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52 Betaine-homocysteine methyltransferase (BHMT) catalyzes the transfer of methyl-groups 

53 from betaine to homocysteine (Hcy) producing methionine and dimethylgycine. In this 

54 work, we characterize Bhmt wildtype (WT) and knockout (KO) mice that were fully 

55 backcrossed to a C57Bl6/J background. Consistent with our previous findings, Bhmt KO 

56 mice had decreased body weight, fat mass and adipose tissue weight compared to WT. 

57 Histological analyses and gene expression profiling indicate that adipose browning was 

58 activated in KO mice and contributed to the adipose atrophy observed. BHMT is not 

59 expressed in adipose tissue but is abundant in liver, thus, a signal must be originating 

60 from the liver that modulates adipose tissue. We found that, in Bhmt KO mice, 

61 homocysteine-induced endoplasmic reticulum (ER) stress, with activation of hepatic 

62 transcription factor cyclin AMP response element binding protein (CREBH), mediated an 

63 increase in hepatic and plasma concentrations of fibroblast growth factor 21 (FGF21), 

64 which is known to induce adipose browning. CREBH binds to the promoter regions of 

65 FGF21 to activate its expression. Taken together, our data indicate that deletion of a 

66 single gene in one-carbon metabolism modifies adipose biology and energy metabolism. 

67 It would be interesting to determine whether people with functional polymorphisms in 

68 BHMT exhibit a similar adipose atrophy phenotype.

69

70 Keywords

71 betaine-homocysteine S-methyltransferase, lipodystrophy, ER stress, CREBH, BHMT, FGF21, 

72 homocysteine

73

74

75 INTRODUCTION
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76 Betaine-homocysteine S-methyltransferase (BHMT) is an important Zn-dependent thiol-

77 methyltransferase that catalyzes the formation of methionine from homocysteine using betaine 

78 as its methyl donor (1, 2). Methionine is subsequently converted to S-adenosylmethionine (SAM) 

79 and is used for various methylation reactions (3). BHMT is one of the most abundant proteins in 

80 the liver, amounting to 0.6-1% of total protein (4), and it is also found in kidney, the eye lens, and 

81 at lower activities in other tissues, but not in adipose (5, 6). Mice in which Bhmt was deleted 

82 (whole body; Bhmt  KO) have increased hepatic concentrations of the substrates betaine and 

83 homocysteine (Hcy) (5, 7). These KO mice develop increased energy expenditure associated with 

84 lower body weight compared to their wild type (WT) littermates and develop lipodystrophy and 

85 fatty liver (5, 7).  At 1 year of age, 64% of Bhmt KO mice develop hepatic tumors (5, 7). Though 

86 the mechanisms underlying the hepatocarcinogenesis have been explored (3), those involved in 

87 the adipose wasting have not been addressed, we do so in this paper.

88

89 In this study, we show that deletion of Bhmt in mice causes increased Hcy concentrations in 

90 tissues, and that this initiates a signaling cascade involving endoplasmic reticulum stress (ER 

91 stress) with activation (cleavage) of cyclic AMP response element binding protein H (CREBH) 

92 generating a transcription factor that promotes the expression of genes including fibroblast growth 

93 factor 21 (Fgf21; previously, we reported increased Fgf21 concentrations produced by the liver in 

94 Bhmt KO mice (7)). Fgf21 stimulates adipose browning and energy expenditure by upregulating 

95 the expression of the transcriptional co-activator peroxisome proliferator-activated receptor 

96 gamma coactivator 1-alpha (Pgc-1), as well as uncoupling protein 1 (Ucp1).  This culminates in 

97 adipose wasting in Bhmt KO mice. 

