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ABSTRACT
Population size has long been considered an important driver of cultural diversity and complexity. Results

from population genetics, however, demonstrate that in populations with complex demographic structure or

mode of inheritance, it is not the census population size, N , but the effective size of a population, Ne, that

determines important evolutionary parameters. Here, we examine the concept of effective population size for

traits that evolve culturally, through processes of innovation and social learning. We use mathematical and

computational modeling approaches to investigate how cultural Ne and levels of diversity depend on (1) the

way traits are learned, (2) population connectedness, and (3) social network structure. We show that one-

to-many and frequency-dependent transmission can temporally or permanently lower effective population

size compared to census numbers. We caution that migration and cultural exchange can have counter-

intuitive effects on Ne. Network density in random networks leaves Ne unchanged, scale-free networks tend

to decrease and small-world networks tend to increase Ne compared to census numbers. For one-to-many

transmission and different network structures, effective size and cultural diversity are closely associated.

For connectedness, however, even small amounts of migration and cultural exchange result in high diversity

independently of Ne. Our results highlight the importance of carefully defining effective population size

for cultural systems and show that inferring Ne requires detailed knowledge about underlying cultural and

demographic processes.

AUTHOR SUMMARY
Human populations show immense cultural diversity and researchers have regarded population size as an

important driver of cultural variation and complexity. Our approach is based on cultural evolutionary

theory which applies ideas about evolution to understand how cultural traits change over time. We employ

insights from population genetics about the “effective” size of a population (i.e. the size that matters for

important evolutionary outcomes) to understand how and when larger populations can be expected to be

more culturally diverse. Specifically, we provide a formal derivation for cultural effective population size and

use mathematical and computational models to study how effective size and cultural diversity depend on (1)

the way culture is transmitted, (2) levels of migration and cultural exchange, as well as (3) social network

structure. Our results highlight the importance of effective sizes for cultural evolution and provide heuristics

for empirical researchers to decide when census numbers could be used as proxies for the theoretically relevant

effective numbers and when they should not.
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1. Introduction1

Cultural evolutionary dynamics are governed by individual-level cognitive processes and2

demographic properties of the population [Cavalli-Sforza and Feldman, 1981, Boyd and3

Richerson, 1985]. Archaeologists and anthropologists have been particularly interested in4

the ways population size might shape cultural processes [see Derex and Mesoudi, 2020,5

Strassberg and Creanza, 2021, for recent reviews]. When researchers consider the impact of6

population size on cultural evolution, they predominantly refer to the number of individuals7

in a population. This census population size N is readily observable in real-world situations8

and can be quantified by counting how many people are present at a certain place and time.9

1
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Results from population genetics, however, have long demonstrated that in most real-world10

populations it is not this census size, but the effective size, Ne, that is the correct measure11

to use when calculating important evolutionary parameters such as genetic diversity and12

divergence times between populations [Ewens, 2012].13

1.1. What is effective population size and why do we need it? The effective pop-14

ulation size is a theoretical construct that links complex populations to simpler, idealised15

models. This way, the effective size makes it possible to directly compare any number16

of complex populations—each with their own complicating factors—in a way that would17

otherwise be impossible. A commonly used simplified model in population genetics is the18

Wright-Fisher model [Fisher, 1923, Wright, 1931, Ewens, 2012], and much of what we under-19

stand about evolution comes from our understanding of evolution in such idealised models.20

The effective population size is defined in relation to this model as the size of an ideal21

Wright-Fisher population that experiences genetic drift at the same rate as a particular22

study population (see section 2 for details).23

To understand what we gain from the effective size, even if we are not particularly24

interested in Wright-Fisher models, let us assume there are two populations, A and B, that25

produce a particular cultural trait with many possible variants. We now want to know26

whether population size affects the number of different traits in a population. Population27

A has a large census population size of 1000 individuals, population B has a smaller census28

size of just 500. Using a theoretical model of a cultural evolutionary process [e.g. Shennan,29

