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SUMMARY  1 

The capacity of the intestinal microbiota to degrade otherwise indigestible diet components is 2 

known to greatly improve the recovery of energy from food. This has led to the hypothesis that 3 

increased digestive efficiency may underlie the contribution of the microbiome to obesity. 4 

OligoMM12-colonized gnotobiotic mice have a consistently higher fat-mass than germ-free or fully 5 

colonized counterparts. We therefore investigated their food intake, digestion efficiency, energy 6 

expenditure and respiratory quotient using a novel isolator-housed metabolic cage system which 7 

allows long-term measurements without contamination risk. This demonstrated that microbiota-8 

released calories are perfectly balanced by decreased food intake in fully colonized versus 9 

gnotobiotic OligoMM12 and germ-free mice fed a standard chow diet, i.e., microbiota-released 10 

calories can in fact be well-integrated into appetite control. We also observed no significant 11 

difference in energy expenditure per gram lean mass between the different microbiota groups, 12 

suggesting that cumulative very small differences in energy balance, or altered energy storage 13 

must underlie fat accumulation in OligoMM12 mice. Consistent with altered energy storage, major 14 

differences were observed in the type of respiratory substrates used in metabolism over the 15 

circadian cycle: in germ-free mice the respiratory exchange ratio was consistently lower than that 16 

of fully colonized mice at all times of day, indicative of more reliance on fat and less on glucose 17 

metabolism. Intriguingly the RER of OligoMM12-colonized gnotobiotic mice phenocopied fully 18 

colonized mice during the dark (active/eating) phase but phenocopied germ-free mice during the 19 

light (fasting/resting) phase. Further, OligoMM12-colonized mice showed a germ-free-like drop in 20 

liver glycogen storage during the light cycle and both liver and plasma metabolomes of OligoMM12 21 

mice clustered closely with germ-free mice. This implies the existence of microbiota functions that 22 

are required to maintain normal host metabolism during the resting/fasting phase of circadian cycle, 23 

and which are absent in the OligoMM12 consortium.  24 
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INTRODUCTION 27 

The gut microbiota is currently considered a key regulator of host energy metabolism (Sonnenburg 28 

and Bäckhed, 2016). In the absence of a microbiota, mice accumulated less fat (Bäckhed et al., 29 

2004) and were protected from obesity induced by certain types of high-fat diets (Bäckhed et al., 30 

2007; Fleissner et al., 2010; Kübeck et al., 2016). Several mechanisms have been proposed to 31 

explain this phenomenon and its relationship to metabolic imbalances (Cani et al., 2019). These 32 

include endocrine regulation of food intake (Goswami et al., 2018; Lin et al., 2012), additional 33 

energy liberated by the microbiota from dietary fibers (Turnbaugh et al., 2006), alterations in bile 34 

acid profiles (Sayin et al., 2013; Yao et al., 2018), inflammatory responses induced by some 35 

members of the microbiota (Caesar et al., 2015) and induction of thermogenesis in adipose tissue 36 

(Krisko et al., 2020; Li et al., 2019, 2021). However, given the complexity of a complete microbiota 37 

and its interactions with the host, validating any of these theories and identifying causal 38 

relationships remains a major experimental challenge (Harley and Karp, 2012; Walter et al., 2020). 39 

Gnotobiotic mice, colonized with a simplified microbiota made up of defined species, have become 40 

a major tool to identify potential mechanisms of interaction between the microbiota and host (Koh 41 

and Bäckhed, 2020; Mallapaty, 2017; Steimle et al., 2021). Such approaches can generate a 42 

mechanistic understanding of how external factors (i.e. diet, infection) act on the different 43 

microbiota members individually and at a community level (Faith et al., 2014; Kovatcheva-44 

Datchary et al., 2019). A widely used example, the OligoMM12, is a gnotobiotic consortium of 12 45 

cultivable mouse-derived strains representing the major five bacterial phyla in the murine gut 46 

(Brugiroux et al., 2016). It is reproducible between facilities (Eberl et al., 2020) and extensive data 47 

now exists on the metabolism of individual species and their metabolic interactions with each other 48 

(Streidl et al., 2021; Weiss et al., 2021; Wotzka et al., 2019; Yilmaz et al., 2021). Understanding 49 

how, and to what extent, this gnotobiotic microbiota reconstitutes the metabolic phenotype of 50 

conventional mice is therefore of broad relevance for microbiota research. 51 
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Circadian variations in microbiota function adds an extra layer of complexity to metabolic 52 

interactions between the host and the microbiota. Circadian feeding is a major driver of microbiota 53 

composition (Thaiss et al., 2014; Zarrinpar et al., 2014). The luminal concentration of fermentation 54 

products such as short-chain fatty acids (SCFA) shows a dramatic circadian oscillation linked both 55 

to food intake and to intestinal motility (Tahara et al., 2018). Microbiota-derived molecules are 56 

known to influence host nutrient absorption (Wang et al., 2017) and host metabolic gene 57 

expression (Kuang et al., 2019; Thaiss et al., 2016). However, much of our current knowledge is 58 

derived from indirect calorimetry measurements made over a time period shorter than 24h 59 

(Bäckhed et al., 2004; Halatchev et al., 2019; Kübeck et al., 2016; Wostmann et al., 1968). 60 

Measurements of the same host-microbiota system, if taken at different timepoints in the circadian 61 

cycle of metabolism, could therefore be wrongly interpreted as qualitative shifts in microbiota 62 

function. Consequently, to understand the influence of the microbiota on host energy metabolism, 63 

it is key to quantify variation over the full circadian cycle. 64 

A challenging aspect of addressing the influence of the OligoMM12 microbiota on host metabolism, 65 

is that long-term experiments require hygiene barrier conditions similar to those required to work 66 

with germ-free mice. In particular, standard metabolic cage systems do not permit maintenance 67 

of an axenic environment and moving mice between the open cages typically used in isolator 68 

systems where such animals are normally bred, to IVC-cage-like systems used for most metabolic 69 

cages, can be associated with stress and behavioral abnormalities (Rabasa and Dickson, 2016). 70 

We have therefore built an isolator-housed metabolic cage system. Based on the TSE 71 

PhenoMaster® system, we can monitor levels of O2, CO2 and hydrogen every 24min for up to 8 72 

cages, across two separate isolators in parallel, while maintaining a strict hygienic barrier. This 73 

way, longitudinal monitoring of metabolism can be carried out over periods of several weeks in 74 

germ-free and gnotobiotic mice. 75 
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In this study, we applied this system to understand how well gnotobiotic microbiota replicate the 76 

influence of a complex microbiota on host metabolism. We compared the metabolic profile of 77 

germ-free (GF), gnotobiotic (OligoMM12) and conventionally raised mice (specific-opportunistic-78 

pathogen free, SPF) fed ad libitum with standard chow, using isolator-based indirect calorimetry. 79 

Similar to what has been described before (Krisko et al., 2020; Kübeck et al., 2016), we found no 80 

significant differences in energy expenditure among GF and SPF mice. These results are in 81 

contrast to other work (Bäckhed et al., 2004; Levenson et al., 1969; Li et al., 2019; Wostmann et 82 

al., 1968), but the discrepancies can potentially be explained by the methods applied for 83 

normalizing energy-expenditure data. Germ-free and gnotobiotic mice exhibit extensive water 84 

retention in the cecal lumen which can contribute up to 10% of the total body weight. This water 85 

is metabolically inert but is included in the mass used for normalization in reports where a 86 

difference in energy expenditure is reported (Bäckhed et al., 2004; Levenson et al., 1969; Li et al., 87 

