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ABSTRACT 

Single-molecule localization microscopy (SMLM) techniques are emerging as vital tools to unravel the 
nanoscale world of living cells. However, current analysis methods primarily focus on defining spatial 
nanoclusters based on detection density, but neglect important temporal information such as cluster 
lifetime and recurrence in “hotspots” on the plasma membrane. Spatial indexing is widely used in 
videogames to effectively detect interactions between moving geometric objects. Here, we use the R-
tree spatial indexing algorithm to perform SMLM data analysis and determine whether the bounding 
boxes of individual molecular trajectories overlap, as a measure of their potential membership in 
nanoclusters. Extending the spatial indexing into the time dimension allows unique resolution of spatial 
nanoclusters into multiple spatiotemporal clusters. We have validated this approach using synthetic and 
SMLM-derived data. Quantitative characterization of recurring nanoclusters allowed us to demonstrate 
that both syntaxin1a and Munc18-1 molecules transiently cluster in hotspots on the neurosecretory 
plasma membrane, offering unprecedented insights into the dynamics of these protein which are 
essential to neuronal communication. This new analytical tool, named Nanoscale Spatiotemporal 
Indexing Clustering (NASTIC), has been implemented as a free and open-source Python graphic user 
interface. 
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INTRODUCTION 

In recent years, great advances have been made in our understanding of cellular molecular dynamics, 
through the emergence of super-resolution microscopy, and in particular, a suite of technologies 
collectively referred to as single-molecule localization microscopy (SMLM)1. When applied in live 
cells, this approach allows the detection and tracking of individual molecules to be determined at 
nanometre scale, far below the diffraction limit of visible light, thereby opening the way to 
understanding the nanoscale world of living cells2. Single-molecule tracking at the level of the plasma 
membrane has revealed that membrane-associated proteins can congregate into functional assemblies 
called nanoclusters. Functional nanoclustering can bring receptors and effectors/substrates into close 
proximity at discrete regions of the plasma membrane. SMLM has allowed the characterization of 
molecular nanoclustering of synaptic receptors and their functions3,4. The formation of these 
nanoclusters can be further studied in live cells, allowing dynamic characterization of single receptors 
and their effectors confined into these discrete areas of the plasma membrane5-13. These studies seek to 
define metrics such as mobility, nanocluster size, lifetime, molecular membership and density, and 
establish how they correlate with changing experimental conditions. The key to such investigations is 
a robust analysis pipeline for determining which of the hundreds/thousands of molecular detections 
(Fig. 1A) acquired in a typical single-particle tracking experiment are confined into nanoclusters. To 
date, algorithms for nanocluster determination have largely relied on one of two fundamental principles: 
density/proximity assays such as DBSCAN (density-based spatial clustering of applications with 
noise)14 which determines clustering based on whether the number of molecular detections within a 
determined radius exceed a user-defined threshold (Fig. 1B), and segmentation-based assays such as 
Voronoï tessellation15,16, which define minimum tiles around each molecular detection and assign 
clustered detections based on a user-defined tile area threshold (Fig. 1C). More recently, computer 
vision algorithms have also been used to determine clustering based on algorithmic identification of 
features in SMLM data17. However, these techniques have been mostly applied for fixed cell data, and 
they are therefore lacking the temporal analysis which is useful when considering single particle 
tracking data sets. 

 

Figure 1. Schematic representation of clustering algorithms as applied to molecular trajectories. (A) Molecular trajectory 
data, with each trajectory’s spatial centroid indicated with a dot. (B) DBSCAN. Multiple molecular centroids present within a 
defined radius (red circles) are considered clustered. The most effective radius (ε) and minimum number of centroids within 
it (MinPts) are determined empirically. (C) Voronoï tessellation. Tiles are drawn around each centroid such that the distance 
from any point within the tile is closer to its centroid than to any other centroid. Molecular centroids with tile areas less than 
an empirically determined threshold (red) are considered clustered. (D) Spatial indexing. Clustered molecules are determined 
by overlapping 2D bounding regions (red) defining the spatial extent of each molecular trajectory. (E) Spatiotemporal 
indexing. This panel represents the data in panel D rotated 90° around its y axis to highlight the temporal component of each 
centroid. Each trajectory bounding region is assigned a user-defined “thickness” in the time dimension. Overlapping 3D 
bounding regions represent spatiotemporally clustered molecules.  

In this study, we propose an alternative approach to examining molecular clustering in live-cell 
SMLM data, which is based upon two primary assertions: 1) in live-cell data the molecular trajectory 
is the indivisible unit for each tracked molecule, not the individual molecular detections comprising the 
trajectory, and 2) trajectories which spatially and temporally overlap with other trajectories are more 
likely to represent molecules that are confined into functional nanoclusters. We therefore consider that 
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the ability to simultaneously derive information about the spatial and temporal interactions of molecular 
trajectories can provide valuable insights into functional protein interactions on the cell membrane.  

Accordingly, we investigated the use of bounding regions encompassing the extent of each 
molecular trajectory over the lifetime of its observation. Overlapping bounding regions represent an 
increased likelihood that their underlying molecules constitute members of a nanomolecular spatial 
cluster (Fig. 1D). Determining whether geometric shapes overlap is potentially computationally 
complex, particularly if there are large numbers of these shapes. This can be overcome using spatial 
indexing, which allows rapid querying of a spatial database of the shapes’ rectangular bounding boxes. 
Over the last few decades a number of approaches to spatial indexing such as Quad-tree18 and R-tree19 
have been implemented, variations of which have found wide use in mapping and database 
management, as well as in videogames, where they allow accurate spatiotemporal detection of 
interactions between objects such as bullets and combatants20. The need to maintain high frame rates 
means that these routines have been highly optimized. Considering that spatiotemporal interaction is 
highly relevant, particularly in defining nanoclustering of molecules of interest, we used the R-tree 
spatial indexing algorithm to determine the overlap of the bounding regions of hundreds/thousands of 
trajectories. R-tree databases are k-dimensional, so in addition to the x/y spatial extent, we added an 
additional time extent (trajectory detection time ± user-defined time window). This approach allowed 
determination of trajectory overlap in space and time (Fig. 1E), and introduced a temporal component 
into the clustering metrics, allowing us to determine cluster lifetime, rate of cluster formation, and 
“hotspot” in discrete areas of the plasma membrane where detections occur intermittently. Using both 
synthetic and experimentally derived SMLM data, we compared nanoscale spatiotemporal indexing 
clustering, hereafter referred to as NASTIC, with DBSCAN and Voronoï tessellation clustering and 
demonstrated effective and efficient spatiotemporal resolution of molecular clusters. 
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RESULTS AND DISCUSSION 

NASTIC workflow 

We used a Python implementation of the R-tree spatial index https://pypi.org/project/Rtree/ 
incorporated into a framework utilizing the common Python modules SciPy, SciKit Learn, Numpy, 
Seaborn and Matplotlib. R-tree spatial indexing relies on use of rectangular bounding boxes rather than 
the irregular bounding regions encompassing a typical trajectory. For the purposes of spatiotemporal 
indexing, we therefore used an idealised rectangular bounding box based on the approximate radius of 
the convex hull (the boundary enclosing a series of points such that there are no concavities in the 
boundary line) encompassing the spatial extent of all the detections comprising a given molecular 
trajectory (Fig. 2A-D). The bounding box was extended into the time dimension allocating a user-
defined time “thickness” that encompassed the duration of the tracked molecule (Fig. 2E). The resulting 
3D (x,y,t) bounding box was indexed into a 3D R-tree database (Fig. 2F). To determine overlapping 
bounding boxes, each entry in the R-tree was queried, and returned a list of any other overlapping 
entries: e.g. entry Aà[A,B], entry Bà[B,A,C,D], entry Cà[C,B,D], entry Eà[E,F], entry Fà[F,E] 
etc. Lists containing common entries were distilled down to lists representing clusters of overlapping 
bounding boxes: e.g. [A,B,C,D] and [E,F] (Fig. 2F), where each entry corresponds to a single molecular 
trajectory (Fig. 2G). A convex hull of the spatial extent of all detections associated with the clustered 
trajectories was used to define the cluster area. An important feature of NASTIC is that identification 
of temporally distinct clusters occupying the same spatial extent (Fig. 2H) is an intrinsic feature of the 
analysis. Querying the R-tree and defining spatiotemporal clusters is rapid, taking < 1 s for ~5000 
trajectories on a modest laptop.  

