A similar result is observed for the no DMI scenario, shown in Supplementary129

Material A. However, the two competitors equilibrium densities are higher with no DMI.130
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Figure 2: Time series of model (1) including the DMI. The initial conditions of the four
compartments are: Carrion C(0) = 10, Fishes F (0) = 10, NST T (0) = 5, Spinosaurus
S(0) = 15. Parameter values: λT = 0.1, λS = 0.01, α = 1, β = 100, p = 20, d = 10, aS =
1, hS = 1, aT = 1, hT = 1, O = 0.5, rF = 2, KF = 10,mT = 0.1, qT = 0.1,mS = 0.1, qS =
0.1.

Increasing the parameters related to the prey items of each competitor yield an increase131

in their corresponding densities, which is displayed in Figure 3. Figure 3(a) shows that the132

increase in rF increases the equilibrium density of Spinosaurus and decreases density of the133

NST. This decrease in the NST equilibrium density might be a consequence of the DMI, since134

β is much higher than α. On the other hand, Figure 3(b) shows an increase in the equilibrium135

density of the NST with the increase in its food sources availability. The equilibrium density136

of Spinosaurus first slightly decreases (in the order of 1e − 02) for small O, but then slightly137

increases for approximately O ≥ 2.138
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Figure 3: Numerical continuation for model (1) including the DMI. The initial conditions
and parameter values are the same as in Figure 2, but in (a) rF is varied and in (b) O
is varied. Initial conditions: C(0) = 10, F (0) = 10, T (0) = 5, S(0) = 15. Parameter
values: λT = 0.1, λS = 0.01, α = 1, β = 100, p = 20, d = 10, aS = 1, hS = 1, aT = 1, hT =
1, O = 0.5, rF = 2, KF = 10,mT = 0.1, qT = 0.1,mS = 0.1, qS = 0.1.

4 Discussion139

The present paper intended to study a simple ecological model, representing a piece140

of the Kem Kem Group, and to construct a numerical framework to analyse this system.141

The results presented in this work suggest that the answer to the Stomer’s riddle is niche142

partitioning. This could have allowed then the Kem Kem palaeoenvironment to sustain a143

relatively high number of large predators in comparison to large herbivores, provided there are144

sufficient food sources. As displayed in Figure 3, the densities of the two top predators are145

highly dependent on the availability of exclusive food sources, i.e., fishes for Spinosaurus and146

sauropods and others for the NST (see also Supplementary Material B). As far as carrion is147

concerned, the simulations suggest that it alone may not be able to sustain the large predators148

guild for the scenario of DMI (Supplementary Material B). Moreover, as carrion is increased,149
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the fish community also increases (Supplementary Material B). This result may be due to the150

phenomenon of predator satiation [41], which in the case of predation by Spinosaurus releases151

the fish community.152

Beevor et al. [28] showed evidence supporting a high abundance of Spinosaurus teeth153

in comparison with other Theropods in some sites in Morocco. We could qualitatively relate154

this information with the results of Figure 3, for the reason that a high aquatic enrichment155

yields a high equilibrium density of Spinosaurus. On the other hand, if the terrestrial herbivore156

sources are kept constant, the NST equilibrium density is also kept at a constant value.157

Ecological models such as those developed in this paper often describe a range of extant158

biological systems, like terrestrial mammals [42], small invertebrates [43], and marine commu-159

nities [44], just to cite a few examples. Also concerning ecological models, Pahl and Ruedas [16]160

employed an agent-based technique to study a system in which carnosaurs are scavengers. They161

showed that sauropod carrion could sustain several individuals and scavenging could be quite162

common in large Theropods, which could explain few predatory specializations in carnosaurs.163

This could justify the fact that the NST survived even in the extreme case of the absence of164

other food sources (Supplementary Material B).165

An interchange between palaeoecology and ecological modelling can be further explored166

and deepened for other palaeoenvironments, with the possibility to provide palaeontologists po-167

tential ecological mechanisms in the world today to explain some patterns that probably also168

occurred in the past. Concerning the limitations of the present analysis, it is important to note169

that a simplified biological setup was employed. An actual ecological network is composed of170

many elements, some of which were neglected in the modelling process. Future analyses can171

detail the ecological network by including more species in the food web. Some potential exten-172

sions are: (i) the inclusion of more than two competing large predators; (ii) the decoupling of173

the “fishes” compartment to spotlight individual species; and (iii) the examination of terrestrial174

herbivore dynamics.175

5 Conclusions176

The density-mediated interaction (DMI) was evaluated by the modelling framework177

developed in this work. This type of interaction reduced the equilibrium densities of the two178

competitors in comparison with the no DMI scenario. One large predator might even go extinct179

in extreme cases in the absence of a food source. Another aspect regarding the variation in180

the food sources is that in the scenario of DMI, increasing the food source of a predator causes181

a decrease in the density of its competitor. As a consequence of further increasing the food182

source, the other predator stays with a fixed density or has its density slightly increased.183

Finally, increasing the carrion availability, Spinosaurus and fish densities increased, but the184

non-Spinosaurus Theropods (NST) had a constant density in the DMI scenario, indicating that185

the intensity of DMI can have a major influence on the dynamical outcomes.186
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