2001, Henrich, 2004, Powell et al., 2009, Fogarty et al., 2017], we conclude that larger30

populations should have larger or more complex cultural repertoires. Can we expect to find31

this demographic relationship in data on census population sizes and cultural repertoire32

sizes from both populations [e.g. Oswalt, 1976]? The answer is that—regardless of how33

good the model is—the relationship is unlikely to be found unless these real populations34

are identical in some evolutionarily important ways. If they do not have the same age35

structure, demographic history, or, as we show below, cultural transmission mechanisms36

and interaction patterns, the populations are not directly comparable, except through their37

relation to a simpler model—through their effective population sizes.38

Imagine we now discover that, 10 generations ago, population A had a population bot-39

tleneck where its census size fell to only 10 individuals before recovering to its current value40

of 1000. Genetic evolution will be affected by this bottleneck for a number of generations41

(culture might recover from such events much faster than genetics [Fogarty and Kandler,42

2020]). Both populations are otherwise identical and conform to the assumptions of the43

Wright-Fisher model, which we detail below. Accordingly, the effective population size of44

the small, stable population B is 500, the same as its census size. The effective size of45

population A, however, is only around 92 (see appendix 1 for calculation). We can now46

use results from population genetics to calculate how many cultural traits we expect to47

see in each population, given certain transmission mechanisms and innovation rates. For48

population B with Ne = 500, the expected number of traits is 223. For population A with49

Ne ≈ 92, we expect to see on average 41 traits in a given generation (see appendix 1 for full50

details). Thus, although a relationship exists between effective population size and cultural51

diversity, a straightforward relationship does not exist between census size and diversity.52

Using census numbers or more informal definitions of effective size will produce incorrect53

results. As real populations differ from one another and from the assumptions of an ideal54
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Wright-Fisher model in numerous evolutionarily important ways, the ability to unify and55

compare them is invaluable. This is relevant for any question where we need to understand56

the effects of drift and selection in cultural processes across populations.57

For many animal and plant species, researchers have investigated the relationship between58

observed census size N and calculated (genetic) effective size Ne. In one large-scale study,59

ratios of Ne to N were found to vary between 0.19 in a species of pine tree to 3.69 in a60

species of mosquito [Waples et al., 2013]. This demonstrates that, across species, a large61

range of relationships between census and effective sizes are possible and Ne can also exceed62

the census size N—a possibility we expand on below. Estimates of this ratio for humans63

suggest that the genetic effective size is considerably lower than our census size with an Ne64

of around 10,000 compared to a census size of around 7 billion at the time of publication65

[Tenesa et al., 2007], possibly reflecting population bottlenecks in the past. All of this66

strongly suggests that in order to understand how demography affects cultural evolution,67

and which empirical comparisons are meaningful, we need to gain a better understanding68

of the cultural equivalent of Ne.69

1.2. Cultural effective population size - history and outline. The importance of ef-70

fective population size has been partially acknowledged in the cultural evolution literature71

and the concept is often invoked. Henrich et al. [2016], for example, write: “The theory72

explicitly predicts that it is the size of the population that shares information—the effective73

cultural population size—that matters, and if there is extensive contact between local or74

linguistic groups, there is no reason to expect census population size to correspond to the75

theoretically relevant population”. More recently, Derex and Mesoudi [2020] also claim that76

effective population size “depends on both population size and interconnectedness”. How-77

ever, the definition of Ne as “the population that shares information” is not always correct78

and corresponds more closely to the ‘breeding population’ rather than the effective size. We79

hope to show that it is not only the number of individuals sharing information, also called80

“cultural equivalent N” [Cavalli-Sforza and Feldman, 1981], but the exact details of how81

information is passed on between individuals that should be expected to influence cultural82

effective population size. Furthermore, it remains unclear whether and how different forms83

of population interconnectedness as well as social network characteristics might influence84

effective population size for culture, though intuition suggests that this influence may be85

strong. In a first formal treatment for cultural evolution, Premo [2016] used simulation86

models to investigate effective population size and its relationship with cultural complex-87

ity. In the context of models by Shennan [2001] and Henrich [2004], the results show that88

natural and cultural selection can weaken the relationship between census population size,89

cultural diversity and mean skill level. This work did not formally derive an appropriate90

measure for cultural effective size and examined the influence of selection within the scope91

of two domain-specific models.92

Here we aim to provide this formal derivation and systematically examine the concept93