 
Figure 2. Schematic representation of NASTIC workflow. (A) Molecular trajectory composed of individual detections. (B) 
Spatiotemporal centroid representing the trajectory’s average position in space and time. (C) Convex hull (blue) defining the 
spatial extent of the trajectory. (D) Simplified 2D spatial bounding box (blue square) based on the approximate radius (r) of 
the convex hull (red circle). (E) 3D spatiotemporal bounding box of user-defined “thickness” in the time dimension. (F) R-
tree spatiotemporal index of all trajectory bounding boxes. Discrete clusters of overlapping bounding boxes are indicated in 
color, and unclustered boxes in gray. (G) 3D clusters of trajectories associated with overlapping bounding boxes. (H) 2D 
representation of clustered trajectories. Colored polygons represent the spatial convex hull of all detections comprising each 
of the clustered trajectories. Clusters are colored according to the averaged detection time of their component trajectories, 
allowing assignment of overlapping clusters (green and blue) occupying the same spatial extent at different times. 
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Optimum parameters for spatiotemporal clustering 

The “holy grail” of a spatiotemporal clustering algorithm which works without operator input regardless 
of the density and distribution of SMLM data does not exist. Low density data decrease the likelihood 
of adjacent detections which can be considered clustered, while high density data conversely increase 
the likelihood of spurious clustering. Similarly, data in which detections are concentrated into multiple 
discrete areas within an acquisition window (e.g. axonal or dendritic neuronal projections in highly 
polarized cells) pose analytical challenges compared to data acquired across a single larger and flatter 
cell (e.g. a PC12 cell). Currently adopted spatial clustering algorithms require optimized user-defined 
parameters in order to best represent the molecular clustering dynamics of the data. For DBSCAN, the 
radius (ε) around each molecular centroid in which to scan for other centroids, and the minimum number 
of centroids within this radius (MinPts) to be considered a cluster, must be determined empirically. For 
Voronoï tessellation the threshold tile size below which a centroid is considered clustered must also be 
established against the average tile size or by using randomly distributed coordinates of similar density 
as the experimental data15,16. In all cases, the need to empirically determine optimized parameters for 
clustering exposes the potential for operator bias. In theory, NASTIC should assign trajectories into 
clusters based purely upon overlapping spatiotemporal boundaries, without parameters. In practice, two 
parameters are actually required: 1) a bounding box radius factor (r). The nature of R-tree indexing 
requires a rectangular bounding box for each trajectory. This simplified bounding box (Fig. 2D) only 
encompasses the full extent of the trajectory if its original convex hull (Fig. 2C) was perfectly circular. 
Applying a radius factor r > 1 is necessary to create a bounding box more representative of the full 
extent of the trajectory. 2) A time window (t), in seconds. This defines the temporal “thickness” of the 
bounding box (Fig 2E). Greater values of t increase the likelihood that spatially overlapping bounding 
boxes will also overlap in time to generate a discrete temporal cluster. A value of t equal to the 2x the 
acquisition time will in effect return purely spatial clustering, given that no trajectory can be considered 
temporally distinct from any other within this large acquisition time window.  

We used simulated trajectory data with controlled density and spatiotemporal distribution for 
preliminary evaluation of a given clustering algorithm’s ability to designate clusters matching the 
ground truth inherent in the input data. We first generated a small dataset approximating the scale and 
density of a typical super-resolution acquisition at 50 Hz over 320 s. These data consisted of 50 
randomly distributed trajectories within 4 μm2 and 0-320 s, interspersed with 20 discrete clusters, where 
each cluster contained 20 trajectories within a 0.1 μm radius and a 10 s time window. Each trajectory 
was a random walk with 8 - 30 segments of length < 0.1 μm with 20 ms between segments. A dataset 
was chosen which exhibited clusters of various types: (a) clusters discrete in space and time; (b) clusters 
which overlapped in space and time; (c) clusters which partially overlapped in space and time; and (d) 
clusters which overlapped in space but not in time. From the point of view of functional nanoclustering 
this last class of clusters are particularly important as they model functional hotspots on the plasma 
membrane which can repeatedly recruit molecules to a site of biological activity, such as the synaptic 
active zone 21-23. 

Initially, NASTIC was performed using a limited range of r and t values, representative results 
of which are shown in Fig. S1. We found that r = 1.2 and t = 20 s returned spatial clusters most 
representative of the distribution of synthetic random walk trajectory data. Lower values of r and/or t 
returned multiple small spatiotemporal clusters for each of the discrete input clusters. Conversely, 
higher values returned fewer and larger clusters.  

We expanded the exploration of the parameter space using a larger synthetic dataset consisting 
of 100 spatially distinct cluster regions randomly distributed on a simulated 100 μm2 membrane area. 
20% of the regions constituted hotspots where 2-4 clusters occupied roughly the same spatial extent but 
occurred at different time points over the simulated 320 s acquisition. The final dataset thus consisted 
of 1095 trajectories in 140 spatiotemporally unique clusters with 7.82 ± 0.16 trajectories per cluster, 
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with cluster radii of 74.86 ± 5.29 nm. The synthetic data also contained a background of 1000 randomly 
spatiotemporally distributed unclustered trajectories. NATSIC analyses were performed using a matrix 
of r (0.2 – 4.0) and t (1 – 640 s) values, and for each r/t pair the following metrics were evaluated: 1) 
number of trajectories in clusters, 2) the total number of spatiotemporally discrete clusters 3) the number 
of trajectories associated with each cluster and 4) the cluster radius. These metrics were compared 
against the ground truth values for the dataset and plotted as heatmaps of log2[observed:ground truth] 
for each r/t pair (Fig. S2). These plotted data reveal a complex relationship between r, t and each cluster 
metric, where lines of linked pale pixels highlighted the r/t pairs which returned metrics more closely 
matching the ground truth. We looked for the inflection point where these lines transitioned from 
vertical to horizontal. This generally occurred at r = 1.2 – 1.4 and t = 10 – 25 s, depending on the metric. 
When the pixels were averaged across the 4 metrics, the resultant plot (Fig. 3) demonstrated an 
inflection point around r = 1.2 - 1.4 and t = 15 – 20 s. In all subsequent NASTIC analyses, r = 1.2 and 
t = 20 s were therefore used as the default parameters. 

 
Figure 3. Effect of bounding box radius and time window on spatiotemporal clustering metrics. In silico random walk 
trajectory data consisting of 1095 trajectories in 140 spatiotemporally unique clusters with 7.82 ± 0.16 trajectories per cluster, 
with cluster radii of 74.86 ± 5.29 nm. The data also contained a background of 1000 randomly spatiotemporally distributed 
unclustered trajectories. Clusters are randomly distributed within a simulated 320 s acquisition window. (A) Nanoscale 
spatiotemporal indexing (NASTIC) of this simulated trajectory data using r = 1.2, t = 20 s. Cluster boundaries represent the 
extent of the detections associated with clustered trajectories, and are colored according to the average detection time. The 
inset displays a zoomed view of a single cluster against a background of unclustered trajectories, with trajectory centroids 
indicated with a dot. (B) Heatmap of averaged metrics (cluster number, cluster radius, trajectories per cluster and number of 
clustered trajectories, see Fig. S2). Each pixel represents the average log2 ratio of the experimental observed (EXP) value for 
a given r/t pair to the ground truth (GT). Ratios < -1 and > 1 are displayed as 1 and -1 respectively. Pale regions indicate r/t 
pairs which return cluster metrics close to the ground truth. The approximate inflection point where the pale line transitions to 
horizontal is indicated with a dotted box.  

Comparison of clustering algorithms using simulated trajectory data 

Having established that NASTIC could resolve clusters in simulated data, we sought to compare 
spatiotemporal indexing with density-based and segmentation-based clustering on the same data. Using 
the smaller synthetic dataset described above, we performed a qualitative comparison of NASTIC using 
optimized parameters (r = 1.2, t = 20 s) against two widely used spatial clustering algorithms, DBSCAN 
and Voronoï tessellation. For fair comparison purposes the clustering comparison was achieved via 
similar Python frameworks differing only by the commonly used Python modules implemented for 
clustering: SciKit Learn DBSCAN and SciPy.Spatial Voronoi. For DBSCAN, the centroids of all 
trajectories were analysed using ε = 0.055 μm and MinPts = 3, which were chosen to return spatially 
distinct clusters of similar dimensions to the input data (radius ~0.1 μm). Voronoï tessellation of all 
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trajectory centroids was thresholded such that tiles with an area of < 0.004 μm2 were considered 
clustered. This value was empirically determined to best yield clusters reflective of the input data. 
Clustered tiles were grouped into discrete clusters if they shared one or more edges with other clustered 
tiles. In all three cases (NASTIC, DBSCAN and Voronoï), a cluster was defined as three or more 
proximal centroids. The spatial extent of each cluster was determined by a convex hull of all the 
trajectory detections associated with the cluster, and the trajectories, centroids and clusters visualized 
by Python Matplotlib (Fig. 4). 

