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Abstract 

Cellular proliferation depends on the accurate and timely replication of the genome. Several 

genetic diseases are caused by mutations in key DNA replication genes; however, it remains 

unclear whether these genes influence the normal program of DNA replication timing. Similarly, 

the factors that regulate DNA replication dynamics are poorly understood. To systematically 

identify trans-acting modulators of replication timing, we profiled replication in 184 cell lines from 

three cell types, encompassing 60 different gene knockouts or genetic diseases. Through a 

rigorous approach that considers the background variability of replication timing, we concluded 

that most samples displayed normal replication timing. However, mutations in two genes 

showed consistently abnormal replication timing. The first gene was RIF1, a known modulator of 

replication timing. The second was MCM10, a highly conserved member of the pre-replication 

complex. MCM10 mutant cells demonstrated replication timing variability comprising 46% of the 

genome and at different locations than RIF1 knockouts. Replication timing alterations in 

MCM10-mutant cells was predominantly comprised of replication initiation defects. Taken 

together, this study demonstrates the remarkable robustness of the human replication timing 

program and reveals MCM10 as a novel modulator of DNA replication timing.  

 

Introduction 

Cell proliferation is one of the most fundamental aspects of development and becomes mis-

regulated in many genetic diseases, in cancer, and during aging and tissue degeneration. A 

central part of cell proliferation is the replication of DNA, which occurs during S phase and 
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spans roughly a third of the cell cycle in actively dividing cells. Accordingly, delays in DNA 

replication and S phase completion have been implicated in several developmental diseases 

that are characterized by growth and developmental defects of various tissues. In addition, 

some disease-associated gene mutations disrupt the temporal progression of DNA replication, 

causing certain genomic loci to replicate earlier or later than they normally would (reviewed in 

(1-3)). Such alterations to replication dynamics have been described in diseases caused by 

mutations in central DNA replication initiation factors, such as CDC45 that is part of large 

deletion occurin in DiGeorge/ Veleocardiofacial (VCF) syndrome (4, 5), RECQ4 (RECQL4) in 

Rothmund-Thomson syndrome (RTS) (6-9) and components of the ORC and MCM complexes 

and associated genes in Meier-Gorlin syndrome (10-14). Aberrant replication initiation and 

progression have also been reported to result from LMNA mutations affecting nuclear Lamin A 

and C in Hutchinson-Gilford progeria (HGPS) (9), FANCD2 deficiency in a subtype of Fanconi 

Anemia (FA) (15), DNMT3B mutations affecting DNA methylation in ICF1 syndrome (16, 17), 

and loss-of-function mutations in BLM in Bloom syndrome (BLM) (18). These studies used 

various approaches for assaying replication dynamics, most of which were underpowered to 

comprehensively characterize the genomic effects of these disease mutations on DNA 

replication timing. In addition, previous studies haven’t fully considered natural polymorphism in 

DNA replication timing (19, 20) when interpreting replication timing alterations in disease. Thus, 

it remains largely unknown to what extent alterations in DNA replication dynamics associate 

with human developmental diseases. Deciphering these links is important for understanding the 

etiology of these diseases and for bridging genetic alterations and disease phenotypes via 

intermediary molecular phenotypes.  

 

Similar to replication timing alterations in developmental diseases, very little is known about the 

regulatory factors that determine the temporal order of DNA replication progression in 

mammalian cells. A single well-described modulator of the replication timing program is RIF1, 

which has been shown to regulate global replication timing in yeasts, flies, mice and human 

cells (21-26). Mutations in RIF1 cause wide-spread delays and advances in replication timing 

across numerous regions in the genome, many spanning several megabases of DNA (27-29) 

and in some cases have even been suggested to define the entire replication timing program 

(30). Apart from RIF1, several studies have described more modest replication timing alterations 

following knock-out of DNA polymerase theta (Pol ) (31, 32) or PREP1 (33). Nonetheless, 

systematic studies of the effects of trans-acting regulators on DNA replication timing are lacking. 

More generally, the dearth of well-described regulators of DNA replication timing is surprising 

and warrants further investigation. It could be due to lack of comprehensive assays for testing 

the effects of trans-acting mutations on DNA replication timing, or to a fundamental essentiality 

of the replication timing program that would preclude the identification of such factors due to cell 

lethality.  

 

Here, we set to comprehensively test for replication timing alterations in relevant human 

developmental diseases and in knockouts (KOs) of DNA replication-related genes. We analyzed 

a total of 184 mutant cell lines and compared them to 167 normal cell lines. Our results point to 

the rarity of replication timing alterations, suggesting that replication dynamics represent an 

essential and rigid cellular program. We stress the importance of methodological aspects for the 
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rigorous identification of replication timing alterations and rule out several previously suggested 

regulators and diseases impacting replication timing. In particular, we identify a set of genomic 

regions with greater tendency for inter-individual variation, and show that this tendency is 

independent of genic mutations in trans. Last, we report substantial replication timing alterations 

in RIF1 KO cells, and – newly discovered here – in a patient carrying mutations in MCM10. 

These results point to the presence of still-elusive factors that regulate human replication timing.  

 

Results 

Abundant replication timing variation is observed a priori in disease cell lines and gene 

knockouts  

To identify potential modulators of DNA replication timing in human cells, we generated 

replication timing profiles for 184 cell lines from individuals with genetic diseases or with 

introduced gene KOs (hereafter, “mutant”) in three cell types, compared to 167 healthy or WT 

samples (hereafter, “WT”) (Table 1; Table 2; Supplemental Table 1). The analyzed cell types 

included lymphoblastoid cell lines (LCLs), which are EBV-transformed lymphoid cells widely 

available from many individuals; induced pluripotent stem cells (iPSCs), which are not 

transformed but not as commonly available across specific patient cohorts; and HAP1 cells, 

which are nearly-haploid human cell lines derived from a chronic myeloid leukemia patient and 

readily amenable to CRISPR/Cas9-mediated gene knockout (34, 35). The selected mutant cell 

lines included those with previous evidence of replication timing alterations, strong links to DNA 

replication or related pathways such as nucleotide metabolism, DNA repair, chromatin structure 

(20), and cell lines with alterations in chromosome structure (e.g. disease-associated 

aneuploidies or repeat expansions). In total, 60 genes or genetic diseases were analyzed 

across the cell types. DNA from proliferating cell cultures was subjected to whole genome 

sequencing (WGS) and replication timing was inferred for each sample based on DNA copy 

number fluctuations along chromosomes, as previously described ((19, 36); see Methods). 