98

99
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100 Results

101 Deletion of Bhmt promotes adipose atrophy in fully backcrossed mice

102 We previously reported that Bhmt knockout mice on a mixed 129/SV x C57BL/6J background 

103 (generations F3-F5), between 7-12 weeks of age, had reduced adipose mass and smaller-sized 

104 adipocytes (7). Since genetic background of mice can have a profound influence on the metabolic 

105 phenotype of mice (8), we decided to reexamine this lipodystrophy phenotype after backcrossing 

106 Bhmt KO mice to C57Bl/6 to generate a near congenic (99.74%) line. In this near congenic line, 

107 we confirmed that, in the Bhmt KO compared to wild type (WT), there was a significant reduction 

108 in total body weight (Fig 1A) and adipose weight (Fig 1B) in mice. Histological analysis of adipose 

109 tissue taken from Bhmt KO mice showed reduced adipocyte cell size and reduced size of lipid 

110 droplets in both gonadal white adipose tissue (gWAT; data not shown) and inguinal white adipose 

111 tissue (iWAT) as compared to WT (Fig 1C and Fig 1D). Adipose atrophy is characterized by 

112 reduced fat/lean mass and the ‘slimming of adipocytes’ in both size and volume (9), and our data 

113 show that this process was dependent on Bhmt status.   

114

115

116 Adipose atrophy in Bhmt KO mice is associated with adipose browning in inguinal adipose 

117 depots

118 Since smaller adipocytes and increased whole body energy expenditure and heat production are 

119 classical features of browning of WAT (10), and since adipose browning is known to promote 

120 adipose atrophy in several mouse models (10-14), we sought to determine whether the WAT 

121 atrophy observed in Bhmt KO mice is due to WAT browning. We first measured a number of 

122 molecular markers that are frequently associated with adipose browning (15-17). Uncoupling 

123 Protein 1 (Ucp1) mRNA (Fig 2A) along with mRNA for other thermogenic genes such as 

124 Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1) and the lipid-

125 droplet-associated protein cell death-inducing DFFA-like effector A (CideA) (Fig 2B – C) were all 
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126 significantly upregulated in iWAT collected from Bhmt KO mice compared to WT. Together, these 

127 results indicate that lack of Bhmt is sufficient to induce the expression of adipose browning 

128 markers. 

129

130 Bhmt KO livers have increased homocysteine concentrations

131 Plasma total Hcy concentrations were significantly increased in Bhmt KO mice on a mixed 129/SV 

132 x C57BL/6J background (generations F3-F5), as we previously reported (7).  We now show that, 

133 in the fully backcrossed Bhmt KO mice, both plasma Hcy concentrations (~11 fold) and liver Hcy 

134 concentrations (~2 fold) were increased in KO as compared to WT mice (Fig 3A and B). Thus, 

135 loss of Bhmt results in the accumulation of plasma and liver Hcy . 

136

137 Bhmt KO livers have increased ER stress and have more activated CREBH

138 Since high tissue Hcy is a known cause of ER stress, which in turn regulates a number of 

139 transcription factors residing in the ER (18, 19), we decided to see if Bhmt KO mice experience 

140 increased ER stress compared to WT. We measured gene expression of DNA damage-inducible 

141 transcript 3, also known as C/EBP homologous protein (CHOP) and Activating Transcription 

142 Factor 3 (ATF3), as indicators of ER stress (20-30). We found that expression of these genes 

143 were increased by 1.5-fold and 3-fold, respectively, in Bhmt KO compared to WT mouse livers 

144 (Figs 4A and 4B). Thus, Bhmt KO mice have increased ER stress compared to their WT 

145 counterparts. 

146

147 Next, we searched for transcription factors that reside in the ER and are produced in response to 

148 ER stress and which are also known to regulate FGF21. We found that the hepatic transcription 

149 factor known as Cyclin AMP Responsive Element Binding Protein – H (CREBH) fulfilled the above 

150 criteria (19, 31, 32). We measured full length and activated CREBH in the liver lysates prepared 
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151 from both Bhmt WT and KO mice by Western blot analysis and found that the cleaved activated 

152 form of CREBH was significantly increased in Bhmt KO compared to WT liver (Figs 4C and 4D). 