of effective population size for cultural evolution. We first introduce drift and effective94

population size as employed in standard models of population genetics. After deriving95

appropriate formulations of Ne, we use different modeling approaches to investigate how96

cultural Ne depends on (1) the way traits are learned, namely one-to-many and frequency-97

dependent (i.e conformist and anti-conformist) transmission, (2) population connectedness98

through either migration or cultural exchange, and (3) social network structure. In each99
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case, we relate effective numbers to the emerging levels of cultural diversity. We conclude100

by discussing implications for the role of demography in cultural evolution and provide101

heuristics for empirical researchers to decide when census numbers might be used as proxies102

for the theoretically relevant effective numbers.103

2. Drift and effective population size in population genetics.104

We first provide a basic introduction to the Wright-Fisher population, genetic drift, and105

the concept of effective population size as developed for genetic evolution.106

2.1. The Wright-Fisher population and genetic drift. The classic Wright-Fisher pop-107

ulation is a closed, randomly mating population of N individuals without selection and mu-108

tation [Fisher, 1923, Wright, 1931, Fisher, 1931, Ewens, 2012]. For each discrete generation,109

new individuals are formed by random sampling, with replacement, of gametes produced110

by the previous generation. The number of offspring for a given member of the parental111

generation is a binomially distributed random variable with both mean and variance of ap-112

proximately 1 (for haploid populations; see appendix 2 for explanation). Genetic drift de-113

scribes the random change in allele frequencies from generation to generation by the chance114

success of some alleles relative to others [Wright, 1929, Masel, 2011, Whitlock and Phillips,115

2014]. While per definition unpredictable in any particular instance, on average, drift causes116

populations to change in broadly systematic ways: drift reduces the number of alleles in117

a population, increases the differences among populations and results in higher variability118

of allele frequencies over time. Crucially, the magnitude of allele frequency changes due119

to genetic drift is inversely related to the size of the Wright-Fisher population—the larger120

the number of individuals, the smaller the effects of genetic drift. These consequences are121

illustrated in Fig. 1 which shows the frequency of one allele in populations of different sizes,122

N = 10 (Fig. 1A), N = 100 (Fig. 1B), N = 1000 (Fig. 1C) or N = 10000 (Fig. 1D). Colored123

lines show trajectories for 8 separate populations evolving over 100 generations. In small124

populations, random sampling of alleles leads to strong fluctuations in allele frequencies125

over time. After relatively few generations, populations diverge and the allele either goes to126

fixation or extinct. Both outcomes are expected to happen half of the time as the allele was127

at 50% initial frequency. The larger the population, the smaller are temporal fluctuations128

in allele frequency and the longer it takes until populations diverge. Given enough time, in129

the absence of other evolutionary forces, even very large populations will diverge as much130

as smaller populations and the allele will go to fixation/extinction. Population size, thus,131

affects the rate of drift but not its eventual outcome.132

2.2. Effective population size. The effective size of a population, Ne, is a fundamen-133

tal concept in population genetics that allows researchers to quantify the effect of drift on134

evolution [Wright, 1931, Kimura and Crow, 1963, Charlesworth, 2009]. Ne is defined as135

the size of an idealized Wright-Fisher population that is identical in some key measure of136

genetic drift to a particular study population. Jointly with the mutation rate, Ne deter-137

mines the expected number of neutral or weakly selected genetic variants maintained in a138

population and is thus important for correctly calculating the variability in a population.139

In combination with the strength of selection, Ne also governs how effective selection can be140

in spreading favourable mutations and eliminating deleterious ones thus shaping the course141

of adaptive evolution [Charlesworth, 2009].142
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Figure 1. Drift. Frequency of a focal allele over 100 generations. Each line shows

evolution in a separate population of size N = 10 (A), N = 100 (B), N = 1000 (C)

or N = 10000 (D). All simulations start at the same initial allele frequency of 0.5.