Cell type 
WT 

samples 

Unique WT 

individuals 

Mutant 

samples 

Unique mutant 

samples 

Unique genetic diseases 

or genes affected  

LCL 137 124 134 117 32 

HAP1 6 1 32 26 21 

iPSC 24 24 18 11 7 

Table 1. Summary of cell types analyzed in this study. For LCL and iPSC samples, “unique 

individuals” excludes repeated clones or sequencing of the same individual. In HAP1, all cell lines were 

derived from a single individual therefore “unique mutant samples” signifies different KO types. HAP1 also 

includes 26 KO lines involving 22 genes with three genes having multiple KO clones. Among the 26 KO 

lines, some were sequenced before and after diploidization and are considered the same unique mutant 

sample. See Supplemental Table 1 for more details. 
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Disease name Abbreviation 

Ataxia-Oculomotor Apraxia 2 AOA2 

Ataxia-Telangiectasia AT 

Bloom syndrome BLM 

Breast Cancer, Type 1 BRCA1 

Beckwith-Wiedemann Syndrome BWS 

Cornelia de Lange Syndrome 1 CDLS1 

Chronic myeloid leukemia CML 

DiGeorge Syndrome DGS 

Myotonic dystrophy type I DM1 

Fanconi anemia FA 

Friedreich's ataxia FRDA 

Fragile-X syndrome FXS 

Huntington's disease HD 

Hutchinson-Gilford Progeria Syndrome HGPS 

Immunodeficiency-centromeric instability-facial anomalies 
syndrome 1 

ICF1 

Lesch-Nyhan Syndrome LNS 

Mental retardation, autosomal dominant 1 caused by a deletion 
in MBD5 

MRD1 

Rothmund-Thomson Syndrome RTS 

Rett Syndrome RTT 

Rett Syndrome, congenital variant RTTC 

Spinal and bulbar muscular atrophy SBMA 

Spinocerebellar ataxia type 1 SCA1 

Seckel Syndrome SCKL1 

Sotos Syndrome 1 SOTOS1 

Down Syndrome TRI21 

Williams-Beuren Syndrome WBS 

Wolf-Hirschhorn Syndrome WHS 

Werner Syndrome WRN 

Turner Syndrome XO 

Translocation of the X chromosome XTRANS 

4 X chromosomes XXXX / XXXXY 

Klinefelter Syndrome XXY 

Table 2. Abbreviations of diseases used in this study. Further information is available in 

Supplemental Table 1.  

 

Replication timing profiles had a median Pearson’s correlation coefficient of 0.86 (0.31-0.90) 

among all LCL samples, 0.86 (0.71- 0.90) among LCL WT samples, and 0.90 (0.73-0.95) 

among LCL WT repeat samples (Fig1A-B, Fig S1). There was also a high correlation (r = 0.94) 

of the WT LCL sample NA12878 to its replication profile generated by sequencing S and G1 

phase DNA (37), further demonstrating the high quality of replication timing profiles generated in 

this study (Fig 1C). For iPSCs and HAP1 cells, the median between-sample correlations were 

0.95 (0.66-0.96) and 0.90 (0.66-0.93), respectively. The correlations of samples within a given 

cell type were somewhat lower than expected, which we attribute to several low-correlating 

mutant samples (to be further discussed below), a less stringent approach to filtering in 

anticipation of replication timing variation (see Methods), and the variability of sample source 

and WGS method and sequencing depth. 
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Fig 1. Overview of replication timing data. (A) Correlation matrices of replication profiles for all 

samples. (B) Replication profiles and whole genome correlations of the WT mean profiles of the different 

cell types. (C) Replication timing profile comparison and whole genome correlation for the sample 

NA12878 generated with TIGER (see Methods) or S/G1 sequencing.  

 

 

To analyze replication timing variation between mutant and WT cell lines, we performed an 

analysis of variance (ANOVA) in sliding windows across the autosomes (sex chromosomes 

were not considered since the samples included both male and female individuals). ANOVA 

was applied to raw data (before smoothing) in windows of 185kb of uniquely alignable sequence 

(76 bins of 2500bp; Methods) with a step of a quarter window. We studied both individual 

samples as well as samples grouped by mutated gene or genetic disease and compared each 

to the control samples of the same cell type. Individual windows with a Bonferroni-corrected p-

value <0.05 were considered to have variant replication timing, and overlapping variant windows 
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were subsequently merged into continuous variant regions. Given the variable numbers of 

mutant and WT samples in the grouped analyses, we permissively allowed samples to show an 

inconsistent direction of replication timing difference compared to other samples, as long as the 

group ANOVA was significant.  

All samples grouped by mutated gene, and nearly all individual mutant samples (177/184), 

contained at least one genomic region with a priori replication timing variation compared to the 

WT samples (Fig 2A, Fig S2A). Across all cell types, individual mutant samples showed a 

median variant replication timing covering 1.33% of the autosomes. Samples grouped by 

mutated gene showed a median replication timing variation covering 6.67% of the autosomes. 

RIF1 KOs in HAP1 cells contained the highest proportion of variant replication timing at 72.65%, 

with the five individual samples ranging from 43.79% to 71.47% genome variation compared to 

WT (FigS2B). Several other gene mutations were also associated with higher-than-average 

genome variation (e.g., RTT, RTS, MCM10, FXS in iPSCs).  

 

Fig 2. Analysis of variance detects significant replication timing variation in all mutated gene 

groups and most individual samples. (A) Top: Proportion of the autosomal genome with variant 

replication timing detected via ANOVA with a Bonferroni-corrected p-value of <0.05. For each gene 

mutation, both grouped and individual samples were evaluated against WT samples for each cell type. 

Colors represent the extent of bias towards replication timing advances or delays. Bottom: four example 
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gene mutations are shown, with variant regions depicted based on the grouped analysis. For LCL 

samples, only 20 WT samples are shown. (B) PCA of the entire autosomal replication timing profiles. 

Clustering by mutation is observed for the RIF1 KO in HAP1 cells and for MCM10 mutants in iPSCs. (C) 

Relationship of individual donor age at sample collection to median correlation of autosomal replication 

timing among LCL samples. Only samples with a mean correlation >0.7 to other LCL samples are 

included (see Methods and Fig S3B for all samples).  

 

In the 99,850 variant regions called across all mutated gene groups and individuals, the median 

absolute difference in replication timing from the mean WT value was 0.50 units of standard 

deviation. In virtually all of the 30 strongest cases (with variation spanning ≥20% of the 

genome), replication timing variations included both advances and delays in roughly equal 

proportions; the most directionally-biased sample was a HAP1 RIF1 KO sample with a mean 

delay across variant regions of 0.14 standard deviations (Fig 2A).  

Despite many mutated gene groups showing a substantial genomic proportion of variant 

replication timing, closer inspection ruled out most as candidates for gene-related dysregulation 

of replication timing. For example, replication timing in variant regions for AOA2, RTS, BLM, 

HGPS, and FXS (in LCLs, across autosomes) were largely driven by one or two outlier samples 

while the rest strongly resembled the WT profile (Fig S2C). Accordingly, principal components 

analysis (PCA) of replication timing profiles did not reveal clustering by mutated gene except for 

RIF1 KO in HAP1 cells and MCM10 mutants in iPSCs (Fig 2B). Singular outlier samples with 

abnormal replication timing will be further investigated below.  