2019; Wostmann et al., 1968). When accounting for cecal inert mass, no significant difference in 88 

energy expenditure can be found in either germ-free or the gnotobiotic OligoMM12 mouse line. By 89 

calculating consumed calories in food and waste calories in feces, we could replicate earlier 90 

findings that germ-free and gnotobiotic mice are less efficient at extracting calories from standard 91 

mouse chow. However, our calculations demonstrated that this is well-compensated by increased 92 

food intake such that all mice absorb a similar number of calories from food each day. Interestingly, 93 

despite indistinguishable energy expenditure, and indistinguishable energy absorption from food 94 

each day, OligoMM12 mice showed increased fat mass compared to both, germ-free and SPF 95 

mice. Consistent with alterations in energy storage patterns, their circadian patterns of respiratory 96 

exchange ratio (RER) and certain metabolites in liver and plasma, phenocopied SPF mice during 97 

the dark phase, but germ-free mice during the light phase. Our study indicates that a 98 

reductionist/synthetic microbiota can specifically recover microbiota function in the dark (active) 99 

phase, but not in the light (resting/fasting) phase of the circadian cycle. This represents a valuable 100 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.09.08.456534doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.456534
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

tool for identifying critical microbiota species and functions needed to support healthy host 101 

metabolism throughout the day. 102 
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RESULTS 103 

To compare to published literature on germ-free and colonized mouse metabolism, we compared 104 

male, adult age-matched (12-14wks old) germ-free (GF), gnotobiotic (OligoMM12) and 105 

conventionally raised (SPF) mice, all bred and raised in flexible-film isolators and with a C57BL/6J 106 

genetic background. Indirect calorimetry measurements were carried out in flexible-film surgical 107 

isolators accommodating a TSE PhenoMaster® system (schematic view in Fig. 1A, picture Fig. 108 

1B). Mice were adapted for between 24-36h to the single-housing condition inside isolator-based 109 

metabolic chambers before data collection. Variations on O2, CO2 and hydrogen, along with food 110 

and water consumption, were recorded every 24 min on each metabolic cage. We could confirm 111 

that germ-free mice maintain their germ-free status over at least 10 days of accommodation in 112 

these cages, via culture-dependent and culture-independent techniques (see Methods). 113 

Body composition in GF, OligoMM12 and SPF mice 114 

After 6-12 days of data recording mice were fasted for 4-5 hours and euthanized (approximately 115 

at ZT6 ± 1 hour), and body mass and body composition were measured. As cecal mass (cecal 116 

tissue plus its content) is affected by the colonization status (Wostmann et al., 1968), we first 117 

assessed the cecal mass in GF, OligoMM12 and SPF and its impact on body mass. We found 118 

that cecal mass was inversely correlated to the microbiota complexity, starting at approximately 119 

0.5 g in SPF mice, increasing to around 1.5 g in OligoMM12 mice and reaching 3 g on average in 120 

GF mice (Fig.1C). Note that this represents around 10% of total body mass in GF mice (Suppl. 121 

Fig.1A), which translates into a trend to increased total body mass in GF mice (Fig, 1D). This trend 122 

was completely reverted after removal of the cecum from total mass (Fig. 1E).  123 

Measurements of body composition in mice are often performed using EchoMRI, which yields data 124 

on lean, fat and water mass. As we observed that the cecum represented such a large and variable 125 
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fraction of body mass, we compared EchoMRI read-outs of “lean” and “fat” body mass, before and 126 

after removal of the cecum (Suppl. Fig.1B-G). We found a strong correlation between the total 127 

lean mass measured by EchoMRI with and without the cecum (Suppl. Fig 1B) (Suppl. Fig.1C), i.e., 128 

cecum removal consistently reduced the lean mass readout by 5 to 10% (Suppl. Fig. 1D). 129 

Therefore, cecum removal has a consistent effect on lean mass across groups. For ease of 130 

comparison to published work, we decided to use lean mass obtained by EchoMRI before 131 

dissection for definitive energy expenditure calculations. We observed a trend in lean body mass 132 

with GF having a lower lean body mass than SPF mice, and OligoMM12 mice showing an 133 

intermediate phenotype (Fig. 1F). However, we were underpowered to detect a significant 134 

difference between groups, and we estimate that at least 22 mice per group would be needed to 135 

achieve statistical significance by one-way ANOVA if the current group differences are real – a 136 

number that was beyond the scope of the current study. 137 

In contrast, EchoMRI fat mass measurements pre- and post-cecum dissection were poorly 138 

correlated in GF mice (Suppl. Fig. 1E) attributable to a variable scoring of cecal content as fat or 139 

water. In GF mice, cecum removal resulted in a decrease in EchoMRI fat mass readout of between 140 

5 to 48% (Suppl. Fig. 1F) We also observed a shift towards higher fat mass readings in SPF mice 141 

after cecum removal (Suppl. Fig. 1F and Suppl. Fig. 1G); further highlighting the need for caution 142 

in interpreting EchoMRI readouts for fat mass in mice with major differences in intestinal 143 

colonization. Therefore, we proceeded to directly weigh the fat depots accessible to dissection 144 

(interscapular brown adipose tissue, iBAT; and, inguinal and visceral white adipose tissue, iWAT 145 

and vWAT). There was no significant difference between GF and SPF mice in size of the explored 146 

fat depots; however, OligoMM12 mice accumulated more fat in all explored depots than GF mice, 147 

including more iBAT and vWAT compared to SPF mice (Fig 1G).  148 

Energy metabolism and energy balance in GF, OligoMM12 and SPF mice 149 
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Body composition is determined by the quantity of calories absorbed from food, and whether these 150 

calories are directly expended or are stored. Energy expenditure was estimated using VO2 and 151 

VCO2 readouts (Meyer et al., 2015) and normalized as described before (Mina et al., 2018; 152 

Speakman, 2013; Tschop et al., 2011) using EchoMRI lean body mass and dissected fat mass.  153 

In contrast to some previous reports (Bäckhed et al., 2004; Levenson, 1978; Li et al., 2019; 154 

Wostmann et al., 1968), but aligned with others (Krisko et al., 2020; Kübeck et al., 2016), we found 155 

no significant difference in daily energy expenditure (Fig. 2A and Fig. 2B) or VO2 (Suppl. Fig. 2A 156 

and Suppl. Fig. 2B) between GF, OligoMM12 and SPF mice after normalization using a regression 157 

model that included lean body mass and total dissected fat mass as predictive variables. This lack 158 

of difference was also observed when light and dark phases were analyzed separately (Fig. 2B 159 

and Suppl. Fig. 2B). “Classical” normalization procedures (dividing by mass) also showed no 160 

difference between groups when lean body mass, or “total body mass after cecum dissection” was 161 

used for normalization of energy expenditure (Fig. 2C and D) or VO2 (Suppl. Fig. 2C and D). 162 

Unsurprisingly, we did find a significant difference during the dark phase in energy expenditure 163 

(Fig. 2E) and VO2 (Suppl. Fig. 2E) between GF and SPF mice if “total body mass” (i.e., including 164 

the large inert cecum mass in germ-free and gnotobiotic mice) was used for normalization. 165 

Therefore, at least when comparing to the SPF microbiota used in this study, absence of a 166 

microbiota does not result in altered daily energy expenditure in metabolically active tissues.  167 

We next investigated increased calorie absorption from food by comparing the daily energy 168 

ingestion from food and calorie excretion in feces of GF, OligoMM12 and SPF mice. The difference 169 

between these two values estimates the absorbed calories. As reported previously (Wostmann et 170 

al., 1983), GF animals ingested on average between 10-20% more standard chow compared to 171 

OligoMM12 and SPF mice (Fig. 2F). Correspondingly, GF animals also excreted a much larger 172 

dry mass of feces, while OligoMM12 mice produced an intermediate fecal mass and SPF mice 173 

excreted the least (Fig. 2G).  174 
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Remarkably, energy density of dry feces was lower in GF mice (3.7 Kcal/g) compared to colonized 175 

mice (OligoMM12 and SPF, 4.0 Kcal/g); with the latter showing no difference among them (Fig. 176 

2H). This gap between GF and mice with microbiota can likely be explained by the fact that 177 

although fecal bacteria improve energy release from food, a considerable fraction of that energy 178 

remains stored in the bacteria present in the feces. Assuming certain averaged parameters (dry 179 

mass of a bacterium = 2.26x10-13g / bacteria cell (Dennis and Bremer, 2008), density of bacteria 180 

in feces = 5x1011 bacteria cells / g of feces (Barlow et al., 2020), and energy stored in bacteria = 181 