153

154 Bhmt KO livers have increased FGF21 concentrations

155 Since activated CREBH binds to the Fgf21 promoter and activates its transcription (33), we 

156 suggest that this explains our earlier finding that Bhmt KO mice on a mixed 129/SV x C57BL/6J 

157 background (generations F3-F5) had increased FGF21 concentrations (7). We now show that in 

158 fully backcrossed Bhmt KO mice, compared to WT, plasma and hepatic FGF21 concentrations 

159 were increased more than 2-fold (Figs 5A and 5B). 

160

161 Discussion

162 The deletion of Bhmt in mice results in the animal storing less fat in adipose tissue even though 

163 BHMT is not expressed in adipose tissue (7).  This adipose atrophy is the result of reduced 

164 triglyceride storage within iWAT associated with increased energy expenditure and heat 

165 production as measured by indirect colorimetry without a matching increase in food consumption 

166 (7).  We now report that the elevated Hcy concentrations that occur when the Bhmt gene is 

167 deleted, increase ER stress signalling, which results in generation of activated CREBH, and this, 

168 in turn,  caused increased expression in hepatic FGF21.  This FGF21 is transported via blood to 

169 adipocytes where it promotes the browning of white adipose tissue and increases expression of 

170 PGC-1 which increases mitochondrial number, and increases the expression of UCP-1 which 

171 uncouples mitochondrial respiration and thereby increases energy expenditure and heat 

172 production. (Fig 6).

173

174 As noted earlier, BHMT catalyzes the formation of methionine from Hcy using betaine as its methyl 

175 donor (1, 2). As expected, deletion of Bhmt should increase concentrations of both substrates 

176 (betaine and Hcy) used by this enzyme.  Increased concentrations of Hcy cause ER stress both 
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177 in vitro and in vivo (20, 21, 23, 26, 27, 30, 34-36) by disrupting disulfide bond formation and thus 

178 leading to protein misfolding (21). Though we argue that it is the the accumulation of Hcy that 

179 results in ER stress and subsequent browning of adipose tissue, it is possible that the 

180 accumulation of the other precursor, betaine, also contributes to adipocyte browning as feeding 

181 mice a diet containing 5% betaine increases plasma concentrations of FGF21 (7, 37). Since Bhmt 

182 deletion resulted in reduced methylation potential by increasing S-adenosylhomocysteine 

183 concentrations, in earlier studies we examined whether the FGF21 promoter region might be 

184 hypomethylated in the Bhmt KO mouse, leading to increased expression of this gene. However, 

185 reduced representation bisulfite sequencing performed on liver DNA from WT and KO mice did 

186 not reveal any methylation differences in this gene (3).

187

188 ER stress is initiated by numerous metabolic stressors including high concentrations of 

189 homocysteine (20, 21, 23, 26) and has been associated with hepatic lipid accumulation, obesity 

190 and cancer (24, 38). Also, it has been implicated in WAT browning (39). Transcription factors that 

191 are regulated by ER stress include Sterol Regulatory Element Binding Proteins (SREBP) and 

192 CREBH (29).  CREBH is ER-tethered and is synthesized in the liver as a precursor which then 

193 gets activated via cleavage by Golgi-localized proteases and the activated form then accumulates 

194 in the nucleus to act as a transcription factor (19) that promotes expression of the liver-secreted 

195 peptide endocrine hormone FGF21 (31, 33). Promoter analysis studies show that CREBH can 

196 bind and activate FGF21 promoter at position -60 to -40 bp. Chromatin immunoprecipitation 

197 studies reveal that CREBH directly binds to the FGF21 promoter and controls the expression and 

198 plasma levels of FGF21 (33, 40). Using CREBH KO and CREBH over-expression mouse models 

199 it has been shown that FGF21 mediates many of CREBH’s effects on fatty acid metabolism and 

200 ketogenesis (41). Also, FGF21 is responsible for the body weight loss induced by CREBH over-

201 expression and particularly the fat mass reduction (31). Therefore, it is reasonable to propose that 

202 CREBH is the upstream transcriptional regulator of FGF21 in Bhmt KO mice.  In addition to 
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203 deletion of Bhmt, essential amino acid restriction, fasting and impaired muscular and hepatic 

204 autophagy induce ER stress and result in substantial increases in circulating FGF21 and UCP1 

205 levels in adipose (42, 43). 