Apart from disease state, we also assessed other factors that could influence local or global 

replication timing variation in our samples. Sequencing cohort or batch effects seemed to be 

minimal based on PC analysis, with the exception of one cohort of samples, which had the 

lowest-coverage sequencing (Fig S3A). We also ruled out that replication timing is significantly 

influenced by a person’s age in our sample set. First, we compared the correlations of 

replication timing profiles in 186 LCLs from donors of known ages (ranging from 0 to 114 years 

old) at sample collection (Fig 2C, S3B). If replication timing changes with age, we would expect 

deviation from the average replication profile in older (or younger) samples. However, we found 

no change in replication timing correlation to other samples as a function of a sample’s age. 

Secondly, PCA of WT replication timing profiles did not show stratification by age (Fig S3C). 

Although the unknown number of cell culture passages that each cell line underwent may 

confound the analysis of ‘age’, the large number of samples analyzed here effectively rules out 

a strong influence of aging on replication timing, at least in LCLs. Also consistent with the 

minimal or no effect of age on LCL replication timing, we did not observe any notable replication 

timing variability in diseases associated with accelerated aging (HGPS, WRN, BLM) (Fig 2A, 

see further below). 

Taken together, variability in replication timing is detected in most mutant individuals and 

mutated gene groups. However, variability is not necessarily the result of a gene mutation-

related modulation of replication timing, but may instead be driven by a subset of outlier 

samples or by background technical or biological variation, as further explored below.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.08.459433doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.459433
http://creativecommons.org/licenses/by-nd/4.0/


8 
 

 

Recalibration of false discovery rates using simulations of replication timing variation 

Identifying genuine variability in replication timing as a result of a diseased state or gene 

mutation may be confounded by background replication timing variability, which may arise due 

to technical factors or be related to common polymorphisms that influence local replication 

timing (19, 20). For example, as shown above, a subset of outlier samples led to the 

identification of variability in replication timing that is not shared with other samples of the same 

disease or gene mutation. Variant detection can be made stricter by adjusting the significance 

threshold or by requiring that all samples within a group follow the same trend. These remedies 

are expected to be heavily influenced by the number of samples compared in each mutant gene 

and WT group and were therefore not implemented in initial analyses.  

When inspecting the ANOVA variant results using quantile-quantile (QQ) plots, we observed 

widespread inflation (and in some cases, deflation) in the obtained p-values (Fig 3A, Fig S4A). 

This inflation is likely related to the continuous nature of the DNA replication profiles from which 

the data is sampled. It did not result from the sliding window method, as it was still observed in 

an ANOVA variant search with non-overlapping windows (Fig S4B). Importantly, the extent of p-

value inflation was different for each mutated gene group and individual, which makes it 

challenging to determine an appropriate threshold for rejecting the null hypothesis. Strict 

multiple testing correction did not mitigate this challenge, as the p-values were inflated beyond 

Bonferroni-corrected significance thresholds. An alternative method for multiple-test correction 

that could be considered in this case is q-value transformation, where p-values are adjusted 

based on false-discovery rate (FDR). However, in the ANOVA tests for replication timing 

variation, such FDR would be independently calculated based on the p-values for each mutant 

group or individual. This creates a different FDR value for each analysis even when the number 

of mutant samples being analyzed is equal and the WT samples remain the same (Fig S4C).  
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Fig 3. Variability in replication timing. (A) p-value inflation quantified with QQ plots for the different 

mutant-WT ANOVA tests. Theoretical quantiles (the uniform distribution of p-values) and ANOVA test 

quantiles should be linearly related with a slope of 1 (red) if they are generated from the same 

distribution. The linear fit of the ANOVA quantiles to theoretical values (blue) quantifies the deviation as 

inflation or deflation of p-values. The boxplot demonstrates the p-value inflation statistic in the different 

ANOVA tests for mutated gene groups and individuals. (B) The 95th percentile of variant proportions of 

the genome from the 1000 simulations for different mutant group sizes. The number of WT samples 

matched that available for each cell type (137 in LCL, 6 in HAP1, and 24 in iPSCs). (C) Same as Fig 1A, 

highlighting (blue) the mutant groups and individuals exceeding the 95th percentile cutoff.  

 

To overcome these statistical challenges of analyzing sample groups with different sizes, we 

sought to determine a universal FDR by empirically calculating the expected variability in our 

replication timing data for any relevant number of compared samples. To achieve this, we 

permuted the samples, randomly assigning them into mutant and WT groups and repeating the 

ANOVA variant search. Given that the majority of mutant samples fell within the correlation 

distribution of WT samples (Fig 1A), we used all samples (WT and mutant) with a correlation 
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>0.7 to other samples. This cutoff removed genuine outlier samples such as RIF1 and others, 

while the inclusion of mutant samples in the “WT” permutations maximized the number of 

samples available for this analysis. The latter enabled us to test permuted WT groupings up to 

the actual number of WT samples available for a given cell type. We thus tested WT and mutant 

groups with varying numbers of samples in each, performing 1000 sample permutations for 

each pair of groups sizes. In this analysis, FDR is akin to the expected variability of replication 

timing based on the number of samples in each compared group.  

In these “simulations” of background variability, the proportion of the genome found to be variant 

decreased with increasing numbers of WT samples, for all cell types (Fig S5). This is expected, 

since including more controls effectively rules out many false positive outlier observations. 

Importantly, there was a substantial dispersion around the median variation across the 

simulations (Fig S6). For example, in simulations of LCLs with one mutant sample and 137 WT 

samples (i.e. all available), the median genome variation was 0.18% but the 5th and 95th 

percentile (representing typical limits of low and high variation) were 0% and 13.97%, 

respectively. Therefore, we would argue that 13.97% genome variation (the 95th percentile) 

represents an upper limit for expected variation in analyses with one mutant and 137 WT 

samples. To further illustrate the application of a 95th percentile cutoff for expected variation, 

consider simulations for LCLs with three mutant and 137 WT samples – the same number of 

actual samples available for BRCA1, DGS, SCA1, and WRN. In this case, the median 

proportion of the genome with replication timing variation was 0.28% and the 95th percentile was 

7.54%. If we use the 95th percentile as the upper cutoff for expected variation, then among the 

LCL mutant groups that had three mutant samples we would rule out BRCA1 (0.58%), DGS 

(0.51%), and SCA1 (0.15%) as having an extent of variation within the expected range (Fig 3B). 

In contrast, the group containing the three WRN samples does have an extent of variation 

(8.93%) exceeding this 95th percentile cutoff and would therefore remain as a candidate for later 

analyses of replication timing variation.  

