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Abstract15

While the number of human cases of mosquito-borne diseases has increased in North Amer-16

ica in the last decade, accurate modeling of mosquito population density has remained a17

challenge. Longitudinal mosquito trap data over the many years needed for model calibra-18

tion is relatively rare. In particular, capturing the relative changes in mosquito abundance19

across seasons is necessary for predicting the risk of disease spread as it varies from year20

to year. We developed a process-based mosquito population model that captures life-cycle21

egg, larva, pupa, adult stages, and diapause for Culex pipiens and Culex restuans mosquito22

populations. Mosquito development through these stages is a function of time, tempera-23

ture, daylight hours, and aquatic habitat availability. The time-dependent parameters are24

informed by both laboratory studies and mosquito trap data from the Greater Toronto Area.25

The model incorporates city-wide water-body gauge and precipitation data as a proxy for26

aquatic habitat. This approach accounts for the nonlinear interaction of temperature and27

aquatic habitat variability on the mosquito life stages. We demonstrate that the full model28

predicts the yearly variations in mosquito populations better than a statistical model using29

the same data sources. This improvement in modeling mosquito abundance can help guide30

interventions for reducing mosquito abundance in mitigating mosquito-borne diseases like31

the West Nile virus.32

2

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 9, 2021. ; https://doi.org/10.1101/2021.09.08.458905doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.458905


1 Introduction33

Culex mosquitoes are a primary vector for West Nile virus (WNV) in the United States34

and Canada [1, 2, 3, 4, 5]. First introduced to the United States in 1999 and to Canada in35

2001, WNV is a potentially fatal mosquito-borne disease [1, 2, 6]. Culex pipiens and Culex36

restuans are known to transmit WNV in North America [7]; therefore, being able to predict37

their abundance could provide public health professionals with a system to help anticipate38

and mitigate disease outbreaks.39

We create a process-based modeling (PBM) approach for predicting mosquito abundance40

that incorporates time-dependent data streams for water levels of nearby streams, ponds,41

canals, and lakes. The model follows the life-cycle of the mosquito population, and the42

development is influenced by environmental variables, incorporates temperature, daylight43

hours, and aquatic habitat availability. The model can predict the impact of temperature,44

precipitation, and water resource management approaches on seasonal mosquito populations.45

Reducing the mosquito populations will have a direct impact on mosquito-borne disease46

transmission.47

The mosquito life cycle and virus incubation rates are directly related to temperature.48

Therefore, many mosquito prediction studies have focused on temperature-dependent ap-49

proaches [8, 9, 10, 11, 12]. While temperature can capture seasonal trends well, studies have50

concluded that additional factors must be considered to accurately capture the fluctuation51

in mosquito abundance over the seasonal trend [9, 10]. Recent studies have addressed these52

concerns by including temperature and precipitation to better capture the year-to-year vari-53

ation in mosquito abundance [13, 14, 15, 16, 17, 18]. However, studies have alluded to the54

fact that assessment of the influence of different rainfall regimens on mosquito populations55

needs further examination as the rainfall linkage to mosquito habitats could depend on fac-56

tors such as slope, river routing, and availability of potential habitats for mosquitoes. Some57
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have tackled this by using a lag in precipitation measurements to produce more accurate58

results [13, 19].59

Moreover, methods of capturing mosquito population dynamics themselves vary greatly–60

including statistical, mechanistic (process-based), and hybrid approaches and various com-61

binations of the mosquito life cycle. Ewing et al. examined the effects of temperature on62

mosquito populations using four delay-differential equations, which represent each stage of63

the mosquito life cycle [9]. However, this study did not consider the effects of the availability64

of standing water on aquatic life stage progression. Similarly, Cailly et al. 2012 developed65

a model using two systems of ordinary differential equations based on the time of year and66

ten compartments to comprise the four stages of the mosquito life cycle [20]. Other mech-67

anistic models that use a series of ordinary or delay-differential equations were developed68

by Wang et al., Lou et al., and Gong et al. [11, 21, 22]. Some include diapause explicitly69

[23, 20, 8], while others model only within-season dynamics. Statistical approaches to model70

mosquito populations include, but are not limited to, generalized linear models (GLM) [18],71

site-specific generalized linear mixed models [16], harmonic analysis, and mixed-effect models72

