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Abstract

We present a fast particle fusion method for particles imaged with single-molecule
localization microscopy. The state-of-the-art approach based on all-to-all registration
has proven to work well but its computational cost scales unfavourably with the number
of particles N , namely as N2. Our method overcomes this problem and achieves a linear
scaling of computational cost with N by making use of the Joint Registration of
Multiple Point Clouds (JRMPC) method. Straightforward application of JRMPC fails
as mostly locally optimal solutions are found. These usually contain several overlapping
clusters, that each consist of well-aligned particles, but that have different poses. We
solve this issue by repeated runs of JRMPC for different initial conditions, followed by a
classification step to identify the clusters, and a connection step to link the different
clusters obtained for different initializations. In this way a single well-aligned structure
is obtained containing the majority of the particles.

We achieve reconstructions of experimental DNA-origami datasets consisting of close
to 400 particles within only 10 min on a CPU, with an image resolution of 3.2 nm. In
addition, we show artifact-free reconstructions of symmetric structures without making
any use of the symmetry. We also demonstrate that the method works well for poor
data with a low density of labelling and for 3D data.

1 Introduction 1

The diffraction of light limits the resolution of conventional microscopy to about 2

200 nm. Several super-resolution microscopy techniques enable ”diffraction unlimited” 3

resolution [8, 16,26]. Single-molecule localization microscopy (SMLM) is a widely used 4

member of the family of super-resolution techniques, and obtains super-resolved images 5

by localizing single fluorescent emitters. The resolution of these super-resolved images is 6

not infinite, but in practice restricted to about 20 nm due to the incomplete fluorescent 7

labelling and a limited number of collected photons per localization event [21]. In recent 8

years, significant improvements have been made to increase the photon count per 9

localization [20]. Increasing the density of labelling (DOL) using biochemical means is 10

difficult, where DOL values of around 50% are typically achieved. In addition, a high 11

local DOL can lead to an increased rate of mislocalizations [5] which is detrimental for 12

the quality of the imaging process. If the sample includes many chemically identical 13

1/20

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2021. ; https://doi.org/10.1101/2021.09.09.459453doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.09.459453
http://creativecommons.org/licenses/by-nd/4.0/


bio-complexes (called particles in the following), the limitation imposed by a low DOL 14

can be lifted by fusion of all these particle into one single reconstruction, the so-called 15

super-particle, leading to a much better resolution and signal-to-noise ratio 16

(SNR) [18,23]. This approach by particle fusion, of course, ignores potential 17

heterogeneity in the underlying biology within the collection of particles. 18

Template-driven particle fusion methods have been used [2, 7, 18,23], but have a 19

substantial risk of resulting in a biased reconstructed structure. Heydarian et al. 20

proposed a template-free particle fusion method based on an all-to-all registration 21

(all-to-all method in short), which is robust against underlabelling and 22

misregistration [10,13]. The all-to-all method has proven to work well and produces 23

reconstruction resolutions down to a few nanometers. Despite this success, 24

computational times of around a day for a number of particles N exceeding about 1000 25

are not uncommon and are only feasible with the use of GPU acceleration. The root 26

cause lies within the unfavourable scaling of computational cost with N2, because each 27

particle is registered to all other particles, resulting in N(N − 1)/2 registration pairs. 28

The all-to-all method has another drawback, the so-called ”hot-spot” problem. For 29

symmetric structures, random variations in the localization data with binding site are 30

amplified by the pair-wise optimal registration process. Heydarian et al. solved this 31

problem by first detecting the present symmetry and then imposing it on the data in a 32

post-processing step. Thus, a particle fusion algorithm that is fast and which avoids the 33

hot-spot artifact is desired. 34

An alternative to the all-to-all method is based on the Joint Registration of Multiple 35

Point Clouds (JRMPC) method [4]. In the JRMPC method, particles are iteratively 36

rotated and translated to fit to a Gaussian Mixtures Model (GMM), which is updated 37

itself in each iteration round. The key advantage of the JRMPC method is that the 38

computational complexity scales linearly with the number of particles N , which makes 39

it inherently faster than the all-to-all method if N grows large. In addition, hot-spot 40

artifacts in symmetric structures are avoided without imposing (a-priori) symmetry 41

information, because the joint registration treats each particle equally. There are, 42

however, major drawbacks to the JRMPC method. First, the outcome of the JRMPC 43

turns out to be highly susceptible to the initialization of the GMM (number of 44

Gaussians, center positions and widths). Different initial settings of the GMM 45

parameters lead to different sets of final estimated particle rotations and translations. 46

Second, the final outcome usually consists of several clusters, where the particles within 47

the clusters are well-registered, but where the clusters have different poses. We 48

attribute these issues with robustness of the algorithm to trapping in local optima of 49

the iterative optimization (outlined in section 2.1 in detail). 50

The goal of the work presented in this paper is to overcome the robustness problems 51

of the JRMPC method while maintaining the inherent speed advantage. To this end, we 52

propose a processing pipeline in which we combine JRMPC registration outcomes 53

obtained with different GMM initializations using cluster analysis tools. The cluster 54

analysis uses our recent unsupervised classification framework [14], which is based on 55

the Bhattacharya distance metric [2] together with multi-dimensional scaling 56

(MDS) [19] and k-means clustering [3, 15]. The process of JRMPC and classification is 57

repeated several times for different GMM initializations. Pairs of clusters from different 58

initializations may share particles. The relative poses of such particles in different 59

clusters is used in a final step to combine the different clusters into a single well-aligned 60

structure. 61
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Figure 1. The three main steps of the proposed particle fusion algorithm. Step
1: Use JRMPC [4] to initially align N input particles V = {Vj}Nj=1 with L random

initializations of the GMM {Xl
in}Ll=1 leading to L different reconstructions {Φl(V )}Ll=1.