We applied the 95th percentile cutoff to all samples and groups (Fig 3B), which resulted in 155 

of 184 individual mutant samples, and 52 of 60 mutated gene groups being classified as within 

the expected range of replication timing variability (Fig 3C). Therefore, these gene mutations (at 

least in the analyzed cell type) were concluded to likely not influence replication timing. The 

several mutants that did exhibit variation above the expected range of replication timing 

variability will be analyzed further below. Background heterogeneity in replication timing data 

still emerges as a critical factor requiring rigorous consideration in any search for replication 

timing differences between samples or groups. 

  

Replication timing variation is non-randomly distributed across the genome 

Based on the above simulations, variability in replication timing can be expected in a substantial 

percentage of the genome, depending on cell type. We asked if this variability (in both 

simulations and true analyses) is uniformly distributed across the genome or clustered in 

specific regions and/or specific replication times. For the true mutant individuals and gene 

groups, the regions of variant replication timing were bimodally distributed to late- and early-
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replicating regions of the genome (Fig S7). Furthermore, variant regions across all individual 

mutant analyses overlapped more than would be expected by chance. The median proportion of 

variant region coordinates shared between two mutant samples of the same cell type (excluding 

samples without variant regions) was 2.43% (Fig S8A). Comparatively, variant regions only 

covered a median of 1.33% of the autosomes in individual mutant analyses so therefore we 

would roughly expect only 0.0177% of coordinates to overlap by chance (2.43% x 2.43%). 

Surprisingly, variant regions across different cell types also showed high overlap (Fig S8B). 

Using a Fisher’s exact test, the average p-value for variant region overlap across all mutant 

samples (including analyses where mutant sample pairs did not overlap at all) was 3.77 x 10-5 

(FigS8C; 7.47 x 10-8 among mutant sample pairs with non-zero overlap). Taken together, we 

conclude that replication timing variability tends to localize to particular regions of the genome.  

To analyze where replication timing variation tends to occur in the genome in each cell type, we 

used the randomized sample grouping simulations to calculate the median variation p-value in 

each sliding window across the genome. Replication timing variation was disproportionately 

more common in early- and late-replicating parts of the genome (Fig S9) in a similar bimodal 

distribution to where true mutant variant regions fell (Fig S7). Notably, variation appeared to be 

greatest in the earliest replicating regions of the genome, suggesting that zones of DNA 

replication initiation tend to be more variable between samples. Indeed, greater replication 

timing variation was often observed at peaks, as well as valleys, in the replication timing 

profiles, which represent regions that contain sites of DNA replication initiation and termination, 

respectively (Fig 4A). Notably, different peaks and valleys showed different intensities of 

variation. The genomically-variable regions detected in the simulations were consistent with the 

variable regions in the analyses of mutant samples (Fig S10).  
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Fig 4. Localized variability in replication timing. (A) The median p-value in each sliding window across 

1000 simulations using all mutant group sizes tested against the total number of WT samples available 

for each cell type (137 for LCL, 6 for HAP1, and 24 for iPSCs). Only p-values below the median are 

shown. (B) Replication timing of the LCL WT samples NA06895 and NA06889 (each of which includes 

three repetitions). Late-replicating regions with notable variation are highlighted in green.  

 

Another notable category of replication timing variants were large (>1Mb), very late-replicating 

regions void of clearly defined peaks (e.g., Fig 4A-B). These structures were most prominently 

present in LCLs. For example, chromosome 3 in LCLs contained four of these late-replicating 

regions that together covered 14Mb (Fig 4B). Within these regions, even replication timing of 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.08.459433doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.459433
http://creativecommons.org/licenses/by-nd/4.0/


13 
 

repeat samples from the same individual varied considerably. For example, in three repetitions 

each of the WT LCL samples NA06895 and NA06889, the correlation of replication timing within 

these late-replicating zones was on average 0.69 and 0.65, respectively, markedly lower than 

the correlations of 0.89 and 0.97 for the rest of the chromosome. Taken together, some 

genomic regions are relatively enriched for background variation and could be expected to show 

up in any sample comparison, whether mutants compared to WT or in control comparisons.  

 

Most samples with high variability in replication timing are false-positives 

By defining the range of background replication timing variability, 29 individual mutant samples 

and 9 mutated gene groups were identified as candidates for representing trans-acting 

modulators of replication timing (Fig 3C). Of those, three candidate LCL mutated gene groups – 

ICF1, MRD1, and SCKL1 – contained only one sample each. Despite having greater than 

expected variation compared to WT samples, MRD1 and SCKL1 had an overall high correlation 

to the mean LCL WT replication timing profile (r = 0.85 and 0.92, respectively). We suspect that 

these samples may show a high degree of variation due to low frequency subclonal deletions or 

duplications that might have escaped filtering and were ultimately amplified during data 

processing (specifically, normalization of the genome to a copy number of two before the 

ANOVA variant search; see Methods). Therefore, we do not consider individual samples with 

both high replication timing variability and high correlation to WT samples as strong candidates 

for having altered replication timing. In contrast, ICF1 showed both high variability and low 

correlation (r = 0.67) to the mean LCL WT replication timing profile. Since we only analyzed a 

single sample with this disease in LCLs, we cannot rule out other explanations for the high level 

of variation in this sample (e.g. a secondary somatic mutation, or technical factors). 

Furthermore, we analyzed two repeats of a HAP1 KO of the DNA methyltransferase DNMT3B 

gene, mutated in ICF1 syndrome, but did not find elevated replication timing variability. We thus 

conclude that ICF1/DNMT3B is not a strong candidate for altered replication timing.  

Following a similar rationale, we eliminated additional individual mutant samples with high 

replication timing variability yet high correlation to the mean WT profile. In LCLs, 15 individual 

mutant samples exhibited replication timing variation above expectation (Fig 3C), of which 

seven demonstrated high correlation (r > 0.8) to the mean LCL WT profile (Fig S11). These 

included sole individual outliers among WRN and XXY samples, effectively removing this gene 

mutation and aneuploidy state, respectively, as candidate regulators of replication timing. 

Among the eight LCL individual mutants with low (r ≤ 0.8) correlation, six were from the cohort 

with the lowest-coverage sequencing. Given this overrepresentation of low-coverage samples, 

we regarded these samples as possible false positives; this further eliminated the RTS sample 

group as an a priori candidate for regulating replication timing, as well as the gene mutations in 

AT, HGPS, LNS, and RTT – all of which contained outlier samples that belonged to either this 

low-coverage or to the high-correlation samples. This left two remaining individual mutant 

outliers, in AOA2 and in FXS. However, re-sequencing these individual samples did not 

reproduce the high replication timing variability, ruling out the corresponding gene mutations as 
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likely causes of the initially observed variation. No gene mutations were eliminated in HAP1 

cells nor iPSCs based on individual mutant sample correlation to the mean WT profile.  