[15]. The predictors in these studies include temperature, precipitation, elevation, remote-73

sensing indices, and land use. It is still unclear what the optimal combination of life cycle74

attributes, data sources, and methods is to best captures changes in the year-to-year abun-75

dance of mosquito populations. The complexity of the inter-dependence of the mosquito76

life cycle with environmental factors has led to this wide variety of models with variation in77

accuracy and assessment of the usefulness of different data streams. None of these models78

have been able to capture the high year-to-year variation in abundance of Culex mosquito79

populations with temperature alone.80

Culex mosquito development is dependent on surrounding temperature [24, 25, 26, 27, 16]81

as well as the availability of standing water [15, 28] required for the aquatic stages (egg,82

larva, and pupa) to develop. The weather affects mosquitoes differently during their life83
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cycle stages. The availability of still water has a more significant impact on the develop-84

ment of eggs, larva, and pupa than on adults. We hypothesize that including water gauge85

measurements in addition to temperature and precipitation will improve our predictions (see86

Figure 1). We agree with the conclusion in [12] that age structure should be included. Our87

model controls the progression from one life stage to the next independently to reflect the88

actual mosquito development and can guide control measures and account for weather con-89

ditions that differ from the previously observed input. It has the advantage of tracking every90

stage of the mosquito life cycle from eggs through host-seeking females, which is important91

in determining how many adult females are active in a given period for pathogen spread.92

Our new model predicts mosquito population abundance based on environmental inputs and93

mosquito biology alone and does not require new initial conditions every year as many mod-94

els do, instead explicitly modeling diapause triggered by daylight hours and weather inputs95

to determine emergence and densities early in the year for our test years.96

1.1 Greater Toronto Area97

The most recent studies examining mosquito abundance within the Greater Toronto Area98

have focused on the Peel Region [18, 15, 8]. Wang et al., 2011 analyzed the association99

between a gamma-distribution model of mosquito populations with temperature and precip-100

itation in a generalized linear model. This study found temperature to be the most significant101

factor, while extended periods of precipitation had the greatest effect. They concluded that102

dynamical equations should investigate other meteorological factors plus all phases of the103

mosquito life cycle to capture interactive effects between environment and mosquito abun-104

dance [18].105

Yoo et al., 2016 combined a mixed-effects model with a harmonic analysis of temperature106

and precipitation to examine association to land use, population density, elevation, spatial107

patterns, and mosquito abundance. Again this study identified temperature and accumula-108
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(a) (b)

Figure 1: Figure 1(a) is a kernel density estimate of mosquito density in a flood year (2013).
Figure 1(b) is a kernel density estimate of mosquito density in a non-flood year (2009)).
Flooding often results in higher mosquito trap counts in a wider range of spatial locations in
the area, providing motivation for using water levels in addition to temperature for capturing
year-to-year changes in mosquito density.
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tion of precipitation five weeks prior were the variables of greatest influence [15]. Elevation,109

the proportion of open space, vegetation, and urban areas had negative correlations with110

Culex pipiens abundance, while NDVI (normalized difference vegetation index) showed only111

a weak correlation. The authors concluded that this approach fails to capture dynamic in-112

teractions between the mosquito life cycle and environmental variables over time. Recently,113

Yu et al., 2018 exploited a temperature-dependent response function for aquatic and adult114

life stages over a single season [8]. Their model used temperature alone to predict mosquito115

life cycle, and the authors concluded that “additional variables needed to be considered to116

account for the year to year variability in weather”.117

Previous mosquito prediction models, developed for the Greater Toronto Area (GTA) and118

its subsidiaries, focused on precipitation as a proxy for water habitat availability [29, 30, 15].119

Studies have concluded that a lag in precipitation, or some other regime of precipitation120

measurements, better inform mosquito abundance model predictions, [13, 31]. Standing121

water does not necessarily correlate linearly with precipitation since the amount of flooding122

caused by a given rainfall volume depends on city infrastructure [32], terrain conditions, and123

watershed characteristics [33]. Initial analysis of the data (Figure 2 indicated that water124

station level measurements might be a better signal to capture the seasonal fluctuation of125

mosquito abundance in Toronto than precipitation measurements.126

For this study, we used daily municipal water station measurements, daylight hours, and127

temperature to inform our new process-based model derived from experimental laboratory128

parameters describing the life stage progression of mosquitoes. This approach extends previ-129

ous models by combining water gauge levels with laboratory and field data in a mechanistic130

model. We incorporated water-level and flooding data from the GTA as a proxy to lag131

measure of precipitation, to predict Culex pipiens/restuans mosquito populations (Figure132