Step 2: Apply the unsupervised classification method of Huijben et al. [14] to classify
each reconstruction Φl(V ) into nl clusters {Cl

n}
nl
n=1 separating different overlapping

poses in the reconstructed particles. Step 3: Connect particles from different clusters
into the final super-particle reconstruction Ca, such that each input particle is present
at most once.

2 Method 62

Our proposed algorithm has three main steps, illustrated in Figure 1. The steps are (1) 63

alignment of particles with JRMPC using multiple initializations, (2) classification of 64

JRMPC registered particles into clusters, and (3) connection of the identified clusters 65

into a single final reconstruction. 66

The input data is a union of particles A = {Aj}Nj=1, with N the number of particles.
Each particle is characterized by a set of localization coordinates Vj and attendant
localization uncertainties ∆j as Aj = {Vj ; ∆j}. The coordinates of particle j represent
Mj localizations:

Vj = [vj1 . . .vji . . .vjMj
] ∈ Rd×Mj ,

where the vji are vectors with elements equal to the d coordinates of the i-th
localization in particle j. Depending on the data, the dimensionality d can be 2 or 3. In
general, the localization uncertainties of the Mj localization events in particle j are:

∆j = [Σj1, . . .Σji . . .ΣjMj
] ∈ Rd×d×Mj ,

where the Σji are d× d matrices equal to the covariance matrices of the i-th localization
in particle j. Often a more simple description of the localization uncertainty is possible.
For 2D data for example, the uncertainties are isotropic, and ∆j can be written as:

∆j =
[
δj1, . . . δji . . . δjMj

]
,

where the δji are now scalar values that represent the localization uncertainty in the xy
plane for the i-th localization in particle j. For most 3D data, ∆j is represented as:

∆j =
[
δj1, τj1; . . . , δji, τji; . . . δjMj

, τjMj

]
,
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where now τji is the localization uncertainty along the z-axis for the i-th localization in 67

particle j. This axial localization uncertainty is typically larger than the uncertainty in 68

the xy plane [22]. 69

2.1 Alignment 70

The structure of the reconstruction is characterized in the JRMPC method by a GMM 71

with parameters G = {Gk}Kk=1, where each of the K Gaussians components 72

Gk = [pk,µk, σk] has a mixing coefficient (weight) pk, a set of d coordinates µk that 73

represent the mean of the Gaussian, and a standard deviation σk (an isotropic 74

covariance matrix σ2
kId is taken). The GMM parameters have an initial setting Gin, 75

described in section 3.2. The parameters that are updated during the iterative JRMPC 76

algorithm are: 77

Θ =
{
{Gk}Kk=1, {Rj , tj}Nj=1

}
, (1)

where Rj ∈ Rd×d is the rotation applied to particle j and where tj ∈ Rd×1 is the 78

translation applied to particle j. The coordinates of the reconstruction are then: 79

Φ(V) = {RjVj + tj}Nj=1 , (2)

which thus contains the coordinates of all localization events in all particles. It is noted 80

that the localization uncertainties are not taken into account in the JRMPC method. 81

Further details on the steps in each iteration round of the JRMPC are given in 82

Appendix A. 83

The outcome of the JRMPC depends on the choice of the initial GMM centers in 84

Gin. Our algorithm uses L differently initialized GMMs {Gl
in}Ll=1, leading to L different 85

JRMPC alignments Φ(V) = {Φl(V)}Ll=1 of the same union of particles with coordinates 86

V. 87

2.2 Classification 88

The JRMPC algorithm can end up in a local optimum, resulting in multiple groups of 89

particles (clusters) with different overlapping poses in the reconstruction. To separate 90

these clusters, we use an unsupervised classification method recently proposed by our 91

group [14]. This method enables the analysis of structural heterogeneity in localization 92

datasets arising from e.g. naturally occurring biological variations. Here, we use this 93

pipeline to decompose the L different JRMPC outcomes into clusters of particles, where 94

the particles within each cluster are well-aligned. First, we compute the normalized 95

Bhattacharya cost function between every transformed particle Φl
a(Va) and every other 96

transformed particle Φl
b(Vb) within the JRMPC registration for each initialization 97

l = 1, 2, . . . , L. This one time computation gives an upper triangular matrix with 98

N(N − 1)/2 cost function values S. The normalized Bhattacharya cost is in general 99

given by the sum over the Ma localizations of particle a and Mb localizations of particle 100

b as: 101

S(a, b) =
1

MaMb

Ma∑
q=1

Mb∑
r=1

1√
detΩab

qr

exp

(
−1

2
δφabqr

T
Ωab

qrδφ
ab
qr

)
.