4.58 Kcal/g of dry bacteria mass (Popovic, 2019)); we estimated that the fecal microbiota of 182 

colonized mice can contribute approx. 0.52 Kcal/g of dry fecal mass – slightly more than the energy 183 

density difference between fecal energy density in colonized and germ-free mice. 184 

We then used these values for food intake, fecal dry mass output, and fecal energy density to 185 

estimate energy absorbed from the feces. We found that the higher food consumption in GF mice 186 

(Fig. 2I) almost perfectly counterbalance their corresponding higher energy excretion in feces (Fig. 187 

2J), such that all mice extract around 9 Kcal per day from their food (Fig. 2K). This is consistent 188 

with our measurements of daily energy expenditure by indirect calorimetry (Fig. 2B), although it 189 

fails to explain the observed adiposity in the OligoMM12 mice (Fig. 1G). Unexpectedly, the 190 

OligoMM12 efficiency of release of calories from chow remains similar between germ-free and 191 

OligoMM12 mice. Given that the gut content of both OligoMM12 and SPF mice is densely 192 

colonized, and the fecal energy density is similar; it should be noted that the lower amount of 193 

energy extracted by the OligoMM12 is not so much due to a poorer digestive capacity of the 194 

gnotobiotic gut microbes, but rather that compared to the SPF microbiota, the calories extracted 195 

by the OligoMM12 microbiota are either retained within the microbes or not converted into 196 

compounds that can be taken up by their host (Fig. 2L).  197 

We therefore concluded that daily energy expenditure and daily energy absorption from food vary 198 

only within the range of experimental error intrinsic to indirect calorimetry experiments. At a 199 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.09.08.456534doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.456534
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

fundamental level, food intake therefore seems to be well regulated by microbiota-released 200 

calories. Despite this, OligoMM12 mice have an elevated fat mass. It remains a distinct possibility 201 

that gain of fat mass depends on the cumulative effect of very small differences in energy intake 202 

and energy expenditure that are simply not resolvable in our system. An alternative explanation is 203 

that microbiota composition influences energy storage. In order to gain a deeper insight into 204 

underlying mechanisms we carried out a series of more detailed analyses of metabolism. 205 

Circadian changes in RER and microbiota-derived hydrogen and short-chain fatty acids 206 

(SCFA) 207 

Respiratory exchange ratio (RER, the ratio of CO2 produced per O2 consumed) is widely used as 208 

an informative proxy for substrate utilization (i.e., glucose or fatty acids) for oxidation in tissues. 209 

We observed that GF mice have a lower RER compared to SPF mice in both light and dark phases, 210 

indicative of increased fat/decreased glucose metabolism in GF mice (Fig 3A). These changes in 211 

RER are not related to differences in feeding patterns as all mice have a similar food intake 212 

patterns during the periods in which their RERs differ the most (Fig. 3B).  213 

Differences in RER provided a clue that there could be differences in energy storage in mice with 214 

different microbiota status. Microbial fermentation products, including short-chain fatty acids 215 

(SCFA) and lactate, can be directly used as energy and carbon-sources by the murine host, and 216 

are generated by the microbiota via processes that liberate molecular hydrogen. We therefore 217 

quantified hepatic concentrations of glycogen, and cecal concentrations SCFA, at Zeitgeber 5 218 

(ZT5, 5h into the light phase) and 16 (ZT16, 4h into the dark phase). Hydrogen was measured 219 

continuously during the circadian cycle.  220 

Hepatic glycogen levels show a circadian rhythm, which usually peaks early during the transition 221 

between dark to light phase (ZT2-4), and drops to its minimum during the early hours of the dark 222 
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phase (ZT14-16) in nocturnal rodents (Doi et al., 2010; Ishikawa and Shimazu, 1976). We found 223 

similar accumulation of hepatic glycogen in GF, OligoMM12 and SPF mice at ZT5; however, GF 224 

and OligoMM12 liver glycogen levels drop lower than SPF mice at ZT16 (Fig 3C). This differential 225 

pattern in GF/OligoMM12 compared to SPF mice may indicate that, although they can equally fill 226 

up hepatic glycogen storages at the end of the dark phase, GF and OligoMM12 deplete hepatic 227 

glycogen faster during the light phase. 228 

Hydrogen, a byproduct of fiber fermentation by the microbiota, was also measured in the exhaust 229 

air of the metabolic cages. We found a clear circadian pattern in hydrogen production between 230 

OligoMM12 and SPF mice (Fig. 3D). Hydrogen levels in OligoMM12 and SPF mice decreased 231 

down to the limit of blank (GF level as reference) during the light phase, to later peak after food 232 

intake resumes during the dark phase. In addition, OligoMM12 mice showed a higher production 233 

of hydrogen than SPF mice during the dark phase even after regression-based normalization by 234 

cecal mass (Fig. 3D), i.e., the OligoMM12 microbiota produced hydrogen at a higher rate per cecal 235 

content mass than the SPF microbiota.   236 

SCFA are the other major output of bacterial fermentation in the large intestine, as well as being 237 

key bioactive compounds produced by the large intestinal microbiota. SPF mice showed the 238 

highest cecal concentrations of acetate, butyrate, and propionate during both the light phase and 239 

dark phase, indicating efficient fermentation (Fig. 3E). Interestingly, OligoMM12 mice showed only 240 

20-50% of the SCFA concentrations observed in SPF mice, but instead showed high production 241 

of lactate during the dark phase (Fig. 3E). In germ-free mice, all analyzed metabolites had levels 242 

below the limit of blank except for lactate, which could correspond to host-produced L-lactate 243 

(Zarrinpar et al., 2018) (our assay is not able to differentiate the enantiomers). As the total mass 244 

of cecum content is widely different among GF, OligoMM12 and SPF mice, we also estimated the 245 

total quantity of each compound in the cecal content by multiplying the concentration (Fig. 3E) by 246 

the cecal mass for each group (Fig. 1C) while propagating the uncertainty of each measurement. 247 
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This transformation has quite a major impact on how these data can be interpreted: when taking 248 

cecal mass into account, OligoMM12 mice have considerably higher levels of acetate during the 249 

light and dark phase and of propionate during the dark phase than SPF mice, while butyrate levels 250 

remain low. There is also an increased abundance of lactate and succinate in the OligoMM12 251 

cecum content (Fig. 3F). Although we cannot directly link these microbial metabolites to the 252 

phenotype of the OligoMM12 mice, this underlines the major differences in metabolite profiles in 253 

the large intestine when comparing germ-free, gnotobiotic and SPF mice. High lactate production 254 

by the microbiome certainly warrants further study for potential metabolic effects on the host. 255 

Circadian changes in liver and plasma metabolites in GF, OligoMM12 and SPF mice 256 

Finally, to increase our metabolic resolution, we applied UPLC-MS to perform untargeted 257 

metabolomics in the liver and plasma during the light (Zeitgeber 5) and dark phase (Zeitgeber 16) 258 

in GF, OligoMM12 and SPF mice. Correlating to what we observed in the RER during the light 259 

phase, GF and OligoMM12 cluster closely and are clearly separated from the SPF in the light 260 

phase of principal component analysis for both liver (Fig. 4A) and plasma samples (Fig. 4B). 261 

However, only minor shifts towards the SPF liver metabolome are seen during the dark-phase for 262 

OligoMM12 liver. This increased separation of the liver metabolome between germ-free and 263 

OligoMM12 mice during the dark-phase, is more apparent when SPF mice are excluded from the 264 

analysis (Suppl. Fig. 3A). Therefore, although RER and glycogen levels clearly show germ-free 265 

like patterns during the light-cycle and SPF-like patterns during the dark-phase, the underlying 266 

metabolome shifts attributable to the microbiome in OilgoMM12 mice are subtle, and generally 267 

closer to germ-free signatures than to SPF signatures in both liver (Fig. 4A) or plasma samples 268 