 
Figure 4. Resolution of spatiotemporal clusters in simulated data. In silico random walk trajectory data consisting of 20 
equivalently sized spatiotemporal clusters with 20 trajectories per cluster and a background of 50 non-clustered trajectories. 
Clusters are randomly distributed within a simulated 320 s acquisition window. The spatial centroid of each trajectory is 
represented as a dot. (A) Clustering using NASTIC using r = 1.2, t = 20 s. Trajectories are considered as clustered if their 
bounding boxes overlap with other trajectory bounding boxes within a 20 s time window. Cluster boundaries represent the 
extent of the detections associated with clustered trajectories, and are colored according to the average detection time. Insets 
highlight different classes of clustering: (i) distinct clusters resolved in space and time; (ii) spatially overlapping clusters 
resolved in time; (iii) clusters with a degree of spatial and temporal overlap; (iv) clusters which overlap in space and time. 3D 
(x, y, t) projections of highlighted clusters i – iii and the associated detection times (lower panels) demonstrate distinct temporal 
clustering. (B) DBSCAN spatial clustering using ε = 0.055 μm and MinPts = 3. (C) Voronoï tessellation spatial clustering. 
Trajectories with an associated Voronoï tile area < 0.004 μm2 were considered clustered. In all analyses a cluster is defined as 
3 or more proximal centroids.  

NASTIC was able to resolve the 20 clusters input data into 18 distinct clusters of approximately 
equal size consistent with the 0.1 μm random distribution radius used to generate each cluster (Fig. 4A). 
Clusters were observed which represented: (Fig. 4A i) distinct clusters resolved in space and time; (Fig. 
3A ii) spatially overlapping clusters resolved in time; and (Fig. 4A iii) clusters with a degree of spatial 
and temporal overlap. A single larger cluster (Fig. 4A iv) was also observed which was consistent with 
two clusters overlapping in both time and space, accounting for the remaining 2 clusters in the input 
data. 3D (x, y, t) projections of the data demonstrated that spatiotemporal indexing resolved the clusters 
that were distinct in both space and time. Trajectories which occupied the same spatial extent (Fig. 4A 
ii) could be resolved into discrete spatiotemporal clusters, as could trajectories with some degree of 
spatiotemporal overlap (Fig. 4A iii). Importantly, DBSCAN and Voronoï tesselation, neither of which 
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can natively resolve in the temporal dimension, failed to separate these overlapping clusters, reporting 
overlapping and proximal (touching) spatiotemporal clusters as single spatial clusters. Further, in some 
cases DBSCAN resolved areas of higher density within a spatial cluster into smaller clusters (Fig. 4B 
v). DBSCAN also reported areas of background “noise” as clusters (Fig. 4B vi). When compared to 
both NASTIC and DBSCAN, Voronoï tessellation returned slightly smaller clusters as a result of 
centroids on the edge of a cluster with Voronoï tiles larger than the 0.004 μm2 threshold (Fig. 4C vii). 

We expanded the comparison by creating 10 randomised synthetic datasets based upon the 
same seed conditions as described for our exploration of r/t values on clustering metrics. These datasets 
consisted of 100 spatially distinct cluster regions randomly distributed on a simulated 100 μm2 
membrane area. 20% of the regions constituted hotspots where 2-4 clusters occupied roughly the same 
spatial extent but occurred at different time points over the simulated 320 second acquisition. Each 
dataset thus consisted of approximately 140 spatiotemporally unique clusters of 6-10 trajectories per 
cluster, with cluster radii of approximately 75 nm. Clusters constituted approximately 1100 trajectories, 
against a background of 1000 randomly spatiotemporally distributed unclustered trajectories. The 10 
datasets were analysed using NASTIC (r = 1.2, t = 20 s), DBSCAN (ε = 0.05 μm, MinPts = 3) and 
Voronoï tessellation (tile threshold 0.1 μm2). For all algorithms the parameters were determined 
empirically to optimise returned metrics corresponding to the ground truth of the input synthetic data. 

 
Figure 5. Comparison of clustering algorithms using synthetic data. Data simulating multiple 50Hz acquisitions over 320 
s as described in the text. (A) Total trajectories in clusters, (B) Total unique clusters, (C) Average cluster radius (nm) and (D) 
Average trajectories in a cluster. Black bars represent the ground truth in the simulated data, colored bars represent the metrics 
returned by DBSCAN (ε = 0.05 μm, MinPts = 3, orange), Voronoï tessellation (tile threshold 0.01 μm2, green) and NASTIC 
(r = 1.2, t = 20 s, blue). Error bars show standard error of the mean (SEM) across 10 datasets. The dotted black line shows the 
average value in the inputted synthetic data. 

As shown in Fig. 5, NASTIC consistently returned metrics most closely matching the ground 
truth of the simulated data. Although DBSCAN and NASTIC both reported similar numbers of 
trajectories within clusters, DBSCAN was unable to resolve the clusters in the hotspots and therefore 
reported cluster numbers closely matching the 100 input cluster regions. This also resulted in DBSCAN 
reporting higher average numbers of trajectories in a cluster, and a larger average cluster size due to 
spatially overlapping but temporally distinct clusters being treated as single larger spatial clusters. 
Voronoï tessellation consistently reported fewer clustered trajectories, and fewer and smaller clusters, 
with fewer trajectories within each cluster. In our hands, both NASTIC and DBSCAN can be considered 
to return data reflecting the spatial clustering of the trajectories, with NASTIC natively returning more 
accurate data reflecting the unique spatiotemporal clustering of the trajectories. The comparatively poor 
results obtained by Voronoï tessellation clustering may reflect issues of the algorithm to accurately 
segment lower density trajectory centroid information, as opposed to higher density detection 
information. In any case, Voronoï tessellation could not distinguish temporally distinct clusters and 
would be expected at best to match the metrics returned by DBSCAN.    
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Clustering analysis of syntaxin1a-mEos2 super-resolution imaging data 

While simulated data offer the ability to precisely model trajectory density and clustering, the molecular 
environment within a living cell is far more varied and dynamic and represents a greater analytical 
challenge. We therefore next applied NASTIC, DBSCAN and Voronoï tessellation clustering to single 
particle tracking photoactivated light microscopy (sptPALM1,24-26) data obtained from syntaxin1a 
(Sx1a) tagged with mEos2 in live neurosecretory PC12 cells (Fig. 5A - C). Sx1a is a member of the 
SNARE protein family that is located on the plasma membrane of neurons and neurosecretory cells and 
is involved in mediating synaptic and neurosecretory vesicle fusion6,11,27-29. As anticipated, all three 
techniques were able to detect spatial clustering of Sx1a, with NASTIC also able to natively assign 
temporal information to the clusters. 

 

Figure 6. Resolution of spatiotemporal clustering in live-cell molecular trajectory data. Sx1a-mEos2 sptPALM data 
acquired at 50 Hz over 320 s. Clustering based on (A) NASTIC using r = 1.2, t = 20 s, (B) DBSCAN using ε = 0.055 μm and 
MinPts = 3 and (C) Voronoï tessellation using tile threshold 0.015 μm2. (D) Magnification of the region indicated by the dotted 
box in (A). Cluster boundaries represent the extent of the detections associated with clustered trajectories, and are colored 
according to the average detection time. Insets highlight different classes of clustering further visualized by 3D (x, y, t) 
projections of highlighted clusters and the associated detection times: (i) single spatiotemporal cluster; (ii) spatially 
overlapping clusters resolved in time.  