(3)

Here δφabqr = φ (vaq)− φ (vbr) is the difference in transformed (rotated and translated) 102

coordinates of localization q of particle a and localization r of particle b, and Ωab
qr is 103

defined in terms of the uncertainty covariance matrices of the localizations as: 104

Ωab
qr = Σaq (Σaq + Σbr)

−1
Σbr . (4)

4/20

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2021. ; https://doi.org/10.1101/2021.09.09.459453doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.09.459453
http://creativecommons.org/licenses/by-nd/4.0/


For example, for 2D-data with isotropic localization uncertainties, this reduces to: 105

S(a, b) =
1

MaMb

Ma∑
q=1

Mb∑
r=1

1

(δ2
aq + δ2

br)

exp

(
− (φ(vaq)− φ(vbr))2

2
(
δ2
aq + δ2

br

) )
.

(5)

The normalization of the cost function with the numbers of localizations per particle 106

reduces the impact of the variations in these number, which makes it a better descriptor 107

of the similarity between the structure of the particles. The next step is to transfer 108

dissimilarity values: 109

D(a, b) = max(S)− S(a, b) (6)

to spatial coordinates in a multidimensional space suitable for classification using 110

multidimensional scaling (MDS) [19]. The transformed particles will then be partitioned 111

into clusters by k-means clustering [3, 15] in this multidimensional space. Parameter 112

settings for the classification step are given in section 3.2. This process is repeated for 113

the JRMPC reconstructions l = 1, 2, . . . , L leading to n = 1, 2, . . . , nl clusters that are 114

denoted as Cl
n (see Figure 1). 115

2.3 Connection 116

As we repeat the JRMPC reconstruction L times, pairs of clusters from different 117

initializations may share different particles. Therefore, we need to combine the different 118

clusters into a single well-aligned structure. In a first step we discard clusters with less 119

than ϑ particles. This threshold helps to filter out poorly aligned clusters as well as 120

clusters with particles of poor quality, as these tend to accumulate in clusters with low 121

number of particles. 122

Next, the cluster with the largest number of particles is selected as initial estimate of 123

the super-particle reconstruction Ca. This main cluster, Clm
m , is used as the target for a 124

pairwise comparison of clusters. A loop over all clusters Cl
n for l 6= lm is done, and 125

clusters Cl
n and Clm

m are compared to check for particles that are in both clusters. If 126

there exists at least one common particle c with coordinates Vc ∈ V then the clusters 127

Cl
n can be added to the super-particle reconstruction estimate Ca following: 128

Step 1: apply the inverse transformation of particle c in cluster Cl
n to transform all 129

particles in the cluster Cl
n to the original position and pose of Vc: 130

Cl
n|Vc

= {Rl
c}−1Cl

n − tlc . (7)

Step 2: apply the transformation of particle c in the main cluster Clm
m to all particles in 131

the cluster Cl
n|Vc

to the position and orientation of Clm
m : 132

Cl
n|Clm

m
= Rlm

c Cl
n|Vc

+ tlmc . (8)

Now that the cluster Cl
n is aligned with the pose of the main cluster Clm

m the particles 133

of Cl
n can be added to the super-particle reconstruction estimate Ca. In this way more 134

and more particles accumulate in the final reconstruction, yielding the final outcome of 135

our proposed algorithm. 136

Care must be exercised for two subtleties. First, it can happen that there is more 137

than one common particle between the two clusters Cl
n and Clm

m . Then, if there exists 138

more than one common particles between two clusters, we will calculate all the common 139

particles’ translation matrices and rotation matrices from the cluster Cl1
a to the cluster 140

Cl1
a , 141

tc|Cl1
a →C

l2
b

= tl2c −Rl2
c {Rl1

c }−1tl1c , (9)
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Rc|Cl1
a →C

l2
b

= Rl2
c {Rl1

c }−1 , (10)

then we compare all the tc and Rc and use the common particle with rotation and 142

translation matrix that are closest to the median of all translation and rotation matrices 143

of all the common particles. Second, we must check if the particles of cluster Cl
n are not 144

already in the reconstruction estimate Ca. Only the unique particles that are not 145

already contained in the reconstruction are added to Ca. 146

The connection pipeline is summarized below: 147

Algorithm 1 Connection Algorithm

Input: a union of particles V = {Vj}Nj=1, clusters C = {Cl}Ll=1 and translations

Φ = {Φl}Ll=1

Require: the main cluster Clm
m , the reconstruction estimate Ca (Ca is initialized as

Clm
m )

1: if l 6= lm then
2: for l < L do
3: for n < nl do
4: Find all common particles between Cl

n and Clm
m .

5: if common particle exists then
6: Determine the common particle Vc to use for connection.
7: Find unique particles Vu of Cl

n from Ca.
8: if Vu exists then
9: Transfer all Vu to Ca with inverse Φl

c and Φlm
c .