Different aspects of the evolution of the Wright-Fisher population have been used to143

define Ne. These most often agree but diverge under some circumstances relevant to cul-144

tural systems. Therefore, we consider two commonly used measures, inbreeding effective145

population size, N i
e, and variance effective population size, Nv

e . In appendix 3, we provide146

derivations for haploid populations for situations when (1) there is variation in offspring147

numbers and (2) population sizes might differ between parental and offspring generation.148

The identity-by-descent (or inbreeding) effective population size N i
e utilizes the fact that,149

for finite populations, there is a certain probability for two randomly selected individuals150

to come from the same parent. It is calculated as:151

(1) N i
e =

Nt−1k̄ − 1

k̄ − 1 + σ2

k̄

,

where Nt−1 is the census size in the parental generation, k̄ is the mean number of offspring152

and σ2 is the variance in offspring number among members of the parental generation.153

The variance effective population size Nv
e , in contrast, focuses on the amount of random154

variation in allele frequencies from one generation to the next and can be calculated as:155

(2) Nv
e =

(Nt−1 − 1)k̄
σ2

k̄

.

Note that the inbreeding effective number is intimately related to the size of the popula-156

tion in the parental generation, while the variance effective number is related to the size of157

the population in the offspring generation [Crow and Kimura, 1970]. To understand why,158

imagine two parents, one carrying allele A, one carrying allele B, randomly producing a159
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large number of offspring. While this scenario will result in a high probability that two160

offspring share the same parent, the frequency of both alleles will still be close to 50% in161

the offspring generation (i.e. low inbreeding effective size and high variance effective size).162

If, on the other hand, a large number of parents produces only a handful of offspring, there163

will only be a small probability that two offspring share the same parent, while allele fre-164

quencies will differ greatly among generations (i.e. high inbreeding effective size and low165

variance effective size).166

The inbreeding effective number is appropriate when researchers are interested in the167

change in homozygosity due to random drift. The variance effective number, in contrast,168

is appropriate when researchers are interested in the amount of gene-frequency drift or the169

increase in variance among subgroups [Kimura and Crow, 1963, Crow and Denniston, 1988].170

Despite these differences, for constant population sizes (i.e. k̄ = 1), both effective numbers171

agree and equations simplify to:172

(3) Ne =
N − 1

σ2
.

In the following, we will only differentiate between the two formulations when necessary173

and otherwise use the simplified version given by Eq. (3).174

3. Determinants of effective population size in cultural evolution175

Researchers have identified several factors influencing Ne in genetic evolution [see e.g.176

Charlesworth, 2009]. In the case of cultural evolution, the relationship between census177

population size and the effective size may be considerably more complex. For example, the178

mode of transmission has been shown to be an important factor in determining effective179

size in genetic systems. In the case of culture, there are many more possible modes of180

transmission [Cavalli-Sforza and Feldman, 1981, Boyd and Richerson, 1985, Kendal et al.,181

2018] each of which may have unique effects. Therefore, in order to correctly use the concept182

of an effective size in cultural systems, a uniquely cultural theory must be developed.183

Traits that evolve culturally do so through processes of innovation and cultural trans-184

mission. So, we now consider cultural rather than biological reproduction and allow k̄ to185

represent the average number of naive individuals to which a role model transmits their186

cultural trait. Similarly, σ2 represents the variance in this ‘cultural influence’. Eq. (3) im-187

plies that, in general, increasing the variance among individuals in the number of cultural188

offspring they leave reduces the effective population size, and decreasing that variance in-189

creases Ne. Thus, it is clear that any process that systematically alters the way in which190

cultural role models are chosen, through the mode of transmission, demography or social191

network structure, will change the variance in cultural influence and the effective population192

size for culturally evolving traits.193

3.1. Simulation set-up. As the derivation of analytical results for effective population194

sizes becomes unfeasible for most of the situations considered in this paper, we develop a195

simulation framework based on the Wright-Fisher dynamic [Kimura and Crow, 1964]. We196

consider a population of census size N where individuals are characterized by the variant of197

a single cultural trait they have adopted. In each time step, a new generation of individuals198

is formed and each naive individual adopts its cultural variant, if not specified differently,199

through unbiased cultural transmission from the previous generation. In more detail, the200
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probability that a naive individual chooses variant i of M cultural variants present in the201

previous generation is given by:202

(4) pi =
ni∑M

m=1 nm
(1 − µ),

where ni is the frequency of variant i in the appropriate pool of role models. With203