3). Our PBM is transferable to other locales and mosquito species with appropriate pa-133

rameterization. To investigate the accuracy of the process-based model, we ran a linear134
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Figure 2: In Figure 2(a) observed mosquito abundance (black), temperature data (yellow)
and precipitation measurements (blue) are shown. In Figure 2(b) observed mosquito abun-
dance (black) temperature data (yellow) and water station measurements (orange).

regression model with Gaussian errors to a log-transformed response to compare a statisti-135

cal model with our process-based model and underscore the need to include the mosquito136

developmental process. We also fit a .137

2 Methods138

2.1 Modeling Approach139

We model mosquito abundance in the Greater Toronto Area using two approaches: a process-140

based model (PBM) and a statistical model. The PBM considers the dependencies of141

mosquito abundance on exogenous variables through mechanistic equations and tracks the142

number of mosquitoes in each life stage through time. The statistical model is based exclu-143

sively on the correlation between mosquito trap data and the environmental data feeds.144

8

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 9, 2021. ; https://doi.org/10.1101/2021.09.08.458905doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.458905


43.25

43.50

43.75

44.00

44.25

44.50

−80.0 −79.5 −79.0 −78.5
Longitude

La
tit

ud
e

Hydrometric Stations

Mosquito Trap Locations

Figure 3: Mosquito trap locations shown on a map of Greater Toronto Area Map (black).
Hydrometric stations used for stage gauge water level data are shown in orange.
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Figure 4: Culex mosquito life stages included in our process-based model are eggs, larva,
pupa and four adult stages. Over-winter diapause of adults triggered by shorter daylight
hours is included, as is competition in the aquatic larva/pupa stage.
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2.2 The Process-based Model145

Research within laboratory settings has informed understanding of mosquito development146

and how it depends on temperature and environmental factors (see Figure 4). While these are147

performed in controlled rather than natural settings, we use the mathematical relationships148

determined by lab studies within the PBM and adjust for the time-varying environmental149

inputs in the wild. The PBM incorporates different development rates and death rates150

for eggs, larvae, pupae, and adult mosquitoes. We describe in the subsequent subsections151

the algorithm for calculating development progression in and out of the life stages. The152

final output of the algorithm is a daily prediction for the abundance of the average number153

of host-seeking female mosquitoes found in a single trap. It produces a continuous time154

series of the fluctuation in mosquito populations across all 13 years for which environmental155

data is available. We then compare the model abundance predictions and the observed156

measurements of average mosquito abundance from mosquito traps (Figure 6). The model157

is inspired by a partial differential equation approach where mosquitoes develop through life158

stages in both time and environmental variables via lab-informed kinetics equations.159

2.2.1 Egg Development160

We use the Eyring equation [34] to model the developmental progression of mosquito eggs161

to larva. We assume that eggs do not compete for nutrients but that the development162

rate, vE(t), is based on the ambient temperature and time. Thus we use the daily average163

temperature as the input value for the Eyring Equation:164

vE(t) = ΨeggTke
−AEegg/RTk (1)

where Ψegg and −AEegg are fit using non-linear least squares of the Erying Equation from165

laboratory and field studies [35, 25, 36, 22, 37]. Tk is converted from Celsius to Kelvin to be166
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used as an input for the Eyring equation. R is the ideal gas constant of proportionality that167

relates the energy scale in physics to the temperature scale. We impose the restriction that168

if the daily temperature feed is below 9.154 degrees Celsius, then vE(t) = 0 [25, 35].169

The rate of increase in the egg population depends on the number of adult female170

mosquitoes calculated to be transitioning from one gonotrophic cycle to the next (and not in171

diapause). The process for which adult female mosquitoes transition from one gonotrophic172

cycle to the next will be explained in detail in the adult development subsection.173

2.2.2 Larva and Pupa Development174

We combine the larva and pupa stages into one group and model the rate of development175

through this stage via the Briere equation [38]. Again we use identified laboratory behaviors176

in larva and pupa development and adjust them to depend on environmental real-time data177

in addition to time:178

vLP (t) = ΘTTc(Tc − Tmin)
√
Tc − Tmax (2)

where ΘT is fixed parameter based on laboratory and field data [35, 25, 36, 22, 37] fit to179

the Briere Equation. Tmin and Tmax are set as the lower and upper bounds on temperature180

for which larva and pupa can develop. The daily temperature data feed, Tc, is in degrees181