10: end if
11: end if
12: n = n+ 1
13: end for
14: l = l + 1
15: end for
16: end if
17: return the final super-particle reconstruction Ca

3 Experiments 148

3.1 Experimental Data 149

We applied our method to four different localization microscopy experiments and one 150

simulation described here: 151

3.1.1 DNA origami TUD-logo 152

We tested three different 2D TUD-logo DNA origami datasets [13] with DOL of 30%, 153

50% and 80%. We compared the results of the currently proposed method and the 154

all-to-all method [13] in Figure 2 and Figure 5. The data is available online [12]. 155

3.1.2 2D nuclear pore complex 156

We further applied our method to 2D Nuclear Pore Complex (NPC) data which were 157

previously described in ref. [18]. In Figure 4, we show our reconstruction of NPCs 158

together with the reconstruction of the all-to-all method [13] to compare the methods’ 159

capabilities in the reconstruction of symmetrical structures. 160
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3.1.3 3D nuclear pore complex 161

We applied our algorithm to 3D NUP107 NPC data [10] acquired by two different 162

localization microscopy techniques. The data is available online [11]. The poses of the 163

NPCs are experimentally constrained as they are all embedded in the nuclear envelope 164

which is imaged as flat as possible on the cover glass. The lower and upper ring of all 165

particles are therefore roughly perpendicular to the optical axis of the microscope [10]. 166

3.1.4 DNA origami Digits data 167

The so-called nanoTRON datasets [1] consist of DNA origami structures in the shape of 168

the digits 1, 2, and 3 and in the shape of a 3×4 rectangular grid. The data is available 169

online [9] and contains on the order of a few thousand particles. These datasets are used 170

to showcase the processing speed advantages of our method. 171

3.1.5 Simulation data 172

Simulation data of the DNA-origami TUD-logo was generated as described in [13]. 173

3.2 Parameter Settings 174

A number of parameters in the three algorithmic steps of alignment, classification and 175

connection must be set. The default values given in Table 1 are suitable for most of the 176

cases. 177

definition notation default value

# particles used to estimate K ζ min(20, N)

# GMM centers used to estimate K K0 min(
ΣN

j=1Mj

N , 100)
# GMM centers K depends on input
prior probability of Gk p0

k 1/K
initial mean of Gk µ0

k randomly generated
initial rotation matrix R0

j Id
initial translation matrix t0

j µ̄0 − v̄j

initial standard deviation of Gk σ0
k depends on input

# repetitions L 2
# clusters nl 2
threshold for good cluster ϑ N/(nl + 1)

Table 1. Parameter Settings

We estimate the number of initial GMM centers K by applying the mean-shift 178

method [3,6] to the outcome of ζ randomly selected input particles coarsely transformed 179

by JRMPC with K0 randomly generated GMM centers. We set 180

K0 = min
(
(ΣN

j=1Mj)/N, 100
)
, i.e. equal to the average number of localizations of all 181

input particles with a minimum of 100. We choose ζ = 20, if the number of input 182

particles N < 20 then ζ = N . The value of K estimated in this way is approximately 183

equal to the number of binding sites in most cases. All initial values for the prior 184

probabilities of the K Gaussians are set uniformly to pk = 1/K. The initial values of 185

the center positions µ0
k are generated randomly within a rectangular bounding box 186

containing all the localizations. We initialize the transformation as R0
j = Id and 187

t0
j = µ̄0 − v̄j , where µ̄0 is the average of the K GMM centers. The diagonal of the 188

bounding box containing all the input particles after applying the initial translation is 189

set as the initial value of all Gaussian standard deviations σ0
k. We set the default value 190
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for the number of clusters nl to 2 in the classification step because the registration of 191

JRMPC usually only contains two flipped structures. The threshold ϑ for a cluster to 192

be used in the connection step is set as N/(nl + 1). The default number of repetitions L 193

for the JRMPC initializations is 2. 194

We use the default parameter settings throughout with two exceptions. The 195

reconstruction of the nanoTRON 3× 4 grid (Figure 3(d) uses non-default parameters 196

with a larger number of clusters (nl = 8) to guarantee clusters that contain well-aligned 197

particles. The reconstruction of the 3D NPC particles (Figure 6) uses a non-default 198

value for the initial Gaussian standard deviation (we use
√

1000, much smaller than the 199

default value) to better fit with the limited range of initial poses of the NPCs. An 200

inferior alignment is observed with the default value. In general we find that the quality 201

of the individual clusters can be improved by increasing nl or ϑ. A larger number of 202

JRMPC initializations L can help to increase the number of particles in the final 203

reconstruction after the connection step. 204

3.3 Benchmark Algorithms and Evaluation Metrics 205

We compare our proposed method with the all-to-all method [13] [10]. We use the 206

Fourier Ring Correlation (FRC) [21] to measure the resolution of the super-particle 207

reconstructions. We form two independent input image subsets from the super-particle 208

reconstruction to perform the FRC analysis. The first subset is the main cluster Clm
m 209

and the second subset consists of all other particles in the reconstruction. These two 210

subsets can be used as statistically independent image subsets that are the necessary 211

inputs for the FRC measurement because each subset contains a similar number of 212

different particles from different independent experiments. We cross-checked the 213

outcomes of this FRC computation with the standard method of independently 214

processing two subsets of the total set of input particles and found outcomes within the 215

uncertainty margin of the FRC estimation. In addition, we calculate the localization 216

distribution over the azimuthal angles to analyze the reconstruction symmetry for 217

symmetrical structures. For the 3D NPC data, we also visualize and compare the 218

distributon of z positions of the localizations, the radius of each of the two rings, and in 219

a rose plot the localization distribution over azimuthal angles. In the simulations, we 220

compute the root mean square distance between the localizations after particle fusion 221

and the attendant binding sites to quantify the quality of the fusion process [10]. 222