In the 100 μm2 region of interest analysed, 2564 trajectories were selected, of which 1116 were 
assigned based on spatiotemporal indexing to 172 clusters. The average number of trajectories 
associated with each cluster was 6.592 ± 0.347 and the average radius of each cluster was 84.587 ± 
2.329 nm. On average a cluster existed for 12.15 ± 0.87 s. In addition to discrete spatiotemporal clusters 
(Fig. 6D i), we identified a total of 27 overlapping clusters (conservatively defined as those whose 
centroids are separated by less than 0.5 of the average cluster radius) (Fig. 6D ii) where Sx1a molecules 
appeared to be repeatedly recruited to the same region of the plasma membrane. Plotting the trajectories 
of the overlapping and discrete clusters allowed visualization of 17 potential functional hotspots for 
Sx1a clustering on the PC12 cell plasma membrane 6,12,30-33 (Fig. 7A, B). As evidenced by mean square 
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displacement (MSD) curves for unclustered and clustered trajectories (Fig. 7C), these clusters truly 
represent nanomolecular assemblies where Sx1a was constrained into lower mobility states. If these 
clusters were merely artifacts of randomly overlapping trajectories, the mobility of clustered and 
unclustered trajectories would be expected to be similar.  

 
Figure 7. Identification of time resolved (primary) and non-time resolved (secondary) clusters reveals clustering 
hotspots. Sx1a-mEos2 sptPALM data acquired at 50 Hz over 320 s. (A) Analysis using spatiotemporal indexing using r = 1.2, 
t = 20s. Unclustered trajectories are shown in grey, spatially discrete clustered trajectories are shown in orange, trajectories 
belonging to spatially overlapping clusters are shown in green. Secondary analysis of the unclustered trajectories from the 
primary analysis, using r = 1.2, t = 640. Trajectories in secondary clusters are shown in purple. Dotted box indicates the area 
enlarged in (B). (C, D) Mean square displacement (MSD) curves of clustered and unclustered detections from the primary 
analysis and secondary analysis respectively. Each point represents the average MSD of the indicated number of trajectories. 
Error bars indicate the standard error of the mean (SEM).  

 

Identification of loosely interacting trajectories by iterative clustering 

The 172 “primary” time resolved Sx1a clusters identified by NASTIC above represented those whose 
individual trajectories overlapped within a 20 second time window. We next sought to identify and 
characterize any remaining “secondary” clusters representing trajectories which overlapped at any time 
within the 320 s acquisition window. The 1448 unclustered trajectories from the primary analysis 
described above were therefore reanalysed using r = 1.2 and t = 640 s (Fig. 7A, B). A further 302 
trajectories were assigned to 66 individual secondary clusters. Rather than discrete circular 
nanomolecular structures, these secondary clusters tended to represent unconfined trajectories whose 
larger bounding boxes increased the likelihood of overlap during the course of the acquisition. This is 
evidenced by the MSD curve for these secondary clusters (Fig. 7D) which show dramatically less 
mobility difference between unclustered and secondary clustered trajectories. The generally diffuse 
nature of the secondary clustered trajectories strongly contrasts with the dense compact circular nature 
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of the time-resolved primary clusters (Fig. 7B) and lends further support to the ability of time resolved 
spatiotemporal indexing to identify true nanomolecular clustering against a significant background of 
higher mobility unclustered trajectories.  

 

Characterization of spatiotemporal hotspots  

NASTIC allows native identification of hotspots where spatial clusters form, dissociate, and reform 
more than once over the acquisition period. With sufficient clusters identified, additional metrics related 
to spatiotemporal clustering may be defined. These metrics were obtained using DBSCAN on the spatial 
centroids of the 172 clusters identified above, in essence treating hotspots as clusters of clusters. 
DBSCAN was performed using MinPts = 2 and ε values in the range 0 – average cluster radius. Overlap 
probability (Fig. 8A) measures the likelihood of a cluster centroid having another cluster centroid 
within a given distance. This is computed as 1 – (unclustered centroids/total 
centroids). At very small values of ε, the chance of any cluster having a proximal cluster is low, as 
these clusters must occupy essentially the same spatial extent. Conversely, at a distance corresponding 
to the average cluster radius, the likelihood of a proximal cluster increases, as these clusters essentially 
need only to touch edges. To determine the degree to which cluster overlap was driven by biological 
distribution rather than chance, we performed a Monte Carlo simulation (N=50), using 172 clusters 
randomly distributed over the same 100 μm2 analysis area (Fig 8A, red plot). The result of this analysis 
demonstrates that random cluster overlap contributed little to the observed overlap. Hotspot 
membership (Fig. 8B) defines the average number of clusters detected in each hotspot. Intercluster 
time (Fig. 8C) measures the average time between clusters in each hotspot. Together these analyses 
show that there was an approximately 17% chance of any given Sx1A cluster forming a hotspot with 
another cluster within 41.5 nm (half the average cluster radius). The average hotspot contained between 
2-3 clusters, and the average time between each cluster in a hotspot was 45 s. Cluster number (Fig. 
8D), measured as the number of discrete spatiotemporal clusters per μm2, varied over the duration of 
the acquisition but did not dramatically trend up or down. This is indicative of a potential “steady-state” 
of clustered Sx1a on the plasma membrane. As shown in Figs 8E-H, NASTIC was clearly able to 
identify regions on the plasma membrane (highlighted boxes) where new trajectories were recruited 
into clusters by lateral trapping over many tens of seconds. Through the use of a user-defined time 
window (t), NASTIC could assign these multiple trajectories into discrete temporal clusters which then 
allowed the additional hotspotting metrics described above. The functional significance of these 
hotspots is currently unknown but could represent docking/priming sites at the plasma membrane34. 
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Figure 8. NASTIC spatiotemporal metrics. Sx1a-mEos2 sptPALM data acquired at 50Hz over 320 s analysed by NASTIC. 
(A) Probability of cluster overlap using DBSCAN of cluster centroids identified by NASTIC, ε = 0.001 - 0.083μm (average 
cluster radius) and MinPts = 2. Monte Carlo simulation (N=50) using 172 randomly distributed cluster centroids was used to 
establish the degree of random overlap of clusters of the same number and density as the experimental data. The dotted red 
line indicates the average overlap probability, translucent red indicates the standard error of the mean. The left and right dotted 
vertical lines represent 0.001 μm and 0.083 μm respectively. At 0.001 μm two clusters must essentially completely overlap to 
be considered as a hotspot, as illustrated by the overlapping circles. At 0.083 μm, two clusters are considered as members of a 
hotspot if their edges touch, as indicated pictorially by the two touching circles. (B) Average number of clusters in a hotspot, 
as a function of distance. (C) Average time between clusters in a hotspot, as a function of distance. (D) Number of unique 
spatiotemporal clusters observed at 1 second intervals over the 320 s acquisition. (E-H) Progressive rotation around the y-axis 
of the 3D [x,y,t] projection of spatiotemporal Sx1a-mEos2 trajectory data, with clustered trajectories indicated in color. Dotted 
and dashed boxes show representative single spatial clusters which resolve into multiple spatiotemporal clusters (hotspots). 
The dashed boxes correspond to the spatiotemporal hotspot observed in Fig. 6d (ii).    

 

Using spatiotemporal indexing to define activity-dependent changes in nanoclustering dynamics 