Celsius.182

We diverge from our previous assumption of neglecting competition to include a density-183

dependent death rate for the larva/pupa stage, modeled using a quadratic loss differential184

equation, dLP
dt

= −δ ∗ LP 2, where LP is the current size of the larva-pupa population and185

delta is calculated as186

δ = e(α1+α2∗H2O) (3)

The parameters α1 and α2 are fitted to our data. Note that the rate of change, δ, used in the187
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quadratic loss function depends on aquatic habitat availability H2O, incorporating either188

precipitation or water stage gauge levels as a proxy. Here, we demonstrate that normalized189

water levels will yield better results in capturing peaks than using normalized precipitation190

levels. This observation underscores the fact that it is in standing water that Culex larva191

and pupa thrive.192

2.2.3 Adult Development193

The adult mosquito life stages are identified by the number of times the average mosquito goes194

through a gonotrophic cycle. At the end of each gonotrophic cycle, the female mosquitoes195

seek to lay eggs at or near water. Thus the number of newly laid eggs depends upon the196

number of female mosquitoes ovipositing at any given time. See the Egg Development Section197

for further details. We will first focus on the method for which the developmental rate of adult198

mosquitoes, vAD(t), is calculated. Temperature plays a significant role in development rates199

for all life stages, including adults. Adult mosquitoes may not transition linearly through200

all four gonotrophic cycles. There is significant variation in wild adult mosquito lifespan, so201

we incorporate this variability through a random variable, M . We follow closely the method202

of age distributions used to inform age progression as described in [39]. We diverge slightly203

from Goodsman et al. in that a Gamma distribution is used for the rate of development of204

the adult mosquito population, i.e., M ∼ Γ(vAD(t), 1). The gamma distribution, Γ(α, β)205

has an expected value of α
β
. Thus the expected value of the random variable used to model206

the rate of development M is vAD(t). It is the calculation of the value of vAD(t) which207

exploits the rate dependence upon temperature,208

vAD(t) = AD1 + AD2 ∗ Tc (4)

where AD1 and AD2 are fixed from data, and Tc is the data feed of the daily maximum209
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temperature in degrees Celsius. This will adjust the shape of the gamma distribution based210

on temperature while at the same time maintaining the observed behavior that extremely211

high or low temperatures yield slower development rates or may result in early death.212

Adult mosquitoes are assumed to have an environmentally dependent death rate. We213

model the death rate using an exponential decay differential equation where the rate of214

change within this equation is the Eyring equation [40]. For the adult application of the215

Eyring Equation, we use the following form:216

−δAD = (ΨadultTke
−AEadult/RTk) (5)

where Ψadult and −AEadult are fit using non-linear least squares of the Erying Equation217

from laboratory and field studies [35, 25, 36, 22, 37]. R is the ideal gas constant. Tk is the218

temperature data feed per day converted from Celsius to Kelvin.219

Diapause is modeled through a logistic regression, which relates the probability of a220

mosquito being in diapause to the number of daylight hours. The following formula yields221

the proportion of adult mosquitoes in a given time step which are now in diapause:222

diapprob =
1

1 + e−(β0+β1DL)
(6)

where β0 and β1 are fitted from our data, and DL is the number of daylight hours per223

day-step as recorded in the data feed for the Greater Toronto Area.224

Eggs are added to the first age of the egg domain at each time step by adult oviposition225

using the following formula:226

Oviposition Totals = Ovirate(1 − diapprob)(g1 + g2 + g3 + g4) (7)

where Ovirate is fitted to our data and gi is the total number of adult female mosquitoes227
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transitioning from adult gonotrophic stage i to i + 1 for i = 1, ..., 4. The diapprob calcula-228

tion thus forces the Oviposition Totals to be informed by the maximum average number of229

daylight hours per day.230

The mosquito abundance prediction per day is the sum of the total calculated active231

mosquitoes. We define active mosquitoes as female mosquitoes which have transitioned from232

one gonotrophic cycle to the next. These active mosquitoes are actively looking for an233

oviposition location, e.g. (g1 + g2 + g3 + g4) for each day.234

For detailed tracking of the total number of mosquitoes on any given day, each stage235