After the above elimination, four mutated gene groups remained. The mutated gene group of 

Fragile-X syndrome (FXS) in iPSCs (although not in LCLs), and four of its seven individual 

mutant samples, had replication timing variability above the expected background threshold. Of 

the FXS iPSC individual mutant samples, three showed low correlation to the WT mean profile 

(Fig S12). However, the abnormal replication timing was not shared among the clones or re-

sequenced samples available for two of the three FXS mutant individuals. Therefore, based on 

the available samples we conclude that the FMR1 gene, mutated in FXS, is unlikely to be a 

trans-acting regulator of replication timing as the associated variation is not consistently 

observed among genetically identical samples.  

There were nine mutant samples from four individuals with Bloom syndrome (BLM), which 

showed variant replication timing covering 0.14% to 13.6% of the genome and 27.6% when 

analyzed as a group (Fig 2A). Of those, two individuals (NA04408 and NA09960) as well as 

their re-sequenced samples showed high correlation to the mean LCL WT replication timing 

profile and relatively invariant replication timing (Fig S13). The remaining two individuals 

(NA03403 and GM16375) as well as their re-sequenced samples had significant replication 

timing differences from WT samples, typically encompassing novel or lost peaks (Fig S13). 

These peak gains and losses as well as the overall replication profiles were not fully consistent 

among the three experimental repetitions of sample NA03403, suggesting possible technical or 

biological noise in this particular individual. While we hypothesize that true replication timing 

variation is present in these two BLM samples, we refrain from ascribing them to the BLM gene 

mutation directly given the lack of consistency across all BLM samples. Moreover, a BLM KO in 

HAP1 failed to show altered replication timing, further suggesting that the BLM gene is not 

directly involved in global replication timing regulation. It is possible that the replication timing 

variability observed in only half of the LCL BLM individuals may occur due to a secondary 

somatic mutation in another, potentially unknown regulator of DNA replication timing, especially 

considering that loss-of-function mutations in the BLM RecQ helicase results in increased 

somatic crossing-over and spontaneous mutation rate (38).  

 

MCM10 is a novel regulator of DNA replication timing 

After a systematic analysis of 60 mutated genes or genetic diseases, only mutations in MCM10 

and RIF1 demonstrated consistent variability in replication timing, low correlation to WT 

replication timing, and clustering of replication timing in PCA all consistently related to the 

mutated gene (Fig 2A, Fig S14, Fig 2B). RIF1, a known modulator of replication timing, showed 

variant replication timing covering 72.65% of the genome. The locations of variation were 

shared among the individual HAP1 RIF1 mutant samples, which also had highly correlated 

replication timing profiles at a similar level to the correlation of WT HAP1 samples (Fig S14).  

MCM10 mutant cell lines demonstrated high deviation in replication timing from the 

corresponding WT iPSC profile, with variation covering 46.0% of the genome. We verified that 
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the MCM10 iPSCs were not spontaneously differentiated (and therefore demonstrating the 

replication timing of another cell type) by comparing them to various repli-seq profiles of 

differentiated cells (39) (Fig S15). We also confirmed that the abnormal replication timing in 

MCM10 samples was not the result of copy number alterations that escaped filtering (Fig S16). 

Given the established and unique role of RIF1 in DNA replication timing, it is possible that the 

MCM10 mutations operate in the same pathway or indirectly (e.g. by means of a secondary 

mutation) impinge on RIF1 function. To compare the MCM10 profiles to RIF1 profiles in a similar 

cell type, we generated two RIF1 KO clones in haploid ESCs (40, 41) using CRISRP/Cas9. The 

WT ESC and iPSC replication profiles were similar (Fig 5A), allowing for direct comparison of 

the RIF1 KO in ESCs to the MCM10 mutants in iPSCs. RIF1 ESC KOs were consistent among 

themselves (r = 0.97) yet significantly differed from WT controls (r = 0.56) (Fig 5A), showing 

variation across 56.6% of the genome in grouped analysis (39.5% and 37.6% individually), 

similar to HAP1 RIF1 KOs. In contrast to a previous report (30), the replication profiles in ESC 

RIF1 KOs (as well as HAP1 RIF1 KO) did not appear random but instead were consistent 

among samples and differed from WT at well-defined sites (Fig S14, Fig S17A). Importantly, 

MCM10 and RIF1 showed different alterations in DNA replication timing (Fig 5A). When variant 

regions in these two gene mutations were merged, 94.2% of the genome demonstrated variant 

replication timing (Fig S18). Thus, the MCM10 iPSCs we analyzed appear to harbor a 

previously undescribed alteration of the DNA replication timing program. These cell lines 

represent experimental repetitions and different iPSC clones derived from a single patient 

carrying compound heterozygous mutations in MCM10 and characterized by natural killer cell 

deficiency (42). These MCM10 mutations were previously shown to prevent its nuclear 

localization, causing de-stabilization of the replisome, reduced origin firing, genome instability 

and reduced cell proliferation (42, 43). Taken together, we propose that MCM10 is a strong 

candidate for being a novel regulator of DNA replication timing.  
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Fig 5. Mutations in MCM10 are associated with extensive replication timing variation. (A) Whole 

genome correlation of the replication timing profiles of several WT iPSCs, MCM10 mutants, ESC RIF1 KO 

mutants, and normal ESC samples. (B) The distribution of the sizes of all MCM10 variant regions. (C)  

Clustering of MCM10-1 and WT samples by peak presence. Sample MCM10-1 is an outlier, as it was in 

its genome-wide correlation values (Fig S14), indicating lower data quality; samples MCM10-3 and 

MCM10-4 are repetitions of the MCM10-1 cell line. (D) Example of replication timing variants in MCM10. 

(E) Examples of peak alterations in MCM10 mutants. (F) The distribution of the change in replication 

timing at peaks within variant regions in MCM10 relative to WT. (G) The number of peak delays, 

advances, losses and gains in MCM10 mutants compared to WT, at MCM10-variant regions. Insets 

indicate the relative changes in replication timing at peak gain and loss sites.  
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MCM10 replication profiles differed from the WT iPSC profiles across 1,613 variant regions, 

spanning 46.0% of the genome (13.4% to 45.8% in individual samples; Fig S17B, Fig S19). 

Variant regions spanned between 196Kb (a single sliding window in ANOVA) to a maximum of 

4.9Mb, with a median of 532Kb (mean 713Kb; Fig 5B). Interestingly, we noticed that much of 

the variation in MCM10 mutants localized to replication timing peaks – proxies for replication 

initiation sites (Fig 5D, Fig S19). Indeed, MCM10 samples clustered separately from WT 

samples at peak locations (Fig 5C), indicating that a fundamental difference in replication 

between MCM10 and WT cells resides at replication initiation sites.  

To better understand how MCM10 mutations influence replication initiation, we characterized 

four categories of peak change within MCM10 variant regions: peak advance or delay, and peak 

gain or loss relative to WT (Fig 5E). Of 627 peaks shared between MCM10 and WT, 285 

showed replication timing delay while only 85 were advanced. This demonstrated substantial 

DNA replication initiation defects in MCM10 mutant cells (Fig 5C, F-G). The median absolute 

change in replication timing in peak advances and delays was 0.65 units of standard deviation. 