A growing body of literature has demonstrated that the spatial and temporal nanoscale organization of 
key proteins in the neuroexocytic pathway can change in an activity-dependent manner. These changes 
may reflect the functional clustering of a range of proteins required for the synaptic vesicle docking, 
priming, fusion and recycling at the heart of neuronal synaptic communication35. They may also reflect 
activity-dependent protein conformational changes which alter the protein’s homo- / 
heterodimerization36. Analysis of molecular trajectory data obtained from SMLM experiments can 
provide insights into aggregate changes in the mobility of molecules, using metrics such as MSD as an 
indirect measure of the degree of their potential confinement in nanomolecular clusters. These can be 
further expanded using statistical techniques such as Hidden Markov Modelling (HMM37,38) to partition 
a molecular population into mobility states and transitions between them9,39,40, and Ripley’s K 
functions10,17,41 to derive insights into the point dispersion and cluster size. More directly, clustering 
analysis can reveal pertinent metrics related to the number and size of clusters, the number of molecules 
within clusters, and their lifetimes and rates of formation. These metrics can be averaged across 
sufficient datasets and compared between experimental conditions, such as non-stimulated and 
stimulated cells, to assign statistical significance to the degree of change. As demonstrated herein, 
NASTIC allows significant expansion of nanocluster analysis to include metrics such as the extent of 
molecular clustering hotspots, the number of temporally distinct clusters within these hotspots and the 
time between these clusters. We sought to establish the degree to which NASTIC could generate 
statistically significant measures of the change in nanocluster dynamics of another key priming protein, 
Munc18-1 tagged with mEos2, in response to stimulated exocytosis in PC12 cells. Accordingly, 
sptPALM data was acquired from 9 cells under unstimulated conditions, and following stimulation with 
BaCl2 (2 mM). NASTIC analysis was performed on individual cells. For each cell, the metrics for each 
cluster were generated, together with average metrics for all clusters in the cell. Two comparison 
analyses were then performed: (1) the metrics for the 2610 pooled clusters detected across 9 
unstimulated cells were compared with those from 2588 pooled clusters observed across the 9 
stimulated cells (Fig. 9), and (2) the averaged metrics from 9 unstimulated cells were compared with 
those from 9 stimulated cells (Fig. S3). These analyses suggested that secretagogue stimulation of PC12 
cells resulted in significantly smaller clusters of Munc18-1. This is in agreement with our previously 
published work using autocorrelation of fast Fourier transformed image data11 demonstrating that 
Munc18-1 exits the confinement of nanocluster in response to stimulation following opening and 
engagement of cognate Sx1A in SNARE complex formation. The rate of detection of new trajectories 
over the lifetime of the cluster appeared higher in the stimulated cells, which might reflect activity-
dependent changes to the dynamics of molecular recruitment into clusters.  
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Figure 9. Difference in cluster metrics in response to stimulated exocytosis. Munc18-1-mEos2 sptPALM data acquired 
from unstimulated PC12 cells (N=9) and PC12 cells stimulated with 2 mM BaCl2 (N=9). (A) Representative image of clusters 
identified using spatiotemporal indexing with r = 1.2, t = 20 s. Dotted box highlights an overlapping cluster hotspot (B) 3D (x, 
y, t) projection of highlighted hotspot clusters. (C) Comparison of indicated cluster metrics of 2610 pooled clusters from 
unstimulated cells and 2588 clusters from stimulated cells. The significance of the difference between conditions was 
determined by unpaired t-test (ns = no significance, *** = p < 0.001, **** = p < 0.0001). NS = no stimulation, S = stimulation 
with 2 mM BaCl2.  

 

NASTIC of individual trajectory segments vs whole trajectory bounding boxes  

Spatiotemporal indexing of trajectory bounding boxes allows the determination of clusters of 
overlapping trajectories which potentially interact in space and time. However, the more precise 
locations within the cluster where the overlap occurs are not recovered. As schematically represented 
in Fig. 10A, the boundary of a NASTIC cluster represents the furthest extent of the individual detections 
of all the overlapping trajectories in the cluster. Within this cluster, individual segments of each 
trajectory (a segment being defined as the line connecting a molecular detection with its subsequent 
detection) will overlap with segments from other trajectories. These represent regions within the cluster 
where there is an increased likelihood of the molecular overlap. A threshold can be determined based 
on the degree of segment overlap, beyond which the segments themselves can be considered as 
clustered. In scenarios of very high trajectory density and/or very long trajectories, determining clusters 
solely on overlapping trajectories (or DBSCAN/Voronoï tessellation of trajectory centroids) may lead 
to large clusters of low segment density (as demonstrated in Fig. 7B) which do not truly reflect potential 
molecular overlaps. We therefore investigated the application of spatiotemporal indexing to the 
bounding boxes of each individual trajectory segment (segNASTIC) in an effort to gain more fine-
grained clustering information in high trajectory density data. Each trajectory segment was assigned a 
bounding box comprising its x and y extent, with a time “thickness” as described above. Trajectory 
segment bounding boxes were indexed into a 3D R-tree, which was queried to generate lists of 
potentially spatiotemporally overlapping segments. From these lists, the degree of overlap of each 
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segment with segments from other trajectories was determined. Across all segments in an acquisition, 
a histogram was generated showing that the majority of trajectory segments had low overlap (Fig. S4). 
The inflection point of the histogram (the average segment overlap) was chosen as automatic threshold 
beyond which a segment was considered as potentially clustered. Clusters of thresholded overlapping 
segments were derived, representing more tightly defined areas on the plasma membrane where 
molecules were confined to interacting lower mobility states. We examined the benefit of this approach 
using data acquired by uPAINT (universal point accumulation for imaging in nanoscale topography 42) 
analysis of PC12 cells expressing Sx1a-EGFP (C-term tag) tracked by Atto-647-labelled anti-GFP 
nanobodies applied extracellularly 11. uPAINT acquisitions generally result in a higher density of 
relatively longer and more diffuse trajectories when compared to sptPALM, as they use organic dyes 
which are brighter and less prone to photobleaching. As demonstrated in Fig. 10B, spatiotemporal 
indexing of whole trajectory bounding boxes successfully identified clusters of confined trajectories in 
the uPAINT data, as well as a number of clusters consisting of relatively diffuse trajectories. The 
spatiotemporal indexing of trajectory segment data was represented as a pseudo-density map of 
trajectory overlap (Fig. 10C), which clearly showed regions of higher potential molecular interaction. 
The convex hull of the detections in each group of overlapping thresholded segments was used to define 
a unique spatiotemporal cluster. The trajectories associated with the clustered segments were colored, 
which enabled us to demonstrate the disparity between the size of the segment clusters and the extent 
of their parent trajectories (Fig. 10D). Compared with trajectory clustering, segment clustering 
generally returned smaller more tightly defined clusters, and far fewer clusters of trajectories with 
diffuse segments.  

 
Figure 10. NASTIC of trajectory segments (segNASTIC). (A) Schematic representation of trajectory segment thresholding, 
based on overlap with segments from other trajectories. (B) Sx1a-EGFP imaged by uPAINT using Atto-647-labelled anti-GFP 
nanobodies in PC12 cells. Spatiotemporal clusters identified using spatiotemporal indexing of trajectory bounding boxes using 
r = 1.2 and t = 20 s. Each colored cluster boundary represents the convex hull of the detections belonging to all trajectories in 
the cluster (C) Pseudo-density map of trajectory segment overlap, with each trajectory colored according to the number of 
overlaps with other trajectory segments, as determined by spatiotemporal indexing of segment bounding boxes. (D) 
Spatiotemporal clusters identified using thresholded segments t = 20 s. Each colored cluster represents the convex hull of 
detections belonging to the clustered segments. All trajectories containing clustered segments are shown in the same color as 
the cluster. 
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However, this additional resolution does come at the price of the increased computational overhead of 
creating and querying a spatial index with 10-100 as many bounding boxes, resulting in an approximate 
doubling of the total analysis time when compared to NASTIC (Table 1). To compare the relative 
analysis times of NASTIC, segNASTIC, DBSCAN and Voronoï tesselation we used these pipelines to 
analyse a dataset consisting of 4207 trajectories (a subset of the Sx1a-mEos2 data presented in Figs. 6 
and 7). 

ANALYSIS TIME NASTIC segNASTIC DBSCAN VORONOÏ 
Selecting detections in ROI 1.05 1.05 1.17 1.11 
Trajectory metrics (including bounding 
boxes) 

6.29 3.697 2.74 2.45 

Clustering 0.49 13.34 0.02 12.7 
Cluster metrics 1.93 1.402 1.72 1.36 
TOTAL 9.76 19.489 5.65 17.62 

Table 1. Relative clustering analysis times. For each of the clustering pipelines, the time (s) to complete each stage of the 
analysis of the same dataset containing 4207 molecular trajectories is indicated. The analysis time does not include the time 
taken to visualise and display the clustered data. 

In our hands, DBSCAN was capable of performing the clustering of trajectory detections faster than 
any other methods. However, NASTIC natively delivered additional temporal clustering information 
that neither DBSCAN nor Voronoï tessellation could provide. Interestingly, segNASTIC, which in 
addition to temporal information also provides increased spatial cluster resolution in very high-density 
data, has an analysis time comparable to purely spatial clustering by Voronoï tesselation.  

 Having demonstrated that segNASTIC returns smaller clusters representing the truly 
overlapping regions of each trajectory, we next compared the metrics returned from analysis of the 
complete Sx1a-mEos2 dataset (17598 trajectories) by NASTIC and segNASTIC as examined in Table 
1. As shown in Table 2, while both analyses returned similar overall clustering metrics, segNASTIC as 
expected returned smaller clusters.  