probability µ an innovation takes place and a new, not previously seen variant is introduced204

into the cultural system. To calculate the effective population size in various scenarios, we205

first let the system evolve through unbiased transmission until it reaches its equilibrium206

state. We then run 300 generations assuming the transmission dynamics described below207

and record the “cultural influence” of each individual in a specific generation by determining208

its number of cultural offspring in the next generation. This provides us with estimates for209

k̄ and σ2 (conditioned on the assumed transmission dynamic) needed to calculate effective210

population sizes according to Eqs. (1) and (2). Additionally, to relate effective population211

sizes to resulting levels of cultural diversity, we record two diversity measures, the Simpson212

diversity index (SDI) and the number of unique cultural variants. The SDI is calculated213

as D = 1 −
∑S

i=1(ni/N)2, where ni is the frequency of individuals carrying variant i in214

the population and S is the total number of unique cultural variants [Simpson, 1949]. This215

index ranges from 0 to 1, where high scores indicate high cultural diversity and low scores216

indicate low cultural diversity.217

To account for transmission processes different from unbiased transmission, we adapted218

Eq. (4). For one-to-many transmission, we assign, in each generation, R individuals at219

random as role models and record the frequency ni in Eq. (4) only from these R individuals.220

For frequency-dependent transmission, we assume that the probability for adopting variant221

i of M cultural variants present in the population is given by:222

(5) pi =
nθi∑M

m=1 n
θ
m

(1 − µ),

where ni is the frequency of variant i in the whole population and θ controls the direction223

and strength of frequency-dependent bias [McElreath et al., 2008]. When θ = 1, cultural224

transmission is unbiased; as θ becomes larger than 1, individuals become increasingly likely225

to adopt high-frequency variants. When 0 < θ < 1, individuals disproportionately adopt226

low-frequency variants.227

To account for migration or cultural exchange, we use two, initially independent, pop-228

ulations evolving through unbiased transmission. In case of migration, per time step, an229

average of mN randomly chosen individuals from one population permanently migrate to230

the other population; they carry their cultural variants with them and consequently serve231

as potential role models for the next generation. The variable m controls the migration232

rate. To keep population sizes constant, the same number of individuals immigrates from233

the other population. In the case of cultural exchange, per time step, an average of eN234

randomly chosen individuals do not permanently migrate between populations, but are235

available as additional role models and, thereby, increase the size of the parental generation236

in both populations. The variable e controls the cultural exchange rate.237

To account for social network structure, we arrange the N individuals in the population238

according to different network topologies (random networks, scale-free networks and small-239

world networks); this restricts the pool of role models for each individual: the probability240
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of choosing cultural variant i, pi as given in Eq. (4), is determined only from its direct241

neighbours in the network. Our aim here is not to replicate realistic social networks but to242

use prototypical network types to illustrate potential effects of network structure on effective243

population sizes. Such extreme cases are often useful to identify causal effects and school244

intuition [see Broom and Voelkl, 2012, Giaimo et al., 2018, for similar analyses for genetic245

evolution]. All networks considered here are undirected and are generated as follows:246

(1) Random networks: In random networks, any two individuals have the same prob-247

ability of being connected. The Erdős-Rényi model generates such a graph by248

starting with a set of N isolated nodes and creating every possible edge with the249

same constant probability p [Erdős and Rényi, 1960]. For undirected graphs, there250

are N(N−1)
2 possible ties and p gives the expected proportion of those potential ties251

that are realized in the network (i.e. the network density).252

(2) Scale-free networks: A network is said to be scale free if the fraction of nodes with253

degree k follows a power law k−α, where α > 1. The Barabási-Albert model is254

an algorithm that uses a preferential attachment mechanism to generate such net-255

works [Barabási and Albert, 1999, Albert and Barabási, 2002]. Here, it is assumed256

that new nodes are added to the network two at a time. New nodes are connected257

to existing node i (out of J total nodes) with a probability Pi that is proportional258

to the number of links ki that a node already has: Pi =
kπi∑J
j=1 k

π
j

. That is, well-259

connected nodes are likely to get even more connected over time. The power of this260

preferential attachment is controlled by a parameter π, where π = 1 produces linear261