(eggs, larva-pupa, and four adult female stages) is split into 100 evenly spaced compartments236

through which individuals move based on development rates as described above. Individuals237

at the end of the compartments will be moved up to the next stage when development rates238

push them past the end of their current stage.239

2.3 The Statistical Model240

In light of the importance of environmental variables in calculating mosquito abundance, we241

investigated these data streams without a mechanistic model to see if the data is sufficient to242

determine the fluctuations in the abundance of mosquitoes. Using a linear model, we aimed243

to describe the relationships between the mosquito trap data and our environmental variables244

(temperature, daylight hours, and precipitation/water levels). This method required setting245

all observed mosquito averages of zero to some small value ε > 0 as the analysis was performed246

on a log scale. See Figure 7 for a visualization of the predictive results.247

2.4 Error Analysis248

We computed the root mean squared errors, the mean absolute errors, the correlation coeffi-249

cients, and the differences between predicted and observed peak number of mosquitoes and250
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the timing of the peak. The PBM consistently outperformed the statistical model, while the251

water PBM outperformed precipitation PBM for capturing the peak abundance (Table 5)252

and performed comparably to the precipitation model for daily predictions (Table 1). For253

the other metrics, they performed similarly.254

Error Type Water:Complete/Train/Test Precip:Complete/Train/Test
RMSE 4.45 / 4.14 / 5.11 4.54 / 4.44 / 4.77
RRMSE 0.00082 / 0.0012 / 0.0026 0.00084 / 0.0013 / 0.0024
R Pearson 0.74 / 0.74 / 0.71 0.72 / 0.70 / 0.74

MAE 3.12 / 2.78 / 3.91 3.16 / 3.013 / 3.49
RMAE 0.00058 / 0.00081 / 0.0020 0.00058 / 0.00088 / 0.00017

Table 1: Error Table for the process based model. Red indicates error calculations on the combined training
and test data set. Black is the error on the training data set only. Blue is the test data set only.

Error Type Water:Complete/Train/Test Precip:Complete/Train/Test
RMSE 6.57 / 5.98 / 7.74 6.53 / 5.99 / 7.60
RRMSE 0.0012 / 0.0017 / 0.0039 0.0012 / 0.0017 / 0.0038
R Pearson 0.37 / 0.38 / 0.39 0.37 / 0.38 / 0.38

MAE 4.60 / 4.14 / 5.63 4.57 / 4.17 / 5.48
RMAE 0.00085 / 0.0012 / 0.0028 0.00085 / 0.0012 / 0.0027

Table 2: Error Table for the statistical model. Red indicates error calculations on the combined training
and test data set. Black is the error on the training data set only. Blue is the test data set only.

2.5 Parameters255

We use average daily temperature, seasonal variation of water station levels, precipitation,256

and the maximum number of daylight hours to inform the model and fit parameters not257

found in the literature to mosquito abundance data. To fit the model parameters to data,258

we employ a nonlinear least squares approach using the Nelder-Mead minimization algorithm259

to find the parameter estimates that minimize the sum of squared differences between the260

modeled population trajectory and the observed data. The parameters used in our model261

are in Tables 3 and 4.262
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Variable Description Value
Ψe Eyring equation for egg development rate 32270
AEe Eyring equation for egg development (neg.) 41281
R Ideal Gas Constant 8.3144

Tk, Tc data feed of average daily temperatures K or C◦

ΘT Briere eqn for larval-pupal development rate 9.217e-05
Tmin Min temp larval-pupal development rate 9.154 C◦

Tmax Max temp larval-pupal development rate 36.09 C◦

AD1 Adult development rate -0.111252
AD2 Adult development rate 0.013427
Ψad Adult mortality rate 1.568e+12
AEad Adult mortality rate (negative) 91730
DL Max number of daylight hours hrs
H20 Normalized average water level unit less

Table 3: Description of parameters within the PBM model which were derived from published laboratory
findings. **REFS from Devin–Lab Studies**

Variable Description H20 Precip
β0 Diapause intercept -1.925 4.398
β1 Slope proportion in diapause (neg.) 0.865 0.479

Ovirate Oviposition rate 4.729 164.964
Init Initial condition in each age stage 8.412 234.865
α1 Density-dependent mortality rate -6.083 -10.869
α2 Density-dependent mortality rate -25.927 -1548.152

Table 4: Description of parameters within the PBM model which were fitted using the Nelder-Mead
Algorithm either using the Water Station Level Data Feed, H20 or using the Precipitation Data Feed,
Precip.