METRIC NASTIC segNASTIC 
Selection area (µm²) 1721.44 1721.44 
Selected trajectories 17598 17598 
Clustered trajectories 6651 6857 
Unclustered trajectories 10947 10754 
Total clusters 1032 908 
Hotspots (overlap at 0.5 cluster radius) 69 62 
Clusters in hotspots 151 131 
Average clusters in hotspots 2.19 2.11 
Percentage of clusters in hotspots 14.63 14.42 
Trajectories per cluster 6.44 ± 0.13 7.55 ± 0.21 
Lifetime (s) 11.72 ± 0.36 12.97 ± 0.42 
Avg. MSD (μm²) 0.0066 ± 8.43E-5 0.0068 ± 9.44E-5 
Radius (nm) 77.51 ± 0.77 66.55 ± 0.88 

Table 2. Comparison of NASTIC and segNASTIC on a typical dataset. For each of the clustering pipelines, the metrics 
returned from analysis of the same Sx1a-mEos2 dataset.  

Given that different clustering algorithms use different mathematical approaches to determine 
molecular crossover, how does one truly define the spatial extent of a nanomolecular cluster? NASTIC 
uses the convex hull around all of the detections of the clustered trajectories, whilst segNASTIC uses 
the convex hull around the detections associated with overlapping trajectory segments (and thus reports 
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smaller clusters). Beyond practical experimental concerns with data density, the choice of algorithm 
ultimately rests on its ability to detect experimentally and biologically driven changes in molecular 
clustering. 

 

CONCLUSION 

The increasing sophistication of SMLM research has resulted in its application to studying fundamental 
biological processes such as exocytic neuronal communication. However, SMLM is a young and 
rapidly evolving field, with multiple approaches to data acquisition and data analysis. DBSCAN, 
Voronoï tessellation and R-tree spatial indexing are extremely robust, widely used and highly optimised 
algorithms that in the context of SMLM allow determination of nanomolecular clustering using 
fundamentally different approaches to arrive at similar conclusions regarding the geometry of molecular 
interaction. All frameworks based on these algorithms have their strengths and drawbacks, and are 
reliant on user metric guidance or empirical determination of optimal parameters. The fundamental 
difference of the approach detailed in this article is that temporal information is used to inform the 
algorithm such that spatiotemporal clusters are intrinsic to the analysis, rather than having to be derived 
subsequent to purely spatial clustering using approaches such as tcPALM (time correlated 
photoactivated light microscopy9,43). NASTIC is a robust pipeline that delivers a useful temporal 
dimension to SMLM analysis without dramatic increases in analysis time. The ability to resolve 
spatiotemporal clusters opens an unprecedented window into the dynamics of molecules on defined 
regions of the cell membrane. Spatiotemporal indexing can also potentially be expanded to multiple 
color SMLM analysis of different target proteins in the same cell44, where its ability to resolve hotspots 
may offer insights into cluster dependence, where clusters of one molecule may be dependent upon the 
pre-existing clusters of another molecule.  
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MATERIALS AND METHODS 

PC12 cell culture, Transfection and Plating 

Pheochromocytoma (PC12) cells were maintained in Dulbecco's Modified Eagle Medium (DMEM, 
containing sodium pyruvate) (Thermo), foetal bovine serum (7.5%, Gibco) and horse serum (7.5%, 
Gibco), and 0.5% GlutaMax (Thermo) at 37oC an 5% CO2. Cells were transfected by 
Lipofectamine®LTX with Plus Reagent (Thermo) as per the manufacturers’ instructions with 2 ug of 
DNA or 1 ug of each plasmid when co-transfected. Cells were replated onto 0.1mg/ml Poly-D-lysine 
(Sigma) on 29mm No.1.5 glass-bottomed petri dishes (Cellvis) 24 h post-transfection, and imaged 48 
h post-transfection. Live PC12 cells were imaged in isotonic condition in buffer A (145 mM NaCl, 5 
mM KCl, 1.2 mM Na2HPO4, 10 mM D-glucose, and 20 mM Hepes, pH 7.4) at 37°C.  

Plasmids and fluorescent nanobodies 

pmEos2-Munc18-1 (SNM) (Munc18-1-mEos2), pmEos2-N1 syntaxin 1a (Sx1a-mEos2), and pEGFP-
N1 syntaxin 1a (Sx1a-EGFP) have been previously described11. Fluorescently labelled antibodies 
(Synatpic Systems, anti-GFP Atto647N tagged nanobodies, Cat#: GFP sdAb - FluoTag-Q - N0301-
At647N-L) were reconstituted as per the manufacturer’s instructions, and utilized at 3.19 pg/μl in live 
uPAINT experiments. 

SMLM acquisition  

PC12 cells transfected with Sx1a-mEos2 or Munc18-1-mEos2 were analysed by sptPALM. PC12 cells 
transfected with Sx1a-EGFP were analyzed by universal point accumulation in nanoscale topography 
(uPAINT) essentially as described in 42, and tracked using anti-GFP Atto647N tagged nanobodies 40,45,46 
at 3.19 pg/µl. 

Live transfected cells were visualized on a Roper Scientific Total Internal Reflection 
Fluoresecence (TIRF) microscope equipped with an iLas 2 double laser illuminator (Roper Scientific), 
a Nikon CFI Apo TIRF 100×/1.49 NA oil-immersion objective, and an Evolve 512 Delta EMCCD 
camera (Photometrics). Time-lapse TIRF movies (16,000 frames) were captured at 50 Hz for ~320 s at 
37 °C.  

For single particle tracking photoactivated localization microscopy (sptPALM) analysis, 
samples were illuminated simultaneously with a 405 nm laser (Stradus, Vortan Laser Technology) to 
photoactivate mEos2-tagged proteins, and a 561 nm laser (Jive, Cobolt Lasers) for excitation of the 
photoconverted mEos2. A double beam splitter (LF488/561-A-000, Semrock) and a double-band 
emitter (FF01-523/610-25, Semrock) were used to isolate the mEos2 signal from autofluorescence and 
background signals. To achieve optimal spatial and temporal separation of stochaNASTIC mEos2 
blinking, the power of the 405 nm and 561 nm laser was adjusted to 4mW and 22mW respectively at 
the focal plane.   

For universal point accumulation for imaging in nanoscale topography (uPAINT), experiments 
were performed following Giannone et al. (2010). An anti-GFP nanobody (Kubala et al., 2010) tagged 
with ATTO 647N-NHS-ester (Atto-Tec) was used to track Sx1a-EGFP single molecules. PC 12 cells 
were double transfected with Munc18-1-mEos2 and Sx1a-EGFP to perform dual-color imaging. ATTO 
647N–tagged anti-GFP nanobodies were added at a very low concentration for low level stochastic 
labelling. Time-lapse TIRF movies (16,000 frames) were recorded at 50 Hz at 37°C on TIRF 
microscope (Roper Technologies) equipped with an ILas2 double-laser illuminator (Roper 
Technologies). Each cell was imaged in both control condition and stimulated condition (2 mM BaCl2). 
A quadruple beam splitter (LF 405/488/561/635-A-000-ZHE; Semrock) and a quad band emitter (FF01-
446/510/581/703-25; Semrock) were used for illumination. The power of the 635- nm laser used was 
60% of initial laser power (200 mW). 
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All SMLM data were acquired using MetaMorph (Meta-Morph Microscopy Automation and 
Image Analysis Software, version 7.7.8; Molecular Devices), and further processed using the 
PalmTracer software47. NASTIC uses trajectory data in the TRXYT format, consisting of 4 headerless 
space separated columns corresponding to trajectory number, x co-ordinate (µm), y co-ordinate (µm), 
detection time (s). In this study, PalmTracer output was converted to TRXYT format using a custom 
Matlab script. Typical TRXYT data: 

1 9.0117 39.86 0.02 

1 8.9603 39.837 0.04 

1 9.093 39.958 0.06 

1 9.0645 39.975 0.08 

etc 

 

Software 

While initial investigations were performed using multiple command line driven Python scripts, we 
subsequently consolidated the analysis into two single-script graphic user interfaces (GUIs) suitable for 
general use by non-programmers, titled NASTIC (Nanoscale Spatio Temporal Indexing Clustering) 
and Segment NASTIC (segNASTIC), for the whole trajectory and segment versions respectively. The 
two programs, collectively referred to as NASTIC, require Python 3.8 or greater, and a number of 
modules which can be installed using: 

python -m pip install numpy matplotlib pysimplegui rtree scipy sklearn  

The GUI was constructed using the tk version of PySimpleGui 
(https://pysimplegui.readthedocs.io/). NASTIC was developed under and should run without issues on 
64 bit Windows 7 and Windows 10. It will run with minor tk interface anomalies under Linux, but the 
authors cannot guarantee optimum performance under MacOS. NASTIC uses the Python 
multiprocessing module to fork computationally intensive operations onto all available cores of the 
physical or virtual machine on which it runs. This results in a dramatic increase in performance, but 
precludes packaging into standalone executables using PyInstaller, and NASTIC will therefore only 
run on a computer with a Python 3.8+ environment. 