(Fig. 4B). 269 

We used the package MetaboAnalystR (Chong and Xia, 2018) to identify putative compounds that 270 

are significantly different in pair comparisons between OligoMM12 mice and their GF and SPF 271 
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counterparts by untargeted peak extraction. These were then mapped onto metabolic pathways 272 

using the KEGG database. We found several pathways differentially enriched when OligoMM12 273 

mice were compared to GF or SPF counterparts during the light and dark phase in liver (Fig. 4C) 274 

and plasma (Fig. 4D), including amino acid, bile acids, and fatty acid metabolism. Additionally, we 275 

selected compounds that belong to these differentially enriched pathways or have been previously 276 

identified to have circadian changes in obese patients (Nowak, 2021), confirmed their structure 277 

using chemical standards, and performed a targeted peak extraction for a more precise 278 

comparison among groups (Suppl. Table 1). We observed that for many of these metabolites the 279 

OligoMM12 microbiota produce an intermediate phenotype between GF and SPF mice, e.g., a 280 

subset of bile acids and amino acids, in liver (Suppl. Fig 4A) and plasma (Suppl. Fig 4B).281 
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DISCUSSION 282 

Since the early days of nutritional studies, there has been a clear interest to understand the role 283 

of microbiota in host morphology, physiology and nutrition (Gordon and Pesti, 1971; Levenson, 284 

1978). Pioneering work comparing germ-free rats with conventionally raised counterparts already 285 

described differences in food intake, energy extraction from diet and energy expenditure by 286 

indirect calorimetry (Levenson et al., 1969; Wostmann et al., 1983). More recently, researchers 287 

have explored the effect of specific complex microbiota communities and how they influence 288 

energy metabolism and body composition in the host (Ridaura et al., 2013; Suárez-Zamorano et 289 

al., 2015; Turnbaugh et al., 2006). Here we extend and clarify some of these observations via use 290 

of a well-established gnotobiotic mouse model consisting of 12 cultivable microbiota strains. 291 

By carefully checking the validity of different measurement types, we found no significant 292 

difference in lean body mass among germ-free (GF), gnotobiotic (OligoMM12) and conventionally 293 

raised (SPF) mice. Interestingly, there was a significant increase in fat depots in OligoMM12 mice 294 

compared to GF and SPF animals. Previous studies diverged on the effect of microbiota on fat 295 

mass accumulation during conventional/low-fat diet feeding; reporting either increased fat mass 296 

in SPF mice (Bäckhed et al., 2004) or no difference compared to GF mice (Kübeck et al., 2016). 297 

However, it should be noted that there can be huge differences between SPF microbiota within 298 

and between animal facilities. GF mice transplanted with microbiota derived from obese donors 299 

accumulated more fat mass compared to those transplanted with microbiota derived from lean 300 

donors (Halatchev et al., 2019; Ridaura et al., 2013; Turnbaugh et al., 2006), with correlates 301 

identified to individual species/strain abundance (Woting et al., 2014, 2015). SPF microbiota 302 

matching more closely to those from obese donors could therefore be expected to give differing 303 

results to ours. In contrast, minimal microbiota communities such as the OligoMM12 can be 304 

perfectly replicated across sites (Eberl et al., 2020), and can help to clarify the complex processes 305 

linking microbiota and host metabolism (Becker et al., 2011). Further exploration of the metabolic 306 
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effects of the OligoMM12 microbiota community, and extended versions thereof, has potential to 307 

clarify if specific strains, species or functional classes (Schmidt et al., 2018) are sufficient and 308 

necessary to drive the development of increased fat depots in these mice.  309 

We further observed no significant difference in energy expenditure in GF, OligoMM12 and SPF. 310 

This was critically dependent on the mass normalization procedure applied. Normalization of 311 

mass-dependent variables by a per-mass (or allometric transformation) ratio has been recognized 312 

as a common source of controversy (Packard and Boardman, 1999; Tanner, 1949; White and 313 

Seymour, 2005), especially with large changes in body mass composition (Butler and Kozak, 314 

2010; Kaiyala and Schwartz, 2011), and there have been several publications calling for the use 315 

of better statistical methods (Arch et al., 2006; Fernández-Verdejo et al., 2019; Tschop et al., 316 

2011). Water- and indigestible solute retention in the cecum lumen of germ-free and gnotobiotic 317 

mice can contribute up to 10% of the total body mass and should be considered metabolically 318 

inert. It is therefore unsurprising that when the cecal content mass is very different among groups, 319 

using total body mass for normalization introduces a considerable bias in normalized energy 320 

expenditure estimation. Interestingly, it was long-ago observed that surgical removal of the cecum 321 

equalized the oxygen consumption between germ-free and conventional rats; as well as other 322 

measurements normalized by total body mass (Wostmann et al., 1968). With normalization using 323 

linear regression models based on lean-mass and fat-mass (Mina et al., 2018), we and others 324 

found no significant differences in energy expenditure by indirect calorimetry between GF  and 325 

SPF mice under standard chow diet conditions (Krisko et al., 2020; Kübeck et al., 2016; Li et al., 326 

2021).  327 

An additional important confounder that we encountered was high variability of fat mass readouts 328 

obtained by EchoMRI when comparing mice with major differences in intestinal colonization levels. 329 

This could be attributed to variable calling of the fluid-filled ceca of gnotobiotic animals as either 330 

fat or water, compared with more accurate calling in conventional mice, revealing an important 331 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.09.08.456534doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.456534
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

limitation of these systems. Consequently, physically dissected fat mass provided a more accurate 332 

read-out in all of these studies. 333 

We are also keen to point out the more general limitations of our observations: only one gnotobiotic 334 

microbiota and one SPF microbiota were analyzed, and our conclusions pertain exclusively to 335 

these. We in no way exclude the possibility that some microbiota constituents or conformations 336 

can influence host energy expenditure (Halatchev et al., 2019) and/or body composition (Ridaura 337 

et al., 2013; von Schwartzenberg et al., 2021; Turnbaugh et al., 2006). In addition, it should be 338 

noted that indirect calorimetry is an inherently noisy data type, and small differences in daily 339 

energy expenditure are impossible to resolve via this technique (Corrigan et al., 2020; Fernández-340 

Verdejo et al., 2019).  341 

Nevertheless, the lack of measurable difference in energy expenditure between GF, OligoMM12 342 

and SPF mice is aligned with our finding that the amount of energy obtained by ad libitum food 343 

intake was also remarkably similar among the groups. GF mice seem to accurately compensate 344 

the lower capacity of energy extraction from diet by increasing food intake. While this seems 345 

generally to be in agreement with models that described the regulation of appetite (and therefore 346 

energy intake) by the basal energy requirement of the individual (MacLean et al., 2017; Stubbs et 347 

al., 2018), it remains surprising given the discrepancy in the types of substrates available for 348 

oxidative metabolism in colonized and germ-free mice, revealed by RER differences. Although 349 

germ-free mice have a longer total gastrointestinal transit time than SPF mice (Touw et al., 2017), 350 

very little calorie absorption from food can occur after ingested food reaches the cecum of a germ-351 

free mouse, whilst an SPF mouse will release usable energy from their food via microbial 352 

fermentation for several more hours in the cecum and colon, generating a major time-difference 353 

in the absorption of calories after eating in germ-free and SPF animals. This compensation seems 354 

also to function in mice colonized with the OligoMM12 microbiota, where despite robust microbial 355 

fermentation (read out as hydrogen and fermentation product production) and identical fecal 356 
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energy density to SPF mice, energy recovery from ingested food is poor due to the volume of 357 

feces shed. A clear conclusion from these observations is that microbiota-dependent changes in 358 

metabolic substrates, and timing of calorie absorption, are well integrated in the murine central 359 

regulation of appetite over the course of a day (Fetissov, 2017).  360 

Despite this broadly successful regulation of food intake and energy expenditure, at the molecular 361 

level, major differences were observed between the mice with different microbiota. First, 362 

OligoMM12 mice displayed an RER at the GF level during the light phase (when mice typically 363 

sleep and fast) but raised up to SPF levels during the dark phase (i.e., when mice are active and 364 

eating). It therefore appears that the OligoMM12 microbiota better recapitulates the microbiome 365 

effects on the host energy substrate use during the dark (active) phase when food-derived 366 

carbohydrates are abundant in the large intestine, but not in the light (sleeping) phase when mainly 367 

host-derived carbon sources are available in the large intestine. This potentially correlates with 368 

the SCFA concentrations observed in the cecum content of the OligoMM12, which was associated 369 

with a predominance of succinate and lactate, at the expense of propionate and butyrate. In 370 

complex microbiotas, lactate is typically further metabolized to butyrate by specific firmicutes 371 