2.6 Data Sources263

All data used for this study is available through the following: Mosquito data for the Greater264

Toronto Area were obtained from Public Health Ontario’s WNV mosquito database, where265

public health units trap female mosquitoes every week. A total of 115338 records were col-266

lected over 16 years between 2002 and 2017 from 2722 trap sites. In the study region, the267

mosquito season lasts about 17 weeks between late May and October (weeks 24–40). Day-268
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light hours were calculated based on the day of the year and earth rotation for a single year269

and duplicated for each year after that. Temperature data was collected using the Rpackage270

“rclimateca” [41], which fetches data from the Environment Canada climate archives. Infor-271

mation about the boundaries and definitions of the Ontario watersheds were gathered from272

Land Information Ontario website, last revised on 2010-04-01. Water levels for the riverways273

and lakes of the Greater Toronto Area were collected from the Rpackage “tidyhydat” [42],274

which accesses historical and real-time national ’hydrometric’ stage gauge data from Water275

Survey of Canada data sources.276

While there is variability in the methods used to model mosquito populations, our obser-277

vations from a detailed literature review show that the data used to inform those models is278

processed similarly across all methods. Temperature is used as the dominant climatic vari-279

able, and precipitation appears almost as frequently. When climate data is collected from280

multiple stations within the region of interest, daily averages are often used for the model.281

Most studies use only these variables to construct their models, but others go further to282

include non-climatic factors such as diapause or varying forms of density-dependent compe-283

tition [43, 21, 17]. Additionally, the majority of studies use mosquito trap data to calibrate284

and validate their models. Trap data and climate data for each model always come from285

the same location. Since our literature review focused on studies which examined Culex286

pipiens and Culex restuans, most of the trap data came from temperate regions such as287

Japan [43], regions of Argentina [13, 12], and the Greater Toronto Area in Ontario, Canada288

[8, 15, 16, 18]. In most studies, the trap data were collected weekly throughout a period289

ranging from 1 to 13 years. Similar to the climate data, mosquito counts are averaged when290

data is collected from multiple traps. When trap data is used to evaluate the predictions291

made by a model, accuracy is most frequently measured using root mean square error [8], or292

correlation coefficients [44].293

Our mosquito trap observation data includes not only mosquitoes commonly known for294

18

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 9, 2021. ; https://doi.org/10.1101/2021.09.08.458905doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.458905


carrying WNV such as Culex pipiens and Culex restuans but also mosquitoes from other295

genera such as Aedes and Ochlerotatus. We only considered counts of Culex pipiens and296

Culex restuans for our model to keep costs low and to speed up identification. The identifiers297

grouped both species as a single entry, Cx. pipiens/restuans. Similarly, we filter the data set298

further to only include those trap sites with lat/long coordinates within the bounds of the299

Greater Toronto Area. We assume that mosquitoes counted in trap data are active female300

mosquitoes, as most traps ( 85%) used in our data set are LT traps.301
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Figure 5: A box and whiskers plot (identifying the 1st and 3rd quartiles, median and outliers)
of the arithmetic mean of mosquito counts per trap per year in the Greater Toronto Area.

The dates for the observation data start on Jun 6, 2004 and end on Sept 27,2017. We302

computed the average number of Culex pipiens/restuans mosquitoes per trap per day-step,303

where a day-step = 1 day. The average number of mosquitoes was calculated as the sum of304
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the total number of mosquito counts recorded on a particular day and then divided by the305

number of traps sites that had observations for that day.306

3 Results307

We compare our PBM predictions with the observed mosquito trap data for the GTA and308

with a linear statistical model for the same data. We also compare PBM predictions when309

using stage gauge (water level) data versus precipitation data as proxies for aquatic habitat310

availability.311

In Figure 6, mosquito abundance predictions from our model using daily average tem-312

perature, daily maximum daylight hours, and daily normalized averaged water station levels313

(orange prediction line) is shown with the observed averaged mosquito trap data (black data314

points). The vertical red line indicates the separation of years for which the data was used to315

fit our free parameters. The data to the left of the red vertical line was used to estimate the316

parameters (Table 4). The data to the right of the red vertical line shows the fitted model317

and mosquito abundance. Figure 6 also displays model predictions using daily average tem-318

perature and daily maximum daylight hours now re-fit and predicted with the normalized319

average precipitation data (blue line).320

Our model requires only requires initial conditions for the first year. The remaining 13321

years were predicted without defining a new initial condition each season. Most comparable322

models must re-initialize the mosquito populations every year and require more parameters323

to fit the data.324

The root mean squared error (RMSE) of the water-level PBM is lower than that of the325

precipitation-based PBM prediction see Table 1. The model RMSE of both types of data are326

similar as rainfall is correlated with the water levels. Even so, the predicted abundance in327