The NASTIC interface divides the analysis workflow into a series of tabs which allow the user 
to: (1) load, screen and display the detections from an SMLM TRXYT file; (2) select one or more 
rectangular or irregular regions of interest (ROIs) and optionally adjust the density of selected 
trajectories within the ROIs; (3) adjust clustering parameters and apply NASTIC to the selected 
trajectories; (4) display and save the results of the clustering with a high degree of control over the 
presentation of trajectories, centroids and clusters; and (5) run a series of post clustering analyses to 
visualize metrics such as segment overlap, MSD, diffusion coefficient and cluster overlap probabilities, 
and save tabulated data for downstream comparative analyses. Typical visualizations are shown in Fig 
S5. Visualized data are saved as 300 dot per inch (dpi) PNG files, and the main clustering images can 
be additionally saved at a user specified dpi in a range of user specified file formats (EPS, PDF, PNG, 
PS, SVG, TIF). The co-ordinates of the ROIs are saved as tab separated roi_coordinates.tsv: ROI, x co-
ordinate (µm), y co-ordinate (µm) which can be loaded back into the NASTIC ROI tab. Analysis metrics 
are saved as tab separated metrics.tsv, which can be viewed in any spreadsheet or text editor, and further 
processed for comparative studies using NASTIC Wrangler or other software.  

Comparative analysis of multiple tabulated data files (generated during step 5 above) from 2 
experimental conditions was performed using another simple Python GUI designated NASTIC 
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Wrangler. This program allows the user to specify two directories, each consisting of further 
subdirectories containing saved tabulated metrics data. NASTIC Wrangler recursively reads and 
compiles the tabulated metrics data from the subdirectories of each specified directory, and outputs a 
series of annotated comparative bar plots, thereby allowing the user to examine the degree and 
significance of change of a number of spatiotemporal clustering metrics. The significance of any 
differences in bar plots between conditions is determined by unpaired Student’s t-test. 

 

Code availability 

All Python code is available at https://github.com/tristanwallis/smlm_clustering. NASTIC and 
associated scripts are released under a Creative Commons CC BY 4.0 licence: you are free to use and 
modify the code on the proviso that you make any changes freely available, acknowledge the original 
authors in derivative works and do not release said works under a more restrictive licence.  

    

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 9, 2021. ; https://doi.org/10.1101/2021.09.08.459552doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.459552
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES 
1 Choquet, D., Sainlos, M. & Sibarita, J. B. Advanced imaging and labelling methods to decipher 

brain cell organization and function. Nat Rev Neurosci, (2021). 
2 Kusumi, A., Tsunoyama, T. A., Hirosawa, K. M., Kasai, R. S. & Fujiwara, T. K. Tracking 

single molecules at work in living cells. Nat Chem Biol 10, 524-532, (2014). 
3 Choquet, D. Linking Nanoscale Dynamics of AMPA Receptor Organization to Plasticity of 

Excitatory Synapses and Learning. J Neurosci 38, 9318-9329 (2018). 
4 Goncalves, J. et al. Nanoscale co-organization and coactivation of AMPAR, NMDAR, and 

mGluR at excitatory synapses. Proc Natl Acad Sci U S A 117, 14503-14511, (2020). 
5 Bademosi, A. T. et al. In Vivo Single-Molecule Tracking at the Drosophila Presynaptic Motor 

Nerve Terminal. J Vis Exp, (2018). 
6 Bademosi, A. T. et al. In vivo single-molecule imaging of syntaxin1A reveals 

polyphosphoinositide- and activity-dependent trapping in presynaptic nanoclusters. Nat 
Commun 8, 13660, (2017). 

7 Bademosi, A. T. et al. Trapping of Syntaxin1a in Presynaptic Nanoclusters by a Clinically 
Relevant General Anesthetic. Cell Rep 22, 427-440, (2018). 

8 Chai, Y. J. et al. Munc18-1 is a molecular chaperone for alpha-synuclein, controlling its self-
replicating aggregation. J Cell Biol 214, 705-718, (2016). 

9 Gormal, R. S. et al. Modular transient nanoclustering of activated beta2-adrenergic receptors 
revealed by single-molecule tracking of conformation-specific nanobodies. Proc Natl Acad Sci 
U S A 117, 30476-30487, (2020). 

10 Harper, C. B. et al. An Epilepsy-Associated SV2A Mutation Disrupts Synaptotagmin-1 
Expression and Activity-Dependent Trafficking. J Neurosci 40, 4586-4595, d (2020). 

11 Kasula, R. et al. The Munc18-1 domain 3a hinge-loop controls syntaxin-1A nanodomain 
assembly and engagement with the SNARE complex during secretory vesicle priming. J Cell 
Biol 214, 847-858, (2016). 

12 Padmanabhan, P. et al. Need for speed: Super-resolving the dynamic nanoclustering of 
syntaxin-1 at exocytic fusion sites. Neuropharmacology 169, 107554, (2020). 

13 Haas, K. T. et al. Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission 
efficiency. Elife 7, (2018). 

14 Ester, M., Kriegel, H. P., Sander, J. & Xu, X. in KDD'96 Proceedings of the Second 
International Conference on Knowledge Discovery and Data Mining.  226-231. 

15 Levet, F. et al. SR-Tesseler: a method to segment and quantify localization-based super-
resolution microscopy data. Nat Methods 12, 1065-1071, doi:10.1038/nmeth.3579 (2015). 

16 Andronov, L., Orlov, I., Lutz, Y., Vonesch, J. L. & Klaholz, B. P. ClusterViSu, a method for 
clustering of protein complexes by Voronoi tessellation in super-resolution microscopy. Sci 
Rep 6, 24084, (2016). 

17 Khater, I. M., Nabi, I. R. & Hamarneh, G. A Review of Super-Resolution Single-Molecule 
Localization Microscopy Cluster Analysis and Quantification Methods. Patterns (N Y) 1, 
100038, (2020). 

18 Finkel, A. Quad trees, a data structure for retrieval on composite keys. Acta Informatica 4, 1-9 
(1974). 

19 Gutmann , A. R-Trees: A Dynamic Index Structure for Spatial Searching. Proceedings of the 
1984 ACM SIGMOD international conference on Management of data – SIGMOD '84. p. 47 
(1984). 

20 Figueiredo, M. An R-tree Collision Detection Algorithm for Polygonal Models. Proceedings 
of the IASTED International Conference (2009). 

21 Zhai, R. G. & Bellen, H. J. The architecture of the active zone in the presynaptic nerve terminal. 
Physiology (Bethesda) 19, 262-270, (2004). 

22 Sudhof, T. C. The presynaptic active zone. Neuron 75, 11-25, (2012). 
23 Tang, A. H. et al. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. 

Nature 536, 210-214, (2016). 
24 Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 

1642-1645, (2006). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 9, 2021. ; https://doi.org/10.1101/2021.09.08.459552doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.459552
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 Hess, S. T., Girirajan, T. P. & Mason, M. D. Ultra-high resolution imaging by fluorescence 
photoactivation localization microscopy. Biophys J 91, 4258-4272, (2006). 

26 Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated 
localization microscopy. Nat Methods 5, 155-157, doi:10.1038/nmeth.1176 (2008). 

27 Sudhof, T. C. & Rothman, J. E. Membrane fusion: grappling with SNARE and SM proteins. 
Science 323, 474-477, (2009). 

28 Han, L. et al. Rescue of Munc18-1 and -2 double knockdown reveals the essential functions of 
interaction between Munc18 and closed syntaxin in PC12 cells. Mol Biol Cell 20, 4962-4975, 
(2009). 

29 Rickman, C., Meunier, F. A., Binz, T. & Davletov, B. High affinity interaction of syntaxin and 
SNAP-25 on the plasma membrane is abolished by botulinum toxin E. J Biol Chem 279, 644-
651, (2004). 