(Belenguer et al., 2011; Duncan et al., 2004; Flint et al., 2015), which may be lacking or 372 

insufficiently abundant in the OligoMM12 mice. As lactate can inhibit lipolysis in adipocytes (Cai 373 

et al., 2008; Liu et al., 2009), this raises an interesting theme for follow-up studies to define the 374 

role of microbiota-derived lactate in host metabolism. In line with the RER data, we also observed 375 

that the liver and plasma metabolite profiles of OligoMM12 mice clustered closer to GF mice than 376 

to SPF mice. Although a small shift in the liver metabolome could be observed in the OligoMM 377 

liver during the dark cycle, this clearly demonstrates major metabolic effects of a complete 378 

microbiota that are not reconstituted by the OligoMM12 strains. In addition, certain amino acids 379 

were differentially represented between OligoMM12 and GF or SPF mice, as it has been described 380 

previously (Claus et al., 2008; Mardinoglu et al., 2015). Interestingly, OligoMM12 had a bile acid 381 
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profile closer to GF than SPF mice, for example showing GF-levels of hepatic β-murocholic acid 382 

and taurine- β-murocholic acid, the predominant bile acid in the liver of GF mice (Sayin et al., 383 

2013). Follow up studies with manipulation of the OligoMM12 microbiota or metabolic interventions 384 

are a promising tool to pull apart the circadian effects on RER, the influence of an unusual 385 

fermentation product profile, and other more subtle metabolic changes on overall metabolic health 386 

of the murine host.  387 

In conclusion, our study showed that isolator-based indirect calorimetry is possible and allows 388 

detailed analysis of the metabolism of germ-free and gnotobiotic mice in real-time. Data generated 389 

with this system demonstrated that microbiota-released calories are well integrated in host energy 390 

balance, and that daily energy expenditure was not significantly influenced by microbiota 391 

composition in our mice. Nevertheless, mice colonized with the OligoMM12 gnotobiotic microbiota 392 

accumulated more fat mass and display a GF-like RER during the light phase but an SPF-like 393 

RER during the dark phase, indicative of altered metabolic substrate usage and energy storage. 394 

Correspondingly, the liver metabolome of mice colonized with the OligoMM12 showed alterations 395 

in bile acid, fatty acid and amino acid metabolism, despite overall clustering with the GF liver 396 

metabolome. This reveals the potential for gnotobiotic microbiota communities to investigate the 397 

mechanisms underlying the influence of microbiota on host metabolic health. As microbial 398 

dysbiosis is associated with a range of human diseases, circadian analysis of energy balance 399 

represents a crucial tool in the mining of microbiome data for therapeutic and diagnostic purposes.400 
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METHODS 401 

Animals 402 

We used C57B6/J male mice aged between 12-14 weeks. We compare germ-free mice (GF), with 403 

a 12-strain gnotobiotic microbiota (Brugiroux et al., 2016) (OligoMM12) and specific-pathogen free 404 

mice (SPF). GF and OligoMM12 mouse lines are bred and maintained in open-top cages within 405 

flexible-film isolators, supplied with HEPA-filtered air, and autoclaved food and water ad libitum. 406 

As we are aware that housing conditions may influence behavior and potentially metabolism, we 407 

also bred and maintained a SPF colony under identical conditions inside a flexible-film isolator 408 

specifically for this study, such that all mice experienced identical living conditions, food, and water. 409 

Mice were adapted for between 24-36h after transfer from the breeding isolators to the isolator-410 

based metabolic chambers. For long term experiments, mice were periodically re-housed in 411 

couples for short periods of times to avoid stress of extended single-housing conditions.  In all 412 

cases, animals were maintained with standard chow (diet 3807, Kliba-Nafag, Switzerland) and 413 

autoclaved water. Germ-free status was confirmed at the end of the long-term experiments by 414 

culturing cecal content in sterile BHIS media in aerobic and anaerobic conditions for a week. In 415 

addition, cecal content was frozen at -20°C for a week, then stained with SYBR Gold and assessed 416 

by bacterial flow cytometry (Moor et al., 2016) using similarly processed SPF mice cecal content 417 

as positive control for the presence of bacteria. All experiments were conducted in accordance 418 

with the ethical permission of the Zürich Cantonal Authority. 419 

Indirect calorimetry 420 

The isolator-housed TSE PhenoMaster® system allows instantaneous measurements of oxygen, 421 

carbon dioxide and hydrogen levels as well as total feed and water consumption while keeping a 422 

strict hygiene level of control. The metabolic isolator system consists of an adapted set of two 423 
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flexible-film surgical isolators, each of them housing four metabolic cages from the TSE 424 

PhenoMaster® system (TSE Systems, Germany). Room air is pulled into the isolator by a vacuum 425 

pump passing through a double set of HEPA filters. Then, each cage is connected via a second 426 

HEPA filter through the back wall of the isolator to the CaloSys setup, which pulls sterile air from 427 

the isolator into the cages using negative pressure. Air coming from the cages is dehumidified at 428 

4°C and sequentially passed by a Sensepoint XCD Hydrogen gas analyzer (Honeywell Analytics, 429 

Hegnau, Switzerland) and standard oxygen and carbon dioxide censors provided in the TSE 430 

PhenoMaster® system. A two-point calibration of all analyzers using reference gases was 431 

performed within 24 h before each animal experiment. Data was recorded using a customized 432 

version of the TSE PhenoMaster® software modified to integrate hydrogen measurements.  433 

For indirect calorimetry measurements, the animals were transported in pre-autoclaved, sealed 434 

transport cages from the breeding isolators into the metabolic isolator system. Mice were single 435 

housed and adapted for between 24-36h before starting recording measurements to ensure 436 

proper access to food and water as well as account for initial exploratory behavior. Mice were kept 437 

up to 10 days at a stable temperature (21-22°C) with ad libitum availability of standard chow and 438 

water. The days were divided into a dark and light period of 12 hours each. In this study, we kept 439 

the air flow of 0.4 L/min and recorded individual cage data (gases production and food/water 440 

consumption) every 24min (time set per cage for measurement stabilization 2.5min). In long 441 

experiments, mice were periodically pair-housed for 24h to prevent stress due to prolonged single 442 

housing. 443 

Body composition measurements 444 

At the end of the experiment, mice were fasted for 4 hours (Zeitgeber 1 till 5) before for body 445 

composition measurements. We used magnetic-resonance whole-body composition analyzer 446 

(EchoMRI, Houston, USA) to analyze mice body composition (lean and fat mass). Then, mice 447 
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were euthanized using CO2 according to approved protocols. Total body mass was obtained by 448 

weighing the full carcass and cecum was dissected and weighed by one investigator (DH). For a 449 

set of mice, we remeasured body composition by EchoMRI after cecum removal. Finally, fat 450 

depots were dissected from all mice by one investigator (W.S.) that was blinded to the hygiene 451 

status of the mice. Interscapular brown adipose tissue (iBAT), inguinal white adipose tissue (iWAT) 452 

and visceral white adipose tissue (vWAT) were sampled and weighted.  453 

Food intake, fecal samples and bomb calorimetry 454 

Daily food intake was obtained as the mean value of food intake recorded by the TSE 455 

PhenoMaster® system during the course of the experiment. In addition to the mice reported in the 456 

indirect calorimetry experiments, we also collected food intake data from a set of selected 457 

experiments in which we collected fecal pellets produced during 24h. For daily fecal excretion 458 

measurements, we cleaned up the bedding in the cage and replaced it for a clean and reduced 459 

amount of bedding. After 24h, we collected the mix of bedding and fecal pellets. Fecal pellets were 460 

manually collected from the bedding, transferred to 15ml tubes and stored at -20°C until bomb 461 

calorimetry. Before bomb calorimetry, fecal samples were freeze dried in a lyophilizer overnight 462 