206

207 Many endocrine and autocrine signals stimulate adipose browning, including FGF21 (44). FGF21 

208 binds to its receptor (FGFR) and coreceptor β-Klotho (KLB) to activate a downstream signaling 

209 cascade that ultimately leads to expression of its target genes (43). FGF21 stimulates adipose 

210 browning and energy expenditure by upregulating the expression of transcriptional co-activator 

211 PGC-1 in adipose tissue (17, 43, 45). Browning of white adipose tissue is characterized by the 

212 appearance of brown-like or beige adipocytes within WAT (46, 47). These inducible beige 

213 adipocytes are morphologically similar to brown adipocytes and express uncoupling protein 1 and 

214 contribute to thermogenesis (39, 47). 

215

216 As noted earlier, adipose atrophy is characterized by reduced fat/lean mass and the excessive 

217 ‘slimming of adipocytes’ in both size and volume (9). Increased metabolic rate and adipose 

218 browning has been proposed as causes for adipose atrophy (9, 11-14, 48-52). Even though 

219 browning of WAT is generally considered beneficial in obesity (reducing body weight and 

220 increasing energy expenditure), several lines of evidence suggest that it also is associated with 

221 adverse outcomes such as hepatic steatosis, cancer associated cachexia (CAC) and burn-related 

222 cachexia (11, 14, 49, 50).

223

224 Is reduced BHMT expression likely to be a problem in people?  Several functional Bhmt variants 

225 have been identified in humans which are associated with increased risk for cancer and other 

226 diseases (53-56), however no information is available on the metabolic phenotype of humans 

227 carrying those variants.  It would be interesting to explore whether people with functional Bhmt 

228 variants have a metabolic phenotype similar to that which we describe in mice, and determine 
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229 whether proposed Hcy-CREBH-FGF21–adipose browning pathway drives this phenotype. This 

230 would not only help us to understand how genetic variations in one carbon metabolism affect 

231 obesity but also our understanding of how adipose atrophy develops in diseases such as cancer. 

232

233 MATERIALS AND METHODS

234 Animals. Mice used in these experiments were bred and maintained at the David H. Murdock 

235 Research Institute (DHMRI), Center for Laboratory Animal Science facilities. All animal 

236 experiments were performed in accordance with the protocols approved by David H. Murdock 

237 Research Institute Institutional Animal Care and Use Committee. The study was carried out in 

238 compliance with the ARRIVE guidelines.  

239  Bhmt KO mice were generated as previously described (5). Bhmt KO mice were fully 

240 backcrossed to C57B1/6 wild-type mice to generate a near congenic (99.73 %) mouse line. 

241 Genotyping of Bhmt animals was performed using the following primers: Bhmt WT_F 5’–

242 GACTTT TAAAGAGTGGTGGTACATACCTTG-3’, Bhmt WT_R -5’ –

243 TCTCTCTGCAGCCACATCTGAACTTGTCTG-3’, Bhmt KO_F- 5’ –

244 TTAACTCAACATCACAACAACAGATTTCAG -3’, Bhmt KO_R 5’ –TTG 

245 TCGACGGATCCATAACTTCGTATAAT -3’. Bhmt WT and KO mice were mated and maintained 

246 ad libitum on a AIN 76A diet (Dyets, Bethelehem, PA, USA) and were kept in a temperature-

247 controlled environment at 24°C and exposed to a 12 hours light and dark cycle. At 6-8 weeks, 

248 mice were euthanized and tissue collection was performed.  