4 Results 223

4.1 Computational Cost 224

Compared to the all-to-all method, which has an unfavorable computational cost scaling 225

as N2, our method is much faster as it is linear with N . Figure 2 shows the 226

reconstructions of 383 experimental TUD-logo particles with DOL=80% and 788,875 227

localizations obtained with the all-to-all method and our method. We repeated our 228

method on the 80% DOL TUD-logo particles 30 times in order to assess the uncertainty 229

in FRC-resolution and computation time. Both methods achieve a similar reconstruction 230

quality, consistent with near equal FRC resolutions (3.3±0.3 nm for the single instance 231

of the all-to-all, 3.6±0.3 nm for the 30 runs for our method). The computational time of 232

the all-to-all method, however, is almost 12 times longer than for our method. More 233

importantly, our computational time of 9.6±0.6 minutes was performed on a simple 234

CPU (40 core Xeon E5-2670v3), opposed to the GPU-implementation of the all-to-all 235

registration (K40c Tesla GPU). The all-to-all method is practically impossible on a 236

CPU when having more than 100 particles. The estimated number of Gaussian centers 237
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a

20 nm

b

all-to-all method our method

Figure 2. Comparison of particle fusion speed by our method with the all-to-all method
on 383 experimental 2D TUD-logo DNA origami particles with DOL=80% and 788,875
localizations. (a) Reconstruction by all-to-all registration (FRC resolution 3.3± 0.3 nm,
computational time about 2 hours (GPU)). (b) Reconstruction by our method (FRC
resolution 3.2± 0.1 nm, computational time 9.5 minutes (CPU)).Scale bar applies to
both images.

K is 40±3, which is close to the actual number of binding sites (37). The random 238

initializations of the JRMPC usually result in a final GMM that is similar to the 239

combination of two inverted TUD-logos, which can be classified appropriately in only 240

two clusters. Our method can effectively handle large amounts of particles because of 241

the favorable reconstruction speed. To show the capability of our method to handle this 242

large data we applied it to the nanoTRON datasets, which contain an order of 243

magnitude more particles than the TUD-logo datasets. We achieved clear structures of 244

the digits 1, 2, and 3 and of the 3× 4 grid in only 1.1 h, 1.3 h, 45 min. and 4.8 h, 245

respectively, in CPU compared to a computational time of multiple days for the 246

GPU-accelerated all-to-all method. It would have taken several days to resolve the full 247

dataset with the all-to-all method. Due to this speed limitation we only used part of the 248

data in the all-to-all method. The FRC resolution obtained by the all-to-all registration 249

for these four datasets (digits 1, 2, and 3 and of the 3× 4 grid) containing 1219, 1309, 250

1278 and 1194 particles are 3.69± 0.02 nm, 4.40± 0.19 nm, 3.98± 0.22 nm and 251

3.59± 0.15 nm, respectively [14]. Our reconstructions include 4155, 4943, 2541 and 5961 252

particles for these four datasets and the FRC resolutions are 2.76± 0.92 nm, 253

2.80± 0.54 nm, 3.21± 0.33 nm and 3.51± 0.28 nm, respectively. These numbers are 254

smaller as we are able to assemble more particles in the final reconstruction compared 255

to the all-to-all method. For the digits 1, 2, and 3, the estimated K (25, 23, 34) is close 256

to the actual number of binding sites (18, 23, 25). For the 3× 4 grid particles, our 257

K-estimation algorithm estimates K = 42 which is much more than the 12 binding sites. 258

For that reason the JRMPC reconstructions have more clusters and we need a larger 259

nl = 8 to separate them correctly. 260

4.2 2D NPC data: influence of symmetry 261

Our method also overcomes the second disadvantage of the all-to-all method, the 262

hot-spot problem occurring for symmetrical structures. In Figure 4, we compare 263

reconstructions of 2D NPC particles with eight-fold rotational symmetry. The 264

reconstruction of the all-to-all method without prior knowledge (Figure 4(a)) and (b)) 265

shows one apparent ”hot-spot” with more than 600 localizations compared to other 266

blobs with around 400 localizations. After imposing eight-fold rotational symmetry the 267

hot-spot disappears (Figure 4(c)). Imposing this symmetry changes the ellipticity of the 268

reconstructed NPC ring from the earlier 0.89 to 0.99. So, symmetry has been restored, 269

but at the expense of a shape that changed from an ellipse to a circle. Our method 270
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4,155 particles

692,139 localizations

2,541 particles                 5,961 particles

4,714,134 localizations

4,943 particles

909,805 localizations

c d

ba

20 nm

Figure 3. Particle fusion speed for experimental 2D DNA-origami with large amount
of particles. (a) Reconstruction of digit 1, computational time 1.1 h (CPU). (b) Re-
construction of digit 2, computational time 1.3 h (CPU). (c) Reconstruction of digit
3, computational time 48 min (CPU). (d) Reconstruction of 3× 4 grid, computational
time 4.8 h (CPU). The number of particles and localizations in each reconstruction are
indicated below the figures. Scale bar of (a) applies all sub-images.
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applied to the same NPC particles does not result in a hot-spot (Figure 4(e)), quantified 271

by a more uniform distribution of localizations over the 8 peaks (compare (b) and (f)). 272