Replication advances were more common in (but not exclusive to) later replicating parts of the 

genome, with the median peak advance having a WT (normal state) replication timing value of 

0.42 units of standard deviation below the mean. Replication delays, on the other hand, were 

more common in very early replicating parts of the genome with the median delayed peak 

having a WT replication value of 1.29 units of standard deviation above the mean. Furthermore, 

MCM10 demonstrated 311 peak gains and 223 peak losses relative to WT. At a majority of sites 

of either peak gain and loss, WT samples remained earlier replicating than MCM10 (Fig 5G). 

Additionally, both peak gains and losses occurred more frequently at earlier replicating parts of 

the genome (Fig S20). The median peak gain site had a WT replication timing value of 0.77 and 

an MCM10 replication value of 0.44 units of standard deviation above the mean. For the median 

peak loss, the replication timing values were 0.26 and 0.47, respectively.  

In conclusion, impairment of MCM10 appears to exert a global influence on genomic replication 

timing, in particular perturbing normal replication initiation. This included both replication delays 

at sites of shared initiation between WT and MCM10 cells; as well as gains and losses of 

replication initiation sites, predominantly at early replicating genomic regions.  

 

Discussion 

Identifying genetic alterations that lead to reprogramming of DNA replication timing can 

illuminate the molecular mechanisms of DNA replication control. However, almost no such 

factors have been identified to date despite intensive efforts. Here, we took, to our knowledge, 

the most comprehensive characterization of replication timing alterations in gene knockouts and 

genetic diseases. Apart from the previously described role of RIF1 in replication timing control, 

we identified a novel role for MCM10 and a possible albeit potentially indirect involvement of the 

BLM helicase in DNA replication timing. MCM10 is a conserved and essential component of the 

DNA replication initiation machinery (44) and we show here that disease-associated mutations 

in the MCM10 gene lead to extensive perturbation of origin firing genome-wide.  
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Notably, we did not observe similar replication timing aberrations in cells mutated for other 

central components of the DNA replication initiation machinery, such as GINS4 and RECQL4. 

The replication timing phenotype of MCM10 mutant cells therefore appears to be highly specific, 

consistent with the diverse roles of MCM10 in stabilizing the CDC45:MCM2-7:GINS helicase as 

well as the proceeding replisome (43). Further research will be required to better understand the 

mechanisms by which MCM10 may control replication initiation timing as well as to link MCM10 

mutations to genome stability and cellular and disease phenotypes. In particular, although we 

identify a consistent replication timing phenotype across different experimental repetitions and 

patient-derived iPSC mutant clones of MCM10, they are all derived from the same individual. 

Identification of additional individuals with MCM10 mutations and complementary studies using 

engineered cell lines (43), will further establish the role of MCM10 in replication timing. 

However, naturally occurring mutations in MCM10, such as the compound heterozygote 

analyzed in this study, are extraordinarily rare. 

Although we ultimately ruled out most tested genes, the majority of tests initially resulted in the 

positive identification of changes in DNA replication timing. We show that this is expected given 

the genome-wide nature of variant search, which is especially pronounced in the case of 

replication timing data due to its chromosomal continuity. We thus emphasize the need for 

rigorous consideration of multiple testing in any genome-wide search for replication timing 

alterations in any biological system. In contrast, many previous studies used arbitrary thresholds 

for identifying variants and determining whether a gene mutation influences DNA replication 

timing. By applying an empirical false-discovery correction, we were able to rule out many 

candidate replication timing regulators, including some that were proposed by previous studies. 

A main limitation of our study is that we focused on three specific cell types, among which LCLs 

and HAP1 cells are both transformed or derived from tumor cells, while iPSCs are pluripotent 

stem cells. It is conceivable that alterations in replication timing would only be observed in 

certain normal cell lineages. This is consistent with the specific symptoms and affected tissues 

in patients with replication gene mutations. Thus, it remains of interest to study replication timing 

alterations in different genetic backgrounds in a variety of differentiated cell types. Furthermore, 

the effects of human disease-associated variants may differ depending on the relative 

pathogenicity of the variant. Another limitation of our study is the use of bulk cell samples for 

analysis. Newer single cell approaches (45) have the potential to reveal stochastic events that 

are specific to individual cells rather than being shared across a population of cells. For 

instance, a genetic mutation may affect the activity of different replication origins or replication 

forks in each cell, thus evading detection in bulk analysis yet still impacting tissue physiology in 

an affected human. Notwithstanding these caveats, we find it remarkable that the replication 

timing program is so robust to a wide array of genetic perturbation in trans. While cis-acting 

polymorphisms can affect local replication timing in different cell types and across many 

genomic loci (19, 20), it appears that global changes in replication timing may not be compatible 

with cell or human health. It is intriguing to consider the possible reasons for this rigidness of the 

replication timing program. In particular, interactions of replication timing with gene regulation 

and with genome stability – and even the intersection of the two (46) – may define DNA 

replication timing as an essential cellular program. 
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Methods 

Cell lines 

LCL 

We analyzed 271 LCL samples from 245 individuals. These samples covered 32 genetic 

diseases across 117 individuals (134 total samples) and 124 individuals (137 samples) of 

presumed healthy status (Table 1). 138 of the LCL samples were obtained from the Coriell 

Institute for Medical Research (Camden, NJ) as either DNA samples or cell cultures. Five FA 

mutant cell lines were obtained from the International Fanconi Anemia Tissue and Cell 

Repository housed at the Rockefeller University. LCLs were cultured in Roswell Park Memorial 

Institute 1640 medium (Corning Life Sciences, Tewksbury, MA, USA), supplemented with 15% 

fetal bovine serum (FBS; Corning). Culture was maintained at 37°C with 5% CO2 in a 

humidified atmosphere. Sample identification numbers and genotypes are available in 

Supplemental Table 1.  

Among the remaining samples, the repeat expansion cohort provided 55 mutant LCL samples 

from six diseases and 48 presumed healthy samples (47). The Illumina platinum family provided 

17 presumed healthy samples (48).  

 

HAP1 

HAP1 WT and KO cell lines were obtained from Horizon. The cell lines were cultured following 

the provider’s recommendations, in IMDM medium supplemented with 10% FBS and 1% 

Penicillin/Streptomycin. Culture was maintained at 37°C with 5% CO2 in a humidified 

atmosphere. Cells were passaged every 2-3 days.  

Cells were harvested at 70-80% confluence with 0.05% trypsin at 37°C for 5 min. Dissociation of 

cells was checked using microscopy. Cells were split into two samples containing approximately 

2x106 cells each, one of which was used for FACS analysis and the other for DNA extraction. 