Figure 6 indicates the water station level data feed to have a demonstrable effect in capturing328
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the magnitude of the observed mosquito abundance data, especially in flooding years, e.g.,329

2013 and 2017 (Fig. 6). Using water levels to inform the model beat out using precipitation330

data in predicting peak levels of mosquito abundance for all years except 2016, see Table 5.331

The difference between these predictors is less evident in the timing of the peak occurrence.332

Year Peak Diff Water Peak Diff Precipitation
2013 6.324 13.069
2014 2.094 3.740
2015 2.774 6.928
2016 9.074 8.468
2017 0.229 4.064

Table 5: The difference between observed peak mosquito average and the predicted peak
values of the corresponding season based on the use of the water data feed versus the precip-
itation data feed in the Process Based Model are listed as absolute values for the test data
years. The model with water gauge data out-performs the model with precipitation data 4
out of 5 years.

We also examined the differences in prediction between including mechanistic effects of333

exogenous variables on mosquito development versus fitting mosquito populations to the334

data alone. We fit a linear statistical model to the GTA mosquito trap data using the335

temperature, daylight hours, and the two aquatic habitat proxies.336

We created two linear models to compare the results of using precipitation data and then337

water station level measurements as proxies for water habitat availability. The two linear338

models find a correlation between the mosquito population observations (i.e., trap counts)339

and environmental factors but do not account for causal interdependencies. The results340

for both linear models are very similar (Figure 7). Predictions from both linear models341

predictions show the characteristic seasonal behavior of mosquito populations, but neither342

accurately capture the magnitude of the population for different years.343

Both models fail to predict the increase in mosquito population for 2013 and 2017, years344

with significant rainfall and flooding. The RMSE of the water-level linear model was calcu-345
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Figure 6: Mosquito abundance predictions from our process-based model using water stage
gauge (orange) and precipitation (blue) data overlaid on observed mosquito trap averages
(black dots) in the Greater Toronto Area from 2004 through 2017. The vertical red line in
both figures indicates the separation between the training data used to fit parameters and
the withheld testing data.
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Figure 7: Mosquito abundance predictions from a Generalized Linear Model using water
stage gauge (orange) and precipitation (blue) data overlaid on observed mosquito trap av-
erages (black dots) in the Greater Toronto Area from 2004 through 2017. The vertical red
line (y = 3300 day-steps equivalently January of 2013) indicates the separation between the
training data used to fit parameters and the withheld testing data.

lated to be 7.743, and the precipitation-level linear model to be a RMSE of 7.603 (Table 2).346

Both models were less accurate than the PBM predictions. This comparison supports the347

observation that a process-based model capturing mosquito population dynamics provides348

predictive value above and beyond an exclusively data-driven approach.349
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4 Discussion and Conclusion350

Though temperature and precipitation levels, when used as drivers or predictors in mosquito351

population models, provide an excellent correlation to observed populations, model accuracy352

for peak mosquito abundance can be improved by adding water station levels as a proxy for353

water habitat availability. Because they are a function of absorption and runoff processes354

on the ground, water levels measured at hydrological stations may be more reliable repre-355

sentations of standing water availability than precipitation measurements, which are known356

to be highly spatially variable [45]. Over-bank flow, as measured by river water gauges, is357

a direct quantification of flooding. Combining flood level information with temperature and358

daylight hours drivers better predicted the abnormally high mosquito population years than359

a predictive model that incorporated just the latter two variables.360

We observed that the variations in the year-to-year abundance of mosquito populations361

are more accurately predicted when all three variables are considered, with better perfor-362

mance for stage gauge levels versus precipitation. The water station levels also appear to363

incorporate better the lag between mosquito populations and aquatic habitat availability.364

This may be because precipitation measures are taken during rainfall. In contrast, the water365

station levels are taken at locations where rainwater flows and collects in the following hours366

and days. Thus water stage gauge data could better inform standing water needed for Culex367

aquatic life stages.368

Environmental data streams have been identified as important through both mechanistic369

and statistical studies. A comparison of Figure 6 and Figure 7 indicates that a data fusion370

process for which the environmental variables are used to inform the mechanistic dynamics371

of mosquito development yields a more accurate prediction. Our results also highlight water372

gauge data as an additional data source that can better capture year-to-year differences in373

mosquito abundance, particularly peak average mosquito abundance for years with flooding374
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or extreme weather events.375