The ellipticity of our reconstruction is 0.86 which matches reasonably well with the 273

all-to-all value of 0.89. The number of Gaussian components K in the GMM is 274

estimated by our algorithm to be 8 which is obviously equal to the number of visible 275

binding sites in the 2D NPC. 276

4.3 Low labelling 2D DNA origami data 277

A major accomplishment of the all-to-all method is its ability to handle poorly labelled 278

data. It appears our method outperforms the all-to-all method even in this respect. 279

Figure 5 shows a comparison of reconstructions of hundreds of TUD-logos with low 280

DOL values equal to 50% and 30%. Our method results in a visually better 281

reconstruction quality, especially for the worst quality DOL=30% dataset (compare 282

Figure 5(a) and (c)). Nearly all binding sites on the origami at a distance of about 5 nm 283

are resolved in (c) where in (a) especially the edges are washed out and localizations are 284

concentrated to a few binding sites. This is consistent with the FRC resolutions of 285

3.1 nm and 3.3 nm for the 50% and 30% DOL datasets, respectively, which compares 286

favourably with the FRC resolutions for the all-to-all method equal to 3.5 nm and 287

5.0 nm for the 50% and 30% DOL datasets, respectively. The mean-shift method 288

estimates K = 46 for the data with 30% DOL and K = 37 for 50% DOL. These two K 289

values are very close to the actual number of 37 binding sites of the origami design. The 290

initial Gaussian standard deviation is quite large (∼ 100 nm) at first. Most of the 291

Gaussian components shrink to a small size (less than 3 nm) eventually, and only a few 292

to a medium size (∼ 10 nm). Most of the initially randomly generated GMM centers µk 293

are finally positioned near the binding sites of the TUD-logo. 294

4.4 3D NPC data 295

Another major achievement of the all-to-all method is the ability to reconstruct 3D 296

data [10]. Our method shows a comparably good performance on 3D datasets. Figure 6 297

shows a comparison of 3D Nup107 NPC structures imaged with both PAINT and 298

STORM. Our method shows reconstructions of similar quality as the all-to-all method 299

(compare Figure 6(a) and (k) and compare Figure 6(f) and (p)). Here, the all-to-all 300

method relies on detecting the rotational symmetry from the data and subsequently 301

promoting the symmetry in the reconstruction. In contrast, neither prior knowledge or 302

detection of symmetry nor extra post-processing is needed with our method. 303

Comparison of Figure 6(b,g,l,q), (c,h,m,l) to (d,i,n,s), respectively, further shows that 304

our method obtains similar NPC structural parameters (the distance between the 305

nuclear and cytoplasmic rings and their radius) as the all-to-all method. The rose plots 306

Figure 6(e,j) obtained from the all-to-all method’s reconstructions show eight-fold 307

symmetry for each ring, and the number of localizations in each peak is almost the 308

same. The rose plots Figure 6(o,t) of our reconstructions also clearly show eight peaks 309

for each ring, but the number of localizations in each peak is slightly different. This is 310

reasonable considering that our method does not rely on symmetry in the 311

reconstruction. Our K-estimation algorithm estimates K = 34 for both cases, which is 312

also reasonable as the number of actual binding sites should be 32 given the structure of 313

the EM model [17,24]. The default value of σk does not work here and we used 314

σ0
k =
√

1000 nm instead. The final center points of the GMMs are nearly all distributed 315

inside the 16 spheres of the 3D NUP reconstructions. 316
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Figure 4. Comparison of particle fusion performance between our method and the all-
to-all method on 304 experimental 2D nuclear pore complex particles. (a) Reconstruction
with the all-to-all method without prior knowledge. A ”hot-spot” is visible due the
enhancement by pair-wise registration. Fitted ellipticities e to the reconstruction are
shown below.(b,d,f) Histogram of the azimuthal angles of the localizations in (a,c,e)
respectively; for comparison, a red line indicates 400 counts. (c) Reconstruction with the
all-to-all method after explicitly imposing eight-fold symmetry. (e) Reconstruction with
our method without prior knowledge. Even without imposing symmetry no hot-spot
occurs. Scale bar of (a) applies to (c,e).

12/20

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2021. ; https://doi.org/10.1101/2021.09.09.459453doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.09.459453
http://creativecommons.org/licenses/by-nd/4.0/


o
u
r 

m
e
th

o
d
  
  
  
 a

ll
-t

o
-a

ll
 m

e
th

o
d

549 particles 442 particles

a b

c d

10 nm

30% DOL 50% DOL

Figure 5. Comparison of the particle fusion performance with our method the all-
to-all method on experimental 2D TUD-logo DNA origami particles with low density
of labelling (DOL).(a-b) Reconstructions using all-to-all registration (FRC resolution
of 5.0, 3.5 nm for 30% and 50% DOL respectively). (c-d) Reconstructions using our
method (FRC resolution of 3.3, 3.1 nm for 30% and 50% DOL respectively). Scale bar
of (a) applies to (b-d).