30 Meunier, F. A. & Gutierrez, L. M. Captivating New Roles of F-Actin Cortex in Exocytosis and 
Bulk Endocytosis in Neurosecretory Cells. Trends Neurosci 39, 605-613, (2016). 

31 Malintan, N. T. et al. Abrogating Munc18-1-SNARE complex interaction has limited impact 
on exocytosis in PC12 cells. J Biol Chem 284, 21637-21646, (2009). 

32 Martin, S. et al. The Munc18-1 domain 3a loop is essential for neuroexocytosis but not for 
syntaxin-1A transport to the plasma membrane. J Cell Sci 126, 2353-2360, (2013). 

33 Papadopulos, A. et al. Activity-driven relaxation of the cortical actomyosin II network 
synchronizes Munc18-1-dependent neurosecretory vesicle docking. Nat Commun 6, 6297, 
(2015). 

34 Ullrich, A. et al. Dynamical Organization of Syntaxin-1A at the Presynaptic Active Zone. PLoS 
Comput Biol 11, e1004407, (2015). 

35 Jahn, R. & Fasshauer, D. Molecular machines governing exocytosis of synaptic vesicles. 
Nature 490, 201-207, (2012). 

36 Angelov, B. & Angelova, A. Nanoscale clustering of the neurotrophin receptor TrkB revealed 
by super-resolution STED microscopy. Nanoscale 9, 9797-9804, (2017). 

37 Monnier, N. et al. Inferring transient particle transport dynamics in live cells. Nat Methods 12, 
838-840, (2015). 

38 Persson, F., Linden, M., Unoson, C. & Elf, J. Extracting intracellular diffusive states and 
transition rates from single-molecule tracking data. Nat Methods 10, 265-269, (2013). 

39 Padmanabhan, P., Martinez-Marmol, R., Xia, D., Gotz, J. & Meunier, F. A. Frontotemporal 
dementia mutant Tau promotes aberrant Fyn nanoclustering in hippocampal dendritic spines. 
Elife 8, (2019). 

40 Joensuu, M. et al. Subdiffractional tracking of internalized molecules reveals heterogeneous 
motion states of synaptic vesicles. J Cell Biol 215, 277-292, (2016). 

41 Ripley, B. D. Modeling Spatial Patterns. J Roy Stat Soc B Met 39, 172-212 (1977). 
42 Giannone, G., Hosy, E., Sibarita, J. B., Choquet, D. & Cognet, L. High-content super-resolution 

imaging of live cell by uPAINT. Methods Mol Biol 950, 95-110, (2013). 
43 Cisse, II et al. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 

341, 664-667, (2013). 
44 Subach, F. V. et al. Photoactivatable mCherry for high-resolution two-color fluorescence 

microscopy. Nat Methods 6, 153-159, (2009). 
45 Kubala, M. H., Kovtun, O., Alexandrov, K. & Collins, B. M. Structural and thermodynamic 

analysis of the GFP:GFP-nanobody complex. Protein Sci 19, 2389-2401, (2010). 
46 Joensuu, M. et al. Visualizing endocytic recycling and trafficking in live neurons by 

subdiffractional tracking of internalized molecules. Nat Protoc 12, 2590-2622, (2017). 
47 Kechkar, A., Nair, D., Heilemann, M., Choquet, D. & Sibarita, J. B. Real-time analysis and 

visualization for single-molecule based super-resolution microscopy. PLoS One 8, e62918, 
(2013). 

AUTHOR CONTRIBUTIONS: 

F.A.M. and T.P.W. conceived the project, T.P.W implemented NASTIC in Python, H.H. assisted with 
code debugging and GUI implementation, A.J. performed super-resolution experiments under the 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 9, 2021. ; https://doi.org/10.1101/2021.09.08.459552doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.459552
http://creativecommons.org/licenses/by-nc-nd/4.0/


supervision of M.J. and G.B., T.P.W. performed all clustering analyses with input from R.S.G., MSD 
analyses with input from N.D., and wrote the manuscript with input from the other authors.  

CONFLICT OF INTEREST 

The authors declare they have no conflict of interest. 

DATA AVAILABLITY 

All processed data will be made available upon request and in The University of Queensland data 
repository, UQ eSpace.  

ACKNOWLEDGMENTS 

We thank Rowan Tweedale for critical appraisal of the manuscript, the IT department at the Queensland 
Brain Institute (QBI), and Rumelo Amor and all past and present members of the Advanced Microscopy 
and Microanalysis Facility at QBI for their outstanding microscopy support. The work was supported 
by an Australian Research Council (ARC) Discovery Project grant (DP190100674), an ARC Linkage 
Infrastructure Equipment and Facilities grant (LE130100078) and a National Health and Medical 
Research Council (NHMRC) Senior Research Fellowship (GNT1155794) to FAM as well as an ARC 
Discovery Early Career Research Award (DE190100565) to MJ and NHMRC Project Grant (GNT 
1147600) to ND. 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 9, 2021. ; https://doi.org/10.1101/2021.09.08.459552doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.459552
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUPPLEMENTARY FIGURES 

 

Figure S1. Bounding box radius and time window affect spatiotemporal clustering. In silico random walk trajectory data 
consisting of 20 equivalently sized spatiotemporal clusters where each cluster contains 20 trajectories distributed within 10 s. 
Clusters are randomly distributed within a 320 s “acquisition” window. The spatial centroid of each trajectory is represented 
as a dark dot. Upper panels: Spatiotemporal clustering was performed with a time window of 20 s, with each trajectory’s 
bounding box radius multiplied by the indicated factor r. Lower panels: Spatiotemporal clustering was performed with a 
bounding box radius factor of 1.2, and an indicated time window t. A cluster is defined as 3 or more proximal centroids. Cluster 
boundaries represent the extent of the detections associated with clustered trajectories, and are colored according to the average 
detection time as indicated by the color bar. Dotted box represents clustering obtained with r = 1.2, t= 20 s, most representative 
of the input data. 
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Figure S2. Effect of bounding box radius and time window on spatiotemporal clustering metrics. In silico random walk 
trajectory data consisting of 1095 trajectories in 140 spatiotemporally unique clusters with 7.82 ± 0.16 trajectories per cluster, 
with cluster radii of 74.86 ± 5.29 nm. The data also contained a background of 1000 randomly spatiotemporally distributed 
unclustered trajectories. Clusters are randomly distributed within a 320 s “acquisition” window. For a given metric, each pixel 
represents the log2 ratio of the experimental observed (EXP) value to the ground truth (GT). Ratios < -1 and > 1 are displayed 
as 1 and -1 respectively. 
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Figure S3. Difference in average cluster metrics in response to stimulated exocytosis. Munc18-1-mEos sptPALM data 
acquired from unstimulated PC12 cells (N=9) and PC12 cells stimulated with 2mM BaCl2 (N=9). (A) Representative image 
of clusters identified using spatiotemporal indexing with r = 1.2, t = 20 s. (B) Comparison of indicated average cluster metrics. 
The significance of the difference between conditions was determined by unpaired t-test (ns = no significance, *** = p < 0.001, 
**** = p < 0.0001). NS = no stimulation, S = stimulation with 2mM BaCl2 

 

 

 

Figure S4. Distribution of segment overlap. Sx1a-GFP imaged by uPAINT using Atto-647 labelled anti-GFP nanobodies in 
PC12 cells. The vertical red line corresponds to the average segment overlap.  
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Figure S5. Typical NASTIC visualizations. NASTIC allows the user to evaluate nanomolecular clustering through a number 
of visualizations: (A) Raw acquisition data showing all molecular detections, with a region of interest (ROI) highlighted. (B) 
Spatiotemporal clustering of the selected trajectories within the ROI, with a region highlighted for enlargement. (C) 
Enlargement of highlighted area showing individual trajectories and their centroids, with clusters highlighted and color coded 
according to their time in the acquisition. (D) 2D Kernel density estimation of the detections associated with the selected 
trajectories, with brighter blobs corresponding to higher density. (E) Instantaneous diffusion coefficient, with each trajectory 
colored according to the gradient of the first 4 time points in its mean square displacement. (F) 3D plot of the selected 
trajectories, rotated to show the temporal separation of the clusters. (G) 1D plot of the selected trajectories where each vertical 
bar represents a single trajectory, colored according to its cluster status (top panel) or instantaneous diffusion coefficient 
(bottom panel). 
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