preferential attachment, 0 < π < 1 produces “sub-linear” attachment, and π > 1262

produces “super-linear” attachment.263

(3) Small-world networks: Small-world networks are graphs with short average path264

lengths between nodes and a high clustering coefficient. High clustering means that265

nodes that you are connected to are also likely to be connected to each other (e.g.266

most of your friends are also friends among themselves). The Watts-Strogatz model267

creates a small-world network in two basic steps [Watts and Strogatz, 1998]: We268

start with a lattice of N nodes with each node being connected to its K closest269

neighbors on either side. Each edge in the network is then rewired with a certain270

probability pr while avoiding duplicates or self-loops. After the first step the graph271

is a perfect ring lattice. So when pr = 0, no edges are rewired and the model returns272

a ring lattice. In contrast, when pr = 1, all of the edges are rewired and the ring273

lattice is transformed into a random graph.274

All simulation results shown in the following are based on 1000 independent simulations275

per parameter combination.276

3.2. Process of cultural transmission. We already know from genetic studies that the277

mode of inheritance can greatly alter effective population size [e.g. Charlesworth, 2009]. In278

cultural systems, the ways in which cultural variants can be passed on between individuals,279

from cultural ‘parents’ to cultural ‘offspring’, are even more numerous and complex [e.g.280

Cavalli-Sforza and Feldman, 1981, Boyd and Richerson, 1985, Kendal et al., 2018]. In the fol-281

lowing, we analyze how processes of cultural transmission can influence effective population282

size. We consider two transmission processes, one-to-many transmission and frequency-283

dependent transmission, whose internal dynamics differ in interesting ways. While the284
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number of transmitting individuals per generation is fixed under one-to-many transmission,285

it emerges dynamically from the interplay between the transmission mechanism and the286

frequency spectrum of the cultural variants under frequency-dependent transmission.287

3.2.1. One-to-Many Transmission. We define one-to-many transmission as the situation288

where only a small, pre-defined, number of individuals can transmit their cultural variant289

to members of the next generation. This transmission process may drastically change the290

variance in cultural influence and, thus, the effective population size depending on the291

number of role models, R. Here, R individuals can pass on their variant and N − R292

individuals cannot. In other words, each generation, we have a transmitting sub-population293

of size R and a non-transmitting sub-population of size N − R. In this case, the variance294

of cultural influence can be calculated as follows (see appendix 4 for the full details):295

(6) σ2
OTM =

N − 1

R
.

As R increases, i.e. as more role models have the chance to pass on their cultural trait,296

the variance of cultural influence in the population decreases, and for R = N we recover297

the expression for the variance of cultural influence in the standard Wright-Fisher model.298

Thus, the effective population size, Ne, for our one-to-many transmission model is simply299

the size of the transmitting sub-population per generation:300

(7) Ne =
N − 1

σ2
OTM

=
N − 1
N−1
R

= R.

Figs. 2A and B show the variance in cultural influence, given in Eq. (6), and the effective301

population sizes, given in Eq. (7), for different R values. The grey dots represent the302

mean values of the effective population size generated by the simulation model described303

in section 3.1 and, reassuringly, analytical and simulation results match very well. When304

everyone is a potential role model (i.e. R = N), we recover the standard Wright-Fisher305

model with a variance of cultural influence of approximately 1 and an effective population306

size of Ne = N . Restricting the pool of role models results in an increased variance in307

cultural influence and decreased effective population size. In the extreme case where the308

whole population learns from only one individual per generation, the effective population309

size is 1.310

Figs. 2C and D describe the cultural composition of the population at equilibrium by311

recording the level of diversity via the Simpson index and number of unique cultural vari-312

ants in the population. Levels of cultural diversity are jointly determined by the effective313

population size and innovation rate µ (remember that census size is always constant).314

3.2.2. Frequency-dependent transmission. We now turn to frequency-dependent cultural315

transmission where the number of transmitting individuals is not fixed but emerges from316

the interplay between the transmission process and the frequencies of cultural variants.317

This form of transmission is well-documented in both human [e.g. Deffner et al., 2020,318

Van Leeuwen et al., 2018] and non-human animals [e.g. Aplin et al., 2017, Danchin et al.,319