Statistical models have elucidated which environmental factors are correlated to mosquito376

abundance. These studies have quantified the most important indicators and potential pre-377

diction accuracy. Although the statistical analysis can identify the significance of environ-378

mental factors related to mosquito abundance, they cannot show how the factors influence379

abundance biologically. Also, they cannot incorporate mitigation approaches and “what-if”380

scenarios to mosquito population control. Past studies have indicated that the nonlinear in-381

teractions between environmental variables and the mosquito life cycle are an essential part382

of the life-cycle and need to be included in the model. Mechanistic models can explicitly383

account for the interactions among the environmental parameters and mosquito abundance.384

Using the process-based algorithmic approach as opposed to strictly applying a differ-385

ential equation or statistical model allows for the fusion of environmental data feeds into386

the dynamics of mosquito development, thus capturing the seasonality of mosquito pres-387

ence and the magnitude of the population during a flooding year. Thus we have a model388

that can analyze the effects of field-collected weather data on mosquito dynamics and test389

the impact of potential mitigation efforts. Somewhat unusual for many biological systems,390

our process-based model performs better than a standard statistical model in predicting391

mosquito abundance. This is likely because there are nonlinear and lagged interactions be-392

tween mosquito population dynamics and the exogenous variables we use to predict them393

that are difficult for statistical models to capture.394

Our mechanistic model’s ability to examine “what if” scenarios is also valuable for inform-395

ing potential mitigation strategies and could be particularly useful when applied to the effects396

of climate change. Since the availability of standing water in cities is directly impacted by397

precipitation, it is essential for local agencies to be able to anticipate increases in precipita-398

tion and flooding, along with temperature change, to minimize the risk of WNV in the future399

effectively. Climate change has already been shown to cause more extreme weather patterns,400
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which could lead to increased rainfall, flooding, and soil moisture in temperate regions like401

Toronto [46, 47]. Knowing the fluctuation in the size of mosquito populations during peak402

seasons of activity will establish a basis for the severity of public risk for contraction of the403

West Nile Virus.404

This study is unique in fusing lab and field data with mosquito dynamics while incorpo-405

rating competition in the larval stage and enabling predictions for all years continuously for406

which environmental data feeds are available. Unlike many comparable models, our model407

does not fit new initial conditions for each mosquito season; it runs year-round and uses408

diapaused mosquitoes from the previous season to start the next season simulation. We ran409

the model for 13 years across the entire Greater Toronto Area, instead of being restricted to410

a single year at a time. This is a more generalized approach to get a bigger picture of the411

mosquito population while depending on fewer fitted parameters.412

Water levels within an urban area will almost certainly depend not only on weather but413

on water management strategies. Municipalities often have complex systems for managing414

stormwater as well as infrastructure for modulating water levels in municipal rivers and415

waterways [48, 49, 50, 51]. Stormwater management impacts the availability of breeding416

habitats for mosquitoes in urban settings and can impact the flushing of mosquito populations417

[52, 53]. The Greater Toronto Area focuses its water management strategy around local418

water management, working to divert water within regional sub-basins [54, 55, 52]. Previous419

stormwater management reports have noted that this strategy can cause localized flooding420

events [54]. 2013 was an extreme flood year in Toronto. Based on our results, the process-421

based model does better than the linear model of forecasting mosquito responses to this422

“extreme” event. In future work, it will be important to consider other areas with varying423

water management strategies to see if the importance of water station data holds.424

Our process-based model is limited in that we do not have the mathematical theory425

to rigorously identify equilibria or quantify uncertainty outside of parameter sensitivity as426
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we would with a differential equations model. The focus of this model, however, was not427

a mathematical analysis but a novel method for fusing environmental data along with a428

laboratory-based understanding of the progression of Culex pipiens/restuans life stages for429

creating a model which could replicate field observations of mosquito abundance. In par-430

ticular, we wanted to capture better the year-to-year variation in abundance resulting from431

flooding or other environmental drivers. Our model has demonstrated that data alone is not432

as informative as the fusion of data and developmental dynamics. We have also highlighted433

that the type of data streams used matters. The use of water stage gauge measurements434

resulted in a more accurate prediction of the magnitude of population size throughout the435

years, particularly in flood years. An important next step will be testing the model at436

additional locations across North America.437
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