249

250 Histological analysis.  Tissues were fixed in buffered formalin, dehydrated in ethanol and then 

251 transferred to xylene solution for embedding in paraffin.  Serial sections at 5 mm thickness were 

252 made from paraffin-embedded tissue and then stained with hematoxylin and eosin.  Images were 

253 analyzed with light microscopy. Adipocyte area was calculated by measuring the area of cells per 

254 condition, at 200x magnification, using Image J, and presented as mean ± SEM.
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255

256 RT-PCR analysis. Total RNA was extracted from tissues of Bhmt WT and Bhmt KO mice, using 

257 RNAeasy mini Kit (Qiagen, Hilden, Germany). cDNA synthesis was performed by using a ScriptTM 

258 cDNA SuperMix (Quanta BioSciences, Gaithrsburg, MD, USA). For quantitative real-time assays, 

259 amplification was performed by using PerfeCTa qPCR FastMix (Quanta Biosciences). We 

260 designed primers (Sigma) as follows: UCP1 forward primer: ACTGCCACAACCTCCAGTCATT, 

261 reverse primer CTTTGCCTCACTCAGGATTGG; PGC1a  forward primer 

262 AGCCGTGACCACTGACAACGAG, reverse primer GCTGCATGGTTCTGAGTGCTAGG; CIDEA 

263 forward primer: GCAACCAAAGAAATGCGGAATAG, reverse primer: 

264 CTCGTACATCGTGGCTTTGA; CHOP forward primer CAGCGACAGAGCCAGAAT; ATF3 

265 forward primer GAGGCGGCGAGAAAGAAA, reverse primer CACACTCTCCAGTTTCTC. Ct 

266 values were calculated by SDS 1.2 software (Applied Biosystems, Foster City, CA, USA) and 

267 normalized to TATA binding Ct values and expressed as 2 –(Ct(gene)- Ct (housekeeping gene)) .

268

269 Western blot.  Liver tissues were collected to evaluate CREBH levels. Protein extracts were 

270 preparared using RIPA lysis buffer (Sigma, ST. Louis, USA) supplemented with protease inhibitor 

271 cocktail (Complete, Roche) and sonicated. Total protein concentrations for all samples was 

272 quantified using BCA protein assay (Bio-Rad, Hercules, CA, USA). Proteins were loaded into 

273 SDS-PAGE gels and blotted on PVDF membranes. CREBH antibody was used at 1:1000 dilution. 

274 Enhancer chemiluminescence was used to detect protein. CREBH protein abundance was 

275 quantified using Image J (NIH, Bethesda, MD, USA). Data are presented mean ± SEM.

276

277 FGF21 measurement. 

278 Serum: Blood samples from Bhmt WT and Bhmt KO mice, were collected and were subjected to 

279 centrifugation at 1000 g for 15 min at 4°C. Liver: Crushed liver samples were homogenized in 

280 cold phosphate-buffered saline (PBS) (Sigma) with protease inhibitors (Roche). Samples were 
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281 subjected to centrifugation at 9,600 g for 15 minutes at 4° C. For both plasma  and liver, 

282 supernantatant protein was quantified using BCA protein assay (Bio-Rad, Hercules, CA, USA) 

283 and diluted to equal concentrations before performing an enzyme-linked immunoabsorbent assay 

284 (ELISA) using a Mouse/Rat FGF21 Quantikine ELISA kit (R&D Systems, Minneapolis, MN)(57) . 

285

286 Homocysteine measurement. Plasma or liver was homogenized in dithiothreitol (DTT) and 

287 processed to dissociate the proteins by filtration, thereby extracting protein-bound Hcy. The 

288 protein-free filtrate was analyzed for total Hcy by liquid chromatography-electrospray ionization-

289 tandem mass spectrometry (LC-ESI-MS/MS) as previously described (58, 59).

290

291 Statistical analysis. The number of samples per group are indicated in the figure legends. There 

292 were no experimental units or data points excluded. Statistical analyses were performed with 

293 Prism 7 (GraphPad Software, La Jolla, CA, USA). Data distribution was tested for statistical 

294 normality. The Brown-Forsythe test (F test) was used to compare group variances. Groups with 

295 equal distribution were compared using Students’ t test. Groups with unequal variances were 

296 compared using the nonparamentric Mann-Whitney test. Data are presented as means ± SEM.