2018]. Positive frequency-dependent transmission, or conformity, occurs when the most320

common variants in a population are disproportionately more likely to be adopted. In321

contrast, negative frequency-dependent transmission, or anti-conformity, occurs when the322

rarest variants are disproportionately more likely to be copied.323
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Figure 2. One-to-many transmission. Variance in cultural influence (σ2
OTM; 2A),

effective population size (Ne; 2B), mean Simpson diversity (2C) and mean number

of unique cultural variants (2D) for different numbers of cultural role models R (with

census population size N = 1000). Analytical results were confirmed by stochastic

simulations. Grey diamonds in plot 2B show means and 90% prediction intervals

for 1000 independent simulations (with µ = 10−4).

This dynamic is modelled in our simulation framework through Eq. (5). After a burn-324

in phase under unbiased transmission, i.e. θ = 1, we change the θ value and record how325

effective population sizes change over time (see Fig. 3). We start by analysing relatively326

strong frequency-dependent transmission which results in situations where almost the whole327

population adopts the same cultural variant (for conformity; θ = 1.5, right column) or all328

cultural variants have similar frequencies (for anti-conformity; θ = 0.5, left column). Fig. 3329

shows that the change in transmission process leads to an immediate, and partly substantial,330

decrease in effective population size, followed by a fast recovery. The severity of the peak331

as well as the new equilibrium after the change is influenced by the innovation rate.332

Strong conformity substantially increases the probability that the most common variants333

are adopted and, therefore, reduces the number of transmitting individuals. This increases334

the variance in cultural influence and decreases the effective population size. As time335

progresses, one variant spreads trough the population and almost reaches fixation. Because336

there is no variation in variant frequency for conformity to act on anymore, every individual337

(at least every individual that does not carry an innovation) is equally likely to pass on their338

variant to the next generation; this resembles the situation in the standard Wright-Fisher339

model. Consequently, at equilibrium Ne ≈ N . We note that in the case of conformity,340

at equilibrium, higher innovation rates only result in a very slight decrease in effective341

population size (see Fig. 3 bottom row, right) as innovations are quickly driven to extinction.342
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Figure 3. Frequency-dependent transmission. Effective population size (including

90% PIs) for anti-conformist (θ = 0.5; left), unbiased (θ = 1; center) and con-

formist transmission (θ = 1.5; right) and different innovation rates µ. Plots show

trajectories for 100 generations after switch in transmission mode (1000 independent

simulations; N = 1000).

Strong anti-conformity substantially increases the probability that the rarest variants343

are copied, again reducing the number of transmitting individuals. As time progresses,344

variants become equally distributed and, consequently, individuals do not differ greatly345

in the likelihood of passing their variants to the next generation. But in contrast to the346

conformist situation, the effective population size at equilibrium is greatly influenced by347

the innovation rates; per definition, innovations are rare and, thereby, the target of anti-348

conformity. The higher the innovation rate, the more likely a variant is present in the349

population at low frequency and, therefore, the higher the differences between individuals350

in their cultural influence.351

Importantly, we note that the dynamics displayed in Fig. 3 only occur under rela-352

tively strong frequency-dependent transmission. In appendix 5, Fig. S1, we show that353

weaker forms of frequency-dependent transmission leave effective population sizes largely354

unchanged as now the change in transmission mode does not generate sufficiently large355

differences in individuals’ likelihood to pass on their cultural variant.356

Summarizing, cultural transmission processes different from unbiased transmission do357

not necessarily lead to a divergence between census and effective population size. This only358
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happens if transmission processes, such as one-to-many and strong frequency-dependent359

transmission, produce substantial heterogeneity in the probability with which individuals360

pass on their cultural variant to the next generation, i.e. their cultural influence.361