(ALPHA 2-4 LDplus, Christ, Germany) and dry mass recorded. We used a C1 static jacket oxygen 463 

bomb calorimeter (IKA, Germany) to quantify the residual energy present in these dry fecal pellets, 464 

using approximately 0.2-0.5g of material. Energy content was normalized to grams of dry fecal 465 

pellets. 466 

Metabolomics by UPLC/MS 467 

Sample obtention and preparation 468 
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Approximately at Zeitgeber 5 and 16, three mice of each group were euthanized, and liver and 469 

plasma samples collected. To minimize variations among mice, individual mice were euthanized 470 

with CO2 and sampled as fast as possible. Blood was obtained by cardiac puncture, collected in 471 

lithium heparin coated tubes, and kept on ice for further processing. Mice were perfused with PBS 472 

and liver samples were obtained by dissection of the lower right lobe, collected on an 2ml 473 

Eppendorf tube and flash frozen in liquid nitrogen. Finally, between 60-80 mg of cecal content was 474 

collected in a 2ml Eppendorf tube and flash frozen in liquid nitrogen. After samples all samples 475 

were obtained, blood samples were centrifuged 8000rcf for 5min, supernatant collected, and flash 476 

frozen in liquid nitrogen. Samples were kept at -80°C until preparation for UPLC/MS. 477 

Short chain fatty acid quantification by UPLC/MS  478 

Samples were first homogenized in 70%-isopropanol (1 mL per 10 mg sample), centrifuged. 479 

Supernatants were used for SCFA quantification using a protocol similar to previously described 480 

(Liebisch et al., 2019). Briefly, a 7-points calibration curve was prepared. Calibrators and samples 481 

were spiked with mixture of isotope-labeled internal standards, derivatized to 3-482 

nitrophenylhydrazones, and the derivatization reaction was quenched by mixing with 0.1% formic 483 

acid. Four µL of the reaction mixture was then injected into a UPLC-MS system, [M-H]- peaks of 484 

the derivatized SCFAs were fragmented and characteristic MS2 peaks were used for 485 

quantification.   486 

Untargeted UPLC/MS  487 

Samples were thawed on ice. Serum samples were diluted with 90% methanol in water with a 488 

volumetric ratio of 1:7, incubated for 10 min on ice for allowing protein to precipitate. Liver samples 489 

were mixed with 75% methanol in water (2 mL/ 100 mg liver), homogenized using a TissueLyser 490 

(Qiagen, Germany) at 25 Hz for 5 min. The result mixtures were centrifuged at 15,800 g, 4 °C for 491 
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15 min. 100 µL of the supernatants were filtered with 0.2 µm reversed cellulose membrane filter 492 

and transferred to sample vials and used for UPLC/MS analysis with an ACQUITY UPLC BEH 493 

AMIDE column (1.7 µm, 2.1 × 150 mm, Waters). Another 400 µL of the supernatants were then 494 

lyophilized and resuspended in 80 µL 5% methanol in water, sonicated, filtered, and used for 495 

UPLC/MS analysis with an ACQUITY UPLC BEH C18 column (1.7 µm, 2.1 × 150 mm, Waters, 496 

RP column).  497 

An ACQUITY UPLC system (I-Class, Waters, MA, USA) coupled with an Orbitrap Q-Exactive Plus 498 

mass spectrometer (Thermo Scientific, San Jose, CA) were used for UPLC/MS analysis. For the 499 

AMIDE column a flow rate of 400 µL/min was used with a binary mixture of solvent A (water with 500 

0.1% formic acid) and solvent B (acetonitrile with 0.1% formic acid). The gradient starts from 1% 501 

of A, then gradually increases to 70% of A within 7 min. Then a 1% of A is kept for 3 min. The 502 

column was kept at 45 °C and the autosampler at 5° C.  503 

For the RP column, the flow rate was set to 240 µL/min using a binary mixture of solvent A (water 504 

with 5 % methanol and 0.1 % formic acid) and solvent B (methanol with 0.1 % formic acid). The 505 

gradient starts from 95% of A, then gradually decreases to 5% of A within 10 min. A 100% solvent 506 

of B is kept for 2 min, then a 100% of A is kept for 2min to restore the gradient. The column was 507 

kept at 30 °C and the autosampler at 5 °C.  508 

The MS was operated at a resolution of 140,000 at m/z = 200, with automatic gain control target 509 

of 2x105 and maximum injection time was set to 100ms. The range of detection was set to m/z 50 510 

to 750. Untargeted MS data was extracted from raw MS files by using XCMS (Smith et al., 2006) 511 

in R (v3.6.1), and then subject to pathway enrichment by using MetaboAnalystR (Chong and Xia, 512 

2018). 513 

Compound identification and targeted peak extraction  514 
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Chemical standards of selected compounds were diluted to 10 µg/mL and were analyzed using 515 

the UPLC/MS methods described before. Identification was done by comparing retention time and 516 

MS2 in liver/plasma samples with the chemical standards (Nowak, 2021). After confirming the 517 

chemical identities of the compounds, targeted peak extraction was done using Skyline (v21.1) 518 

(Adams et al., 2020). 519 

Data Analysis 520 

Data quality control 521 

To facilitate analysis across different experimental runs, all times were converted into Zeitgeber 522 

time (ZT; [h]), where 0-12 represents the light phase and 12-24 represents the dark phase. Any 523 

datapoint taken before the start of the first occurrence of ZT=0 was discarded. To account for 524 

faulty measurements caused by measurement imprecision, equipment malfunction or other 525 

disruptive events, datapoints were removed from the raw datasets according to criteria based on 526 

statistical and biological arguments. Food consumption values of 0.01 g during the 24min intervals 527 

were considered as measurement noise and discarded. Negative values for food and water 528 

consumption, as well as oxygen (dO2) and carbon dioxide (dCO2) differentials between the 529 

measurement chambers and the reference chamber were also considered as measurement noise 530 

and discarded. For the remaining subsets of measurements from the individual mice, we cleaned 531 

up outlier measurements in food and water intake by eliminating values greater than 75th percentile 532 

+ 1.5 times interquartile range. Potential sources for outlier measurements in food and water 533 

consumption observed included leaky water bottles and loss of food pellets during mice husbandry 534 

procedures. A similar approach was used to eliminate outliers from dO2 and dCO2 values below 535 

25th percentile - 1.5 times interquartile range. Potential sources for outlier measurements in gas 536 

differentials included inappropriate sealing of individual metabolic cages or clogging of pre-537 

analyzer filters. Oxygen consumption (VO2) and CO2 production (VCO2) was calculated using dO2 538 
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and dCO2 and the Haldane transformation as described before (Arch et al., 2006). Energy 539 

expenditure was estimated from dO2 and dCO2 using Weir’s approximation (Weir, 1949). As one 540 

of the study objectives is to explore circadian patterns, if more than 20% of datapoints had to be 541 

removed from a particular day for a particular mouse, all other datapoints from that subset were 542 

discarded as well. After the cleanup process described above, the data from all different 543 

experiment runs were pooled together for further analysis. The above processes lead to a 544 

reduction in dataset size from 10472 to 9453 entries. 545 

Statistical analysis 546 

From the resulting dataset, energy expenditure over a certain period was calculated as the area 547 

under the curve (trapezoid interpolation) of instantaneous values obtained during the 24min 548 

measurements intervals. Food intake values calculated over a certain time are always cumulative. 549 

To compare different mice in the above variables, variations in body mass and composition 550 

between individuals need to be accounted for. As suggested in several publications (Fernández-551 

Verdejo et al., 2019; Speakman, 2013; Tschop et al., 2011), this was done by regression-based 552 

analysis of covariance (ANCOVA). As such, a linear regression is performed on energy 553 

expenditure as a function of lean body mass and fat depots mass, with the microbiota group as a 554 

qualitative covariate. Then, each individual value is replaced by the sum of the corresponding 555 

residual and the energy expenditure predicted by the linear model using the average lean body 556 

and fat depot mass (calculated over all groups). Hydrogen production (difference in hydrogen 557 

concentration between the measurement chambers and the reference chamber) was adjusted in 558 

analogous fashion, using cecal mass (as a proxy for total gut microbiota mass) as a predictor.  559 