Cells collected for FACS analysis were pelleted at 1000 rpm at 4°C for 5 min, washed once in 

500 ml of ice-cold PBS and resuspended in 250 L of ice-cold PBS. Cells were fixed in 750 L 

of ice-cold (-20°C) ethanol with constant gentle vortexing and stored at 4°C. Fixed cells were 

washed with 400 L of ice-cold PBS and centrifuged at 1000 rpm at 4°C for 5 min. Cells were 

resuspended in 400 L of PBS, 400 L of Accutase and incubated at room temperature for 20 

min. Cells were then pelleted and resuspended in 400 L of PBS. RNase A (10 mg/ml) 

treatment was done at 37°C for 30 min. Propidium iodide at a concentration of 1 mg/mL was 

added and staining was done at room temperature in the dark for 30 min. Cells were passed 

through a polystyrene cell-strainer-capped tube before flow cytometry analysis. Analysis of PI-

stained cells was done with a FACSAria Fusion Sorter. Cells of known ploidy (haploid/diploid) 
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were used as controls for each run. All HAP1 KO samples were sequenced as either diploidized 

samples, or both as haploid and diploidized samples. In those cases where both haploid and 

diploid samples were analyzed from the same KO clone, no significant differences were 

observed in replication timing as a function of ploidy, and the two samples were considered 

experimental repetitions of the same KO clone. 

 

iPSC  

The iPSCs from MCM10-, CDC45-, and the GINS4-deficient individuals were cultured in feeder-

free condition with Stemflex (Gibco, A3349401). iPSC lines for RTT, RTTC, LNS and matched 

WT controls were obtained from the Coriell Institute (see Supplemental Table 1). iPSC lines 

GM27622 and GM27629 were grown in mTeSR Plus Basal medium and iPSCs for FXS and 

matched controls (49, 50) were grown in mTeSR1 medium (STEMCELL Technologies). Cell 

lines GM27437, GM26077, GM27730 and GM260105 were grown on a layer of Mouse 

Embryonic Fibroblast feeder cells (Gibco) coated with D-MEM/F-12 supplemented with 20% of 

KnockOut Serum replacement (Gibco) and 10 g/mL of Basic Fibroblast Growth Factor (bFGF) 

(Gibco, PHG0264). Feeder-dependent cells were transferred and adapted to Matrigel conditions 

following the recommendations of STEMCELL Technologies. All cell lines were grown at 37°C, 

5% CO2, and passaged by dissociating to single cells with Accutase (Sigma, A6964) and 

plating at a density of 1x106 cells/well in Matrigel-coated 6 well plates. For the first 24 hours 

after passaging, cells were cultured with 10M ROCK inhibitor (Y-27632; STEMCELL 

Technologies).  

 

 

ESC 

 

The WT and RIF1 KO human stem cells were cultured in StemFlex media (Thermo Fisher 

A3349401) on Geltrex (Thermo Fisher A1413302). Upon reaching 70% confluency, cultures 

were passaged at a ratio of 1:10, or cryopreserved in a solution of freezing media containing 

40% FBS (Gemini Bio-Products 900-108) and 10% DMSO (Sigma Aldrich D2650). Passaging 

was performed by TrypLE (Life Technologies 12605036) dissociation to small clusters of cells, 

and plated in media containing 10 μM Rock inhibitor Y-27632 (Selleckchem S1049) was added 

to media and removed within 24-48 h. Cells beyond passage 10 were no longer supplemented 

with Rock inhibitor. All embryo and ESC research was reviewed and approved by the Columbia 

University Embryonic Stem Cell Committee and the Institutional Review Board. 

 

In preparation for CRISPR, guide RNAs were designed targeting relevant genes using software 

from cripsr.mit.edu or Benchling.com. Guides were chosen with the highest index score in a 

region closest to the DNA region of interest. Nucleofection was performed using Amaxa Cell 

Line Nucleofector Kit II, program A-23 with a Cas9-GFP plasmid (Addgene, 44719) and guide 

RNA. Cells were plated, cultured for 2 additional days, stained with 10 μg/mL Hoechst 33342, 

and subsequently sorted via FACS for cells that had both haploid DNA content and GFP 
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positivity. Single colonies were propagated, and duplicates were made for cryopreservation and 

for DNA isolated for PCR and Sanger sequencing.   

  

Fluorescence-activated cell sorting (FACS) was performed using the FACS-Aria machine at the 

Columbia University Stem Cell Initiative flow cytometry core. Populations were gated first for 

cells, followed by gating for single cells. Cells were suspended in media containing 10% FBS in 

PBS (Life Technologies 14190-250) throughout the analysis. Live cells were kept on ice during 

transportation and analysis. Analysis was performed using FloJo software (BD Biosciences). 

  

 

Generation of replication timing profiles 

DNA was extracted using the MasterPure™ Complete DNA and RNA Purification Kit (Lucigen) 

following the manufacturer’s instructions. PCR-free whole genome sequencing was performed 

using paired-end reads (GeneWiz, South Plainfield, NJ, see Supplemental Table 1). 

Sequencing reads were converted into non-mapped bam files and marked for Illumina adaptors 

and duplicate reads with Picard Tools (v1.138) (http://broadinstitute.github.io/picard/) commands 

‘FastqToSam’, ‘MarkIlluminaAdapters’, and ‘MarkDuplicates’. Bam files were aligned to hg19 

with BWA mem (51) (Li 2013) (v0.7.17). GC-corrected read depth data for each sample were 

then generated via TIGER (36) using a read length of 36bp for alignability filtering and a bin size 

of 2500bp. All other parameters were TIGER defaults. 

The raw post-GC-corrected data was then filtered for copy number alterations using permissive 

parameters such as to retain replication timing information and any potential disease-related 

replication timing alterations. To remove clonal or sub-clonal aneuploidies, individual autosomes 

were first removed if they had a copy number > 2.2 or < 1.8. This step removed whole 

chromosomes from diseased samples with known aneuploidies (e.g., TRI21) along with healthy 

samples with sub-clonal aneuploidies. Notably, chromosome 1q is removed in analyses of all 

MCM10 and HAP1 due to high copy number (all MCM10 mutants and 50% of HAP1 WT 

samples were affected). Next, regions of large (>1Mb) duplications or deletion were manually 

removed by visually comparing the distribution of raw data across all samples. To filter outlier 

and smaller CNVs, windows 4 standard deviations above or below the mean copy number per 

chromosome were removed. Each sample was then filtered via the TIGER command 

‘TIGER_segment_filt’ (using the MATLAB function ‘segment’, R2 = 0.04, standard deviation 

threshold = 2.5). These steps optimally corrected samples across all cell types and data 

qualities.  