5 discussion 317

We explore the limitations of the proposed method in terms of DOL, localization 318

precision and the number of particles by applying our method on simulated TUD-logo 319

datasets. These simulated data have the default settings of 200 particles, 2000 detected 320

photons per localization event (corresponding to an average localization uncertainty of 321

4.85 nm) and 60% DOL. When we change one of these three parameters, we keep the 322

other two at the default values. We simulate more challenging conditions than most 323

often encountered in real experiments to probe the performance limitations. We 324

perform ten independent simulations for each setting of the simulated data. We 325

evaluate the reconstruction quality by calculating the average distance of localizations 326

to the corresponding binding sites (AD in short) following ref. [10] where this measure 327

was introduced for simulated data. For a simulated structure with around 5 nm distance 328

between binding sites corresponding to an DNA Origami design, then an error of 329

AD < 10 nm is needed for the reconstruction to appear reasonably correct; for 330

AD < 5 nm, binding sites details can be observed in the reconstruction. Figure 7(a) 331

shows that the error (AD) decreases with increasing DOL. For DOL larger than about 332

40% our method can stably obtain a clear reconstruction. 333

Our method is not sensitive to the number of input particles. For particle numbers 334

varying from 3 to 200, AD values are always less than 5 nm and fluctuate in a small 335

range (Figure7(b)). Even though the registration for input particles less than 10 336

appears correct, the underlying structure is still hardly visible in the reconstruction 337

because of the small total number of localizations. 338

Figure 7(c) indicates that the error AD decreases with increasing number of photons 339

per localization. With 200 input particles with 60% DOL, our method is able to 340
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Figure 6. Comparison of particle fusion performance between our method and all-
to-all method on experimental 3D Nup107 particles acquired by different localization
microscopy techniques. (a) Fusion of 306 Nup107 particles obtained from 3D astigmatic
PAINT reconstructed by the 3D all-to-all method. (b,g,l,q) Histogram of the z coordinate
of localizations in the reconstruction (a). (c,h,m,r) Histogram of the radius of upper
ring’s localizations, (d,i,n,s) lower ring. (e,j,o,t) Rose plot of the localization distribution
over azimuthal angles for the upper and lower rings of the reconstructions. (f) Fusion
of 356 Nup107 particles obtained from 3D astigmatic STORM reconstructed by the
3D all-to-all method. (k) Fusion of 306 Nup107 particles obtained from 3D astigmatic
PAINT reconstructed by our method. (p) Fusion of 356 Nup107 particles obtained from
3D astigmatic STORM reconstructed by or method. Scale bar indicates 50 nm and
applies to a,f,k and p.
Rose plots in (e,j) show 8 fold symmetry with nearly equal number of localizations,
but symmetry was used here in the reconstruction. Rose plots (o,t) Without any prior
knowledge reconstruction with our method also shows 8 clear peaks however with a
stronger variation in the number of localizations.
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correctly reconstruct the underlying structure as long as the number of photons is 341

greater than 400, corresponding to a localization uncertainty of 12 nm which is 2.4 342

times larger than the minimum binding site distance 5 nm. 343

Several of the results we obtained can be qualitatively understood: 344

In comparison to the all-to-all-method our approach produces better results for poor, 345

underlabeled data. The reason is that in the pairwise registration of the all-to-all 346

method pairs of poor quality particles must be aligned, which is more error prone than 347

our approach where each of the poor quality particles is aligned to the average of all 348

particles. The same line of reasoning applies to the case of symmetric structures. The 349

pairwise registration of the all-to-all method aligns random peaks that occur through 350

the stochastic variations of labeling within the particles, while for our approach each 351

particle is aligned to the average of all particles which smoothens out the stochastic 352

variations in labeling. 353

We attribute the JRMPC local optima that consist of several distinct clusters with 354

different poses to a difference in convergence rate between the widths of the Gaussian 355

components and the particle rotations. It seems that the Gaussian widths shrink 356

relatively fast, while the particle rotations only change slowly, as the iteration 357

progresses. This results in posterior probabilities αkij for the Gaussian component k 358

that is nearest to localization i of particle j that quickly converge to nearly one and to 359

virtually zero for the other Gaussian components. On the other hand, for the case of 3D 360

NPC particles with a limited range of poses in the dataset, the widths of the Gaussian 361

components appear too large, leading to sets of particle rotations that are distributed 362

too broadly. Summarizing, the reconstruction quality appears to be sensitive to the 363

initial setting and convergence rate of the Gaussian widths. 364

A number of algorithmic improvements can be envisioned. First of all we could 365

incorporate the localization uncertainties in the JRMPC method, such that the 366

probability of localization i of particle j to fit Gaussian component k is a normal 367

distribution with a variance that is the sum of the variance due to the localization 368

uncertainty and the variance of the Gaussian component. Especially in cases where the 369

localization uncertainty is on the order of the distance between binding sites, or where 370

there is a broad distribution of localization uncertainties, or when the localization 371

uncertainty is anisotropic (for 3D datasets), this may improve the sensitivity to the 372

initial setting of the widths of the Gaussian components, as well as promote convergence 373

to a global optimum. Another improvement may be found in a better description of the 374

quality of the clusters. Now we opt for the simple criterion of number of particles in the 375

cluster. Using the FRC resolution may be a better practice for assessing cluster quality. 376

6 Conclusion 377

We have proposed a fast particle fusion method with computational complexity that 378

scales linearly with the number of input particles. In our method we apply the JRMPC 379

method for multiple initializations and then use classification and connection steps to 380

generate a correct reconstruction with as many particles as possible. The reconstruction 381

quality of our method is measured by the FRC resolution and compared with the 382

all-to-all method, revealing that our results are of comparable or better quality. Our 383

method is fast, even without GPU acceleration, avoids symmetry artifacts, applies to 384