For variables where the continuous evolution during the circadian cycle is of interest (RER, gross 560 

hydrogen production), values were averaged at each time point for each individual. A generalized 561 
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additive model was used to fit a smooth line to these averages using a cubic penalized regression 562 

spline (using R function mgcv::gam with formula y ~ s(x; bs = “cs”)).  563 

For estimating derived variables (i.e., daily energy excretion) we used the R package “errors” 564 

(Ucar et al., 2019). This package links uncertainty metadata to quantity values (i.e., mean “daily 565 

fecal dry mass excretion”, mean “fecal energy content”) and this uncertainty is automatically 566 

propagated when calculating derived variables (i.e., “daily energy excretion” = “daily fecal dry 567 

mass excretion” x “fecal energy content”). Uncertainty is treated as coming from Gaussian and 568 

linear sources and propagates them using the first-order Taylor series method for propagation of 569 

uncertainty. 570 

Hierarchical clustering and heatmap visualization were produced using the R package “pheatmap” 571 

using Pearson correlation as distance measure for clustering and Ward's minimum variance 572 

method using an algorithm that includes Ward’s criterion (Murtagh and Legendre, 2014). For the 573 

Principal Component Analysis, we used the prcomp function which is present in built-in R stats 574 

and the R package “factoextra” for visualization.  575 

All group comparisons were analyzed by ANOVA and Tukey's honest significance test. For 576 

comparisons of metabolites identified by targeted peak extraction among groups, area values 577 

were log2 transformed before the statistical test. 578 

Resource availability 579 

Lead contact 580 

Any further communication, including those related to resource sharing, may be directed to and 581 

fulfilled by the lead contact Emma Slack (emma.slack@hest.ethz.ch). 582 
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Materials availability 583 

This study did not generate new unique reagents. 584 

Data and code availability 585 

Source data for Fig. 1, 2 and 3, and Suppl. Fig. 1 and 2 are available in the Supplementary 586 

Information. Source data for Fig. 4 and Suppl. Fig. 3 and the datasets and code used for all figures  587 

in this publication are made available in a curated data archive at ETH 588 

Zurich (https://www.research-collection.ethz.ch/handle/20.500.11850/501168) under the DOI 589 

https://doi.org/10.3929/ethz-b-000501168.   590 
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FIGURES TITLES AND LEGENDS 611 

Figure 1: OligoMM12 mice have increase fat mass compared to GF mice and SPF C57B6/J 612 

mice. (A) Schematic representation of isolator-based indirect calorimetry system, with a TSE 613 

PhenoMaster® calorimeter connected to two flexible surgical isolators with four metabolic cages 614 

each. (B) Pictures of isolator-based indirect calorimetry system inside the facility. (C) Cecal mass 615 

(tissue including luminal content). (D) Total body mass at the end of the experiment and before 616 

cecum removal. (E) Total body mass after cecum removal. (F) Lean body mass acquired by 617 

EchoMRI before cecum removal (N of mice per group with EchoMRI and indirect calorimetry 618 

measurements: GF = 12, OligoMM12 = 8, SPF = 11). (G) Fat mass from interscapular brown 619 

adipose tissue (iBAT), inguinal white adipose tissue (iWAT) and visceral white adipose tissue 620 

(vWAT). Number of mice per group in all figures unless otherwise specified: GF = 16, OligoMM12 621 

= 12, SPF = 11. p-values obtained by Tukey's honest significance test. 622 

Figure 2: Energy metabolism in GF, OligoMM12 and SPF C57B6/J mice. (A) Linear regression 623 

of energy expenditure and lean body mass based on EchoMRI during light and dark phase. Each 624 

colored vertical line represents energy expenditure measurements during the experiment for one 625 

mouse. (B) Energy expenditure during 24h period, or during the 12h light or dark phase. Values 626 

represent area-under-curve normalized by regression-based analysis using lean body mass 627 

obtained by EchoMRI and dissected fat mass. (C, D, E) Energy expenditure values obtained by 628 

“classical” ratio-based normalization methods (dividing energy expenditure values per phase by 629 

mass). (C) Area-under-curve after normalization by total mass after cecal dissection. (D) Area-630 

under-curve after normalization by lean body mass (EchoMRI). (E) Area-under-curve after 631 

normalization by total body mass before cecal dissection. (F) Average daily food intake per mouse. 632 

Mice represented in this figure include those that underwent long-term indirect calorimetry (Fig. 3) 633 

and mice that only contribute to daily fecal pellet quantification/bomb calorimetry. (N of mice per 634 

group: GF = 24, OligoMM12 = 19, SPF = 10) (G) Dry fecal output per mouse collected during a 635 
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24h period. (N of mice per group: GF = 12, OligoMM12 = 8, SPF = 4) (H) Energy content of dry 636 

fecal output by bomb calorimetry. (N of mice per group: GF = 21, OligoMM12 = 11, SPF = 11).  (I, 637 

J, K, L) Estimation energy metabolism parameters. Number represented estimate mean value ± 638 

1.96*combined standard uncertainty from measurements used for calculations. (I) Estimated daily 639 

energy input (food intake* 3.94 Kcal/g). (J) Estimated daily energy excretion (daily fecal dry 640 

mass*fecal energy content). (K) Estimated daily energy extraction (daily energy input – daily 641 

energy excretion). (L) Estimated energy extraction from food as percentage of energy input ((daily 642 

energy input - daily energy excretion)/daily energy input*100). Note that calculations in L, N and 643 

M are per mouse and are not normalized to body mass. Number of mice per group in all figures 644 

unless otherwise specified: GF = 9, OligoMM12 = 8, SPF = 10. p-values obtained by Tukey's 645 

honest significance test. 646 

Figure 3: Circadian changes in Respiratory Exchange Ratio (RER), microbiota-derived 647 

hydrogen and short-chain fatty acids (SCFAs). (A) Comparison of circadian changes in RER 648 

among GF, OligoMM12 and SPF C57B6/J mice. RER curves obtained by smoothing function of 649 

data obtained every 24min per mouse over 10 days. Mean RER during the light phase (Zeitgeber 650 

0-12) and dark phase (Zeitgeber 12-24). (B) Cumulative food intake during described ZT periods. 651 

Mice included in this analysis are those that underwent long-term indirect calorimetry, and they 652 

are a subset of the mice represented in Fig. 2F (C) Hepatic glycogen and triglyceride concentration 653 

in samples obtained at Zeitgeber 5 and 16 (N=3 per group). (D) Hydrogen production, curves 654 

obtained by smoothing function of data obtained every 24min per mouse. Area-under-curve after 655 

regression-based normalization by cecal mass during the light and dark phase (N of mice per 656 

group: OligoMM12 = 11, SPF = 10). (E) Concentration of short-chain fatty acids (acetate, butyrate, 657 

propionate) and intermediate metabolites (lactate, succinate) products in cecal content. Number 658 

of mice per group ZT5: GF = 4, OligoMM12 = 7, SPF = 7; ZT16: GF = 5, OligoMM12 = 7, SPF = 659 

7. (F) Estimation total amount of short-chain fatty acids and intermediate metabolites by 660 
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multiplying measured concentration values by the cecal mass of the group. Number represented 661 

estimate mean value ± combined standard uncertainty from measurements used for calculations. 662 

Number of mice per group in all figures unless otherwise specified: GF = 13, OligoMM12 = 12, 663 

SPF = 10. p-values obtained by Tukey's honest significance test. 664 

Figure 4. Metabolic profile comparison of GF, OligoMM12 and SPF C57B6/J mice by 665 

UPLC/MS.  (A and B) Principal component analysis of metabolites identified by untargeted 666 

UPLC/MS during the light phase (Zeitgeber 5) and dark phase (Zeitgeber 16) in (A) liver and (B) 667 

plasma. (C and D) Metabolic pathways identified in the KEGG PATHWAY database; red dots 668 

represent pathways containing compounds differentially enriched in (top) OligoMM12 vs. GF and 669 

(bottom) OligoMM12 vs. SPF comparisons. Samples obtained during the light phase (Zeitgeber 670 

5) and dark phase (Zeitgeber 16) in (C) liver and (D) plasma. Number of mice per group: Liver 671 