297
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332 FIGURE LEGENDS.

333 FIGURE 1. Lack of the Bhmt gene induces adipose atrophy in mice. (A) Bodyweight loss of 

334 Bhmt knockout (Bhmt-KO) compared to Bhmt wild type (Bhmt-WT). (B) Adipose weight 

335 normalized over body weight. n= 25 Bhmt-KO; n= 24 Bhmt-WT. (C) and (D) Representative 

336 stainings of sections from inguinal white adipose tissue (iWAT) from Bhmt-WT (C) and Bhmt-

337 KO (D) Scale bar= 50 mm. Results represent mean ± SEM. ****P≤0.0001 by unpaired t-test.

338

339 FIGURE 2. Lack of the Bhmt gene induces the expression of beige remodeling markers 

340 that induce browning.  mRNA levels of beige remodeling markers Ucp1 (A), Pgc1a (B), 

341 and  Cidea (C) in inguinal adipose tissue (iWAT) of Bhmt-WT and Bhmt-KO mice. Relative 

342 quantitative values (normalized to 36B4) are reported as fold change. Results represent mean ± 

343 SEM. *P≤0.05, **P≤0.01 by Mann-Whitney test (A and C) and by unpaired t-test (B and D).  n = 

344 10 per group.

345

346 FIGURE 3. Increase in plasma and liver homocysteine (Hcy) levels in Bhmt-KO mice. 

347 (A) Plasma levels of Hcy are increased in Bhmt-KO mice ~50 fold when compared with Bhmt-

348 WT mice. n=5 per group. (B) Liver Hcy levels were also increased ~20 fold in Bhmt-KO mice 

349 when compared with Bhmt-WT. n= 7 Bhmt-KO; n=5 Bhmt-WT. Results represent mean ± SEM. 

350 *P≤0.05, **P≤0.01 by Mann-Whitney test.

351

352 FIGURE 4. Endoplasmic reticulum (ER) stress is increased in Bhmt-KO livers and exhibit 

353 activation of CREBH. mRNA levels of ER stress markers Chop (A) n= 10 per group, 

354 and Atf3 (B) are increased in liver Bhmt-KO mice compared to WT. n= 7 Bhmt-KO; n=8 Bhmt-

355 WT   Relative quantitative values (normalized to 36B4) are reported as fold change. Results 

356 represent mean ± SEM. *P≤0.05, **P≤0.01 by unpaired t-test (A) and Mann Whitney test 

357 (B). (C)  Representative western blot of full-length CREBH and cleaved CREBH from Bhmt-
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358 WT and Bhmt-KO. GAPDH was used as a loading control. (D) The ratio of cleavaged CREBH 

359 divided by full-length CREBH. *P≤0.05 by unpaired t-test.

360

361 FIGURE 5. FGF21 is increased in Bhmt-KO plasma and liver. (A) Plasma FGF21 levels are 

362 increased in plasma from Bhmt-KO mice when compared to Bhmt-WT. n=9 per group

363 Results represent mean ± SEM. *P≤0.05 by t-test. (B) mRNA levels of Fgf21 in the liver are 

364 increased ~2 fold. Relative quantitative values (normalized to 36B4) are reported as fold change. 

365 ****P≤0.0001 by t-test. n=5 per group.

366

367 FIGURE 6. Schematic representation of the effects of the deletion of Bhmt in liver and 

368 iWAT.  The schema summarizes our new findings where deletion of Bhmt in mice increases 

369 homocysteine levels leading to endoplasmic reticulum (ER) stress. ER stress led to an increase 

370 in the cleaved CREBH protein levels, which acts as a transcription factor that binds the FGF21 

371 promoter. FGF21 high levels exert their effects in iWAT. 

372

373

374

375
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