2D and 3D datasets, and reconstructs poor data with a limited number of particles, a 385

low density of labelling and a large localization uncertainty. 386
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Figure 7. Simulation study of limitation of the proposed method. Each point in
the graph indicates ten independent experiments. Reconstructions with AD < 10 nm
(magenta line) are assessed as ‘correct’ and with AD < 6 nm (blue line) as ‘clear’. (a)
Reconstruction quality as a function of DOL for 200 particles with 2000 photons per
localization. (b) Reconstruction quality as a function of number of input particles with
60% DOL and 2000 photons per localization. (c) Reconstruction quality as a function
of number of photons per localization for 200 particles with 60% DOL.
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Appendices 393

A Summary of JRMPC 394

The JRMPC method [4] is cast as an Expectation Maximization (EM) algorithm. In 395

this framework the observed data are the set of particles j = 1, 2, . . . , N with 396

localizations i = 1, 2, . . . ,Mj represented by coordinates vji. The localization 397

uncertainties are not taken into account in the JRMPC method. The estimated 398

parameters are the parameters of the K Gaussians of the GMM, and the rotations and 399

translations of the particles that best match the GMM, defined as Θ in Equation 1. The 400

latent or unobserved data Z concern the assignment of localizations i in particle j to 401

Gaussian k of the GMM. We have modified the original approach of ref. [4] by ignoring 402

the outlier probabilities, i.e. there is no outlier class where the localizations can be 403

assigned to. The expectation value of the log-likelihood over the distribution of latent 404

data can be expressed as the sum over Gaussians k, particles j and localizations i as: 405

E(Θ|V) =
K∑

k=1

N∑
j=1

Mj∑
i=1

αjik [log pk + logP (vji|Gk)] . (11)

Here, the marginal probability that localization i of particle j fits Gaussian k is given by
the normal distribution:

P (vji|Gk) = N
(
φ(vji)|µk, σ

2
kId
)

=
1

(2π)d/2σd
k

exp
(
− 1

2σ2
k

‖φ(vji)− µk‖2F
)
, (12)

where ‖ · ‖F denotes the Frobenius norm, the Gaussian weight pk is the probability 406

pk = P (Gk|Θ), and the coefficients αjik represent the posterior probability of the latent 407

variable, i.e. the probability that localization i of particle j is assigned to Gaussian k. 408

Starting point of each iteration round of the JRMPC is to update the posterior 409

probabilities according to: 410

αjik =
pkP (vji|Gk)∑K
s=1 psP (vji|Gs)

. (13)

The next step is the update of the rotation and translation matrices. It appears that 411

finding the optimum log-likelihood expectation value can be cast as: 412{
minRj ,tj ‖(RjWj + tje

> −M)Λj‖2F
s.t. R>j Rj = Id and |Rj | = 1 ,

(14)
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where Λj ∈ RK×K is a diagonal matrix with elements λjkk = (
∑Mj

i=1 αjik/σ
2
k)1/2, 413

e ∈ RK is a vector of ones, M = [µ1, . . . ,µK ] ∈ Rd×K represents a matrix of the means 414

of the Gaussian components, and Wj = [wj1, . . . ,wjK ] ∈ Rd×K is the weighted-average 415

localizations of the jth particle, where wjk represents the single weighted-average 416

localization of the jth particle assigned to the kth Gaussian component 417

wjk =

∑Mj

i=1 αjikvji∑Mj

i=1 αjik

. (15)

The optimal transformations Φj = {Rj , tj}Kk=1 are subsequently found using the 418

method of Umeyama [25]. Then, the optimal means and covariances of the Gaussian 419

components are estimated. It turns out that the closed-form expressions: 420

µk =

∑M
j=1

∑Mj

i=1 αjikφ(vji)∑M
j=1

∑Mj

i=1 αjik

(16)

and 421

σ2
k =

∑N
j=1

∑Mj

i=1 αjik‖φ(vji)− µk‖22
d
∑N

j=1

∑Mj

i=1 αjik

+ ε2 , (17)

provide the sought-for optimum. Here, a small scalar ε is added to avoid singularities of 422

λjkk, as could arise if a Gaussian component has near zero localizations with a 423

substantial posterior probability αjik. 424

Finally, the weights of the Gaussian components are updated according to: 425

pk =
1

η

N∑
j=1

Mj∑
i=1

αjik . (18)

The different steps of the iterative JRMPC procedure are summarized as below:

Algorithm 2 JRMPC Algorithm

Input: a union of particles V = {Vj}Nj=1

Require: number of iterations Q, initial parameter set Θ0 ={
{p0

k,µ
0
k, σ

0
k}Kk=1, {R0

j , t
0
j}Nj=1

}
1: for q = 1 to Q do
2: Update αq

jik from Θq−1

3: Update Rq from αq
jik, pq−1

k ,µq−1
k and σq−1

k

4: Update tq from Rq, αq
jik, pq−1

k ,µq−1
k and σq−1

k

5: Update µq
k from tq, Rq and αq

jik

6: Update σq
k from µq

k, tq, Rq and αq
jik

7: Update pqk from αq
jik

8: q = q + 1
9: end for

10: return ΘQ =
{
{pQk ,µ

Q
k , σ

Q
k }Kk=1, {R

Q
j , t

Q
j }Nj=1

}
426
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