ZT5: GF = 4, OligoMM12 = 6, SPF = 7; ZT16: GF = 4, OligoMM12 = 6, SPF = 7 / Plasma:  ZT5: 672 

GF = 4, OligoMM12 = 7, SPF = 7; ZT16: GF = 5, OligoMM12 = 6, SPF = 6.673 
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SUPPLEMENTAL INFORMATION TITLES AND LEGENDS 674 

Supplementary Figure 1: Cecal mass interferes with fat mass estimation by EchoMRI. (A) 675 

Cecal mass (tissue including luminal content) as percentage of total body mass (N of mice per 676 

group: GF = 16, OligoMM12 = 12, SPF = 11) (B) Lean body mass estimated by EchoMRI with and 677 

without cecum. Equations show simple linear regression for estimating lean mass without cecum 678 

based on lean mass with cecum; in brackets adjusted-R squared. (C) Lean mass variation after 679 

cecum removal. (D) Lean mass variation after cecum removal as percentage of lean mass before 680 

cecum removal. (E) Fat body mass estimated by EchoMRI with and without cecum. Equations 681 

show simple linear regression for estimating fat mass without cecum based on fat mass with 682 

cecum; in brackets adjusted-R squared. (F) Fat mass variation after cecum removal. (G) Fat mass 683 

variation after cecum removal as percentage of lean mass before cecum removal. Number of mice 684 

per group in all figures unless otherwise specified: GF = 13, OligoMM12 = 11, SPF = 15. p-values 685 

obtained by Tukey's honest significance test. 686 

Supplementary Figure 2: Cecal mass interferes with normalization of VO2. (A) Linear 687 

regression of VO2 and lean body mass (EchoMRI) during light and dark phase. Each colored 688 

vertical line represents energy expenditure measurements during the experiment per mouse. (B) 689 

VO2 during 24h period, or during the 12h light or dark phase. Values represent area-under-curve 690 

normalized by regression-based analysis using lean body mass obtained by EchoMRI and 691 

dissected fat mass (C, D, E) VO2 values obtained by “classical” ratio-based normalization methods 692 

(dividing energy expenditure values per phase by mass). (C) Area-under-curve after normalization 693 

by total mass after cecal dissection. (D) Area-under-curve after normalization by lean body mass. 694 

(E) Area-under-curve after normalization by total body mass before cecal dissection. Number of 695 

mice per group in all figures unless otherwise specified: GF = 9, OligoMM12 = 8, SPF = 10. p-696 

values obtained by Tukey's honest significance test. 697 
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Supplementary Figure 3. Metabolic profile comparison of GF and OligoMM12 C57B6/J mice 698 

by UPLC/MS.  (A and B) Principal component analysis of metabolites identified by untargeted 699 

UPLC/MS during the light phase (Zeitgeber 5) and dark phase (Zeitgeber 16) in (A) liver and (B) 700 

plasma. 701 

Supplementary Figure 4. Metabolic profile comparison of GF, OligoMM12 and SPF C57B6/J 702 

mice by UPLC/MS. (A and B) Manually-curated list of compounds obtained by targeted peak 703 

extraction from differentially expressed pathways in (A) liver and (B) plasma samples. p-values 704 

obtained by Tukey's honest significance test after log2 transformation of area value. Number of 705 

mice per group: Liver ZT5: GF = 4, OligoMM12 = 6, SPF = 7; ZT16: GF = 4, OligoMM12 = 6, SPF 706 

= 7 / Plasma:  ZT5: GF = 4, OligoMM12 = 7, SPF = 7; ZT16: GF = 5, OligoMM12 = 6, SPF = 6. 707 

Supplementary Table 1. List of metabolites identified by targeted peak extraction in the 708 

UPLC/MS data. Table indicates compound name, KEGG Entry number, type of column was 709 

used for UPLC and if the peak matched the retention time and MS2 spectra identified with the 710 

chemical standard in liver and plasma samples.711 
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SUPPLEMENTARY TABLE 

Supplementary Table 1. List of metabolites identified by targeted peak extraction in the 

UPLC/MS data. Table indicates compound name, KEGG Entry number, type of column was 

used for UPLC and if the peak ID matched the retention time and MS2 spectra identified with the 

chemical standard in liver and plasma samples. 

Compound KEGG 
Entry 

Column Matched 
peak ID in 
Liver 

Matched 
peak ID in 
Plasma 

(R)-3-hydroxybutanic acid C01089 RP Negative Yes No 

5-Oxoproline C01879 AMIDE Positive Yes Yes 

Arachidonic acid C00219 RP Negative Yes Yes 

Betaine C00719 AMIDE Positive No Yes 

beta-Murocholic acid C17726 RP Negative Yes Yes 

Cholic acid C00695 RP Negative Yes Yes 

Citrulline C00327 AMIDE Positive Yes Yes 

Cortisol C00735                       RP Positive Yes No 

Creatine C00300 AMIDE Positive Yes Yes 
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Creatinine C00791 AMIDE Positive No Yes 

Cystathionine C02291 AMIDE Positive Yes Yes 

Deoxycholic acid C04483 RP Negative No Yes 

Docosapentaenoic acid C16513 RP Negative Yes Yes 

Glutathione (GSH) C00051 AMIDE Positive No Yes 

Glycine C00037 AMIDE Positive Yes Yes 

Glycocholic acid C01921                       RP Positive Yes No 

Hexadecanedioic acid  RP Negative Yes Yes 

Hippuric acid C01586 RP Negative Yes Yes 

L-(+)-Ornithine C00077 AMIDE Positive Yes Yes 

L-4-Hydroxyproline C01157 AMIDE Positive Yes Yes 

L-Alanine C00041 AMIDE Positive Yes Yes 

L-Arginine C00062 AMIDE Positive Yes Yes 

Lauroylcarnitine  RP Positive Yes Yes 
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47 
 

Leucine C00123 RP Positive Yes Yes 

L-Glutamic acid C00025 AMIDE Positive Yes Yes 

L-Histidine C00135 AMIDE Positive Yes Yes 

Linoleic acid C01595 RP Negative Yes Yes 

L-Isoleucine C00407 RP Positive Yes Yes 

L-Lysine C00047 AMIDE Positive Yes Yes 

L-Methionine C00073 AMIDE Positive Yes Yes 

L-Proline C00148 AMIDE Positive Yes Yes 

L-Serine C00065 AMIDE Positive Yes Yes 

L-Threonine C00188 AMIDE Positive Yes Yes 

L-Tryptophan C00078 RP Negative Yes Yes 

L-Tyrosine C00082 RP Negative Yes Yes 

Myristic acid C06424 RP Negative Yes Yes 

N,N-dimethylglycine C01026 AMIDE Positive Yes Yes 
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48 
 

N-Acetylmethionine 

C02712                       RP 

Positive/Negative Yes Yes 

Oxidized glutathione (GSSG) C00127 AMIDE Negative Yes Yes 

Pantothenic acid C00864 RP Positive Yes Yes 

Pipecolinic acid C00408 RP Positive Yes Yes 

Serotonin C00780                       RP Positive Yes Yes 

Succinic acid C00042 RP Negative Yes Yes 

Taurine C00245 AMIDE Negative Yes Yes 

Taurine-beta-murocholic acid  AMIDE Negative Yes Yes 

Taurochenodeoxycholic acid C05465 AMIDE Negative Yes Yes 

Tetradecanedioic acid  RP Negative Yes Yes 
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Figure 1: OligoMM12 mice have increase fat mass compared to GF mice and SPF C57B6/J mice. 
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Figure 2: Energy metabolism in GF, OligoMM12 and SPF C57B6/J mice. 
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Figure 4. Metabolic profile comparison of GF, OligoMM12 and SPF mice by UPLC/MS.
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Supplementary Figure 2: Cecal mass interferes with normalization of VO2 and Energy Expenditure. 
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Supplementary Figure 3. Metabolic profile comparison of GF and 
OligoMM12 C57BL/6 by UPLC/MS.
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Supplementary Figure 4. Metabolic profile comparison of GF, OligoMM12 and SPF mice by UPLC/MS (targeted peak extraction of selected list of 
compounds)
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