Replication timing values were generated by smoothing the filtered GC-corrected data with a 

cubic smoothing spline (MATLAB command ‘csaps’, smoothing parameter = 1x10-17). Only 

regions of >20 continuous 2500bp windows were included and smoothing was not performed 

over data gaps >100kbp or reference genome gaps >50kbp. The smoothed profiles were then 

normalized to an autosomal mean of zero and a standard deviation of one.  
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Detection of replication timing variant regions via ANOVA 

Analysis of variance (ANOVA) was performed on autosomes to detect regions of replication 

timing variation among samples. We performed the variant analysis both for individual mutant 

samples against all WT samples of the same cell type and again with samples grouped by 

mutated gene. For the RIF1 KO of ESCs, WT iPSCs were used. To avoid regions with different 

numbers of analyzed samples due to sample-specific filtered regions or chromosomes, we 

substituted individual windows of WT samples where less than 5 samples have missing data 

with the average filtered unsmoothed data of the WT samples. All filtered unsmoothed data was 

then mean-shifted to an autosomal genome copy number of 2.  

We performed one-way ANOVA in a sliding window of 76 x 2500bp bins (185kb window) with a 

quarter step of 19 bins (47.5kb) on the filtered GC-corrected unsmoothed data (40). The 

corresponding p-value for each window was calculated with the MATLAB function ‘anova1’. 

ANOVA was not performed in windows with complete missing data for one or more mutant 

samples to avoid a local sample number disparity. We called variant regions as windows with a 

p-value less than the Bonferroni-corrected threshold based on the number of ANOVA tests 

performed for each individual mutant sample or mutated gene group. Adjacent significant 

windows were merged, and the p-value was recalculated over the merged region (in later 

analyses for FDR calculation, only the non-merged windows were used). The proportion of the 

genome with variant replication timing was then calculated from the total length of regions 

assigned as variant divided by the length of the genome analyzed. 

 

Comparison of replication timing profiles, PC analysis, and age analysis 

All replication timing profile correlation was calculated as Pearson's correlation coefficients. In 

comparing the TIGER and S/G1 replication timing profiles of sample NA12878, S/G1 

coordinates were lifted from hg38 to hg19 with vcf-liftover (https://github.com/hmgu-itg/VCF-

liftover) and interpolated to TIGER window coordinates with the MATLAB function ‘interp1’. 

 

PC analysis was performed on the replication timing profiles of all autosomes with the MATLAB 

function ‘pca’. To determine if age influenced DNA replication timing, PC analysis was only 

performed on 83 WT individuals with known age. In calculating the relationship between age 

and replication timing correlation, the median correlation of a sample to all other samples was 

used. A linear model was fit using the MATLAB function ‘fitlm’. The linear model excluded 

samples with a correlation ≤ 0.7 to all other LCL samples. However, when including all samples 

in the analysis, the linear correlation was still insignificant (Fig S3B). Although including all 

samples produced a marginally higher correlation (r2 = 2.75 x 10-3 to r2 = 0.189), this was driven 

by a few samples from young individuals with abnormal replication profiles.  

 

In comparing repli-seq profiles of ESC and differentiated cells to MCM10, coordinates were 

interpolated to TIGER window coordinates with the MATLAB function ‘interp1’. 
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P-value inflation analysis and ANOVA simulations 

For each mutant-WT ANOVA test, the slope of the QQ-plot relationship of theoretical vs sample 

quantiles was extracted with the MATLAB function ‘fitlm.’ To determine FDR for each analysis, 

q-values were calculated by the MATLAB function ‘mafdr’ using the Benjamini-Hochberg 

method (52). FDR for each ANOVA test was determined as the proportion of q-values less than 

the original Bonferroni-corrected p-value threshold compared to its original p-value (i.e., the 

proportion of windows identified as false positive) (FigS4).  

ANOVA simulations used all samples with a >0.7 correlation to all other samples regardless of 

mutant or WT status. The simulations were performed for different combinations of sampled 

mutant and WT samples. In 1000 iterations for each combination, samples were randomly 

assigned into the WT or mutant groups and an ANOVA test was performed identically to the 

true mutant-WT tests. For each iteration, the proportion of the genome with variant replication 

timing and the p-values for each window were analyzed.  

 

Overlap in regions of replication timing variability 

Overlap percentage was calculated in pairs of all individual mutant samples (184 x 184 tests) 

where the variant regions of one query sample were compared to the variant regions in one 

subject sample. For each analysis, the number of overlapping nucleotides in the variant regions 

of the query and subject sample were calculated with BEDtools intersect (53). The overlapping 

percentage was determined as the number of overlapping nucleotides divided by the total length 

of variant replication timing regions for the query sample. Therefore, the overlap percentage can 

differ for two samples depending on which is the query or subject sample. For the significance 

of overlap, a Fisher’s exact test was performed on pairs of individual mutant variant regions 

using BEDtools fisher. The p-value from the two-tailed t-test was used.  

For determining the proportion of the genome with variant replication timing covered by both 

MCM10 and RIF1 KO in ESCs, variant regions were merged with BEDtools merge. The sum of 

the merged variant regions was divided by the length of the genome available for analysis in 

MCM10 (which was shorter than RIF1 by 7.12 Mb).  

 

Identifying and clustering replication timing peaks  

Chromosome 1p was removed for all peak analyses as it was filtered out in MCM10. For 

identifying peaks in MCM10 and iPSC WT samples, the pairwise distances of local maxima in 

the individual mutants were calculated with the MATLAB function ‘pdist’. Hierarchical clustering 

was then performed on the pairwise distance matrix using the MATLAB function ‘linkage’ using 

the average method and the default metric of Euclidean distance. Peak clusters and ranges 

were next calculated with the MATLAB function ‘cluster’ using a cutoff of 20,000bp as the 

distance criterion for forming clusters. For determining peak overlap, only peaks present in at 
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least 75% of MCM10 or WT samples were compared. A peak was considered shared if the 

range of an MCM10 peak and WT peak overlapped as calculated by BEDtools intersect.  

In determining peak advances or delays, only peaks overlapping MCM10 variant regions were 

considered. The relative change in replication timing was determined as the change in mean 

replication timing of MCM10 samples to WT samples within the shared peak range. For peak 

gains or losses, only peaks present in at least 75% of MCM10 or WT samples were compared. 

Peak gains were defined as peaks present in MCM10 but not WT and peak losses were defined 

as peaks present in WT but not MCM10. Replication timing changes in peak gains and losses 

were calculated within the range of the peak cluster using either the mean WT value or mean 

MCM10 value, as applicable. 

For clustering MCM10 and WT samples by peak use, all 6234 peaks present in any of the 

samples were included. The binary presence or absence of the 6234 peaks in MCM10 and WT 

samples was clustered with the MATLAB function ‘linkage’ using the average method and the 

metric of Hamming distance (the percentage of coordinates that differ). 

 

Data availability 

Raw sequence data is available on SRA under the bioproject PRJNA754107 (HAP1 samples 

and iPSC and LCL samples approved for non-restricted data access) and on dbGaP with 

accession numbers phs001957 (ESCs) and phs002597 (iPSCs and LCLs).  
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