3.3. Population connectedness. In the previous sections, we analyzed the impact of dif-362

ferent processes of cultural transmission on the effective size of a cultural population. We363

now turn to the question of how population properties themselves might influence Ne. Em-364

pirical tests of demographic hypotheses often consider connectedness among groups, which365

has been assumed to change the effective size of the populations under consideration [Hen-366

rich et al., 2016, Derex and Mesoudi, 2020]. We start by analyzing the effects of population367

connectedness in the form of migration and cultural exchange.368

Fig. 4 shows effective population sizes and diversity indices for various degrees of mi-369

gration on the left and cultural exchange on the right. Irrespective of its rate, migration370

as we defined it influenced neither inbreeding nor variance effective population size. While371

introducing new variants into the population, migration in our model does not systemati-372

cally change the probability individuals get to pass on their cultural traits. As population373

sizes are constant and individuals still learn from random members of the parental gener-374

ation, whether they are recent immigrants or not, this scenario corresponds to the stan-375

dard Wright-Fisher population. Although effective numbers remain unchanged, even small376

amounts of migration increase both measures of cultural diversity compared to isolated pop-377

ulations. Further raising migration rates leaves diversity largely unchanged indicating that378

being connected through migration at all has the largest impact on diversity irrespective of379

the specific rate. Note that if migration increases the census size in a focal population, the380

effective size tracks this increase (see Fig. S2 in appendix 5 for a scenario where constant381

immigration raises the effective size and cultural diversity in a focal population).382

Cultural exchange, on the other hand, increases the inbreeding effective population size383

but not the variance effective size. Why is this? In case of cultural exchange, there are384

N(1 + e) individuals in the parental generation that pass on their cultural variants to only385

N individuals in the offspring generation. For the inbreeding effective size, this reduces the386

probability that two randomly picked individuals copy the same role model in the parental387

generation as there is now a greater pool of individuals to learn from. In contrast, for388

the variance effective size, only the number of learners matters such that changing the389

number of role models has no effect. In practice, this means that in cases where cultural390

exchange, or similar processes, are important features of a population’s cultural life, the391

relationship between census population size and effective population size will depend on392

the measure chosen. Looking at diversity, small rates of cultural exchange lead to the393

strongest increase in Simpson diversity and the number of unique variants independently of394

the effective population size.395

Summarizing, the effects of connectedness on effective population sizes are subtle, prob-396

ably difficult to detect, and depend on the exact form of connectedness and effective size397

formulation.398

3.4. Social network structure. So far, we have considered panmictic (or “well-mixed”)399

populations. Real populations, however, are often highly structured in terms of kinship,400

peer relationships or social class, all influencing who individuals are most likely to interact401

with and learn from [Knox et al., 2006, Borgatti et al., 2018, Derex and Mesoudi, 2020].402
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Figure 4. Population connectedness. Variance (green squares) and inbreeding (yel-

low circles) effective population sizes (including 90% PIs; top), Simpson diversity

(center) and mean numbers of unique variants (bottom) for different migration rates

m on the left and cultural exchange rates e on the right. We need to differentiate

between effective size formulations because population sizes might differ between

parental and offspring generations. Results come from 1000 independent stochastic

simulations with census population size N = 1000.

To reflect individual heterogeneity in potential role models and mimic different ways of403

information flow, we arrange the N individuals of the population in networks with different404

properties (see Fig. 5, top row, and section 3.1 for a more detailed description).405

Fig. 5, second row, shows how the way interactions between individuals are structured406

affects the effective population size. In random networks, irrespective of network density407

(i.e. the ratio between observed and possible edges), the effective size always equals the408

census size of the population. As every individual has the same probability p of being409

connected to any other individual, the number of links are binomially distributed and there410

is no systematic difference in individuals’ probability to pass on their cultural variants.411

Density also does not affect levels of cultural diversity such that strongly interconnected412

populations are not more diverse if connections are random.413
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Figure 5. Social network structure. Exemplary networks (A-C), effective popu-

lation sizes (with 90% PIs; D-F), mean numbers of unique cultural variants (G-I)

and Simpson diversity indices (J-L) for random (Erdős-Rényi), scale-free (Barabási-

Albert) and small-world (Watts-Strogatz) networks. Parameter p gives the proba-

bility any two nodes are connected in random networks, π is the power of preferen-

tial attachment creating scale-free networks and K represents the number of initial

neighbors on each side in small-world networks (with pr = 0.01). Note that because

of structural differences between network types, the ranges of parameter values on

the x-axes are not directly comparable. All graphs are created using the igraph R

package [Csardi et al., 2006]. Results come from 1000 independent simulations with

census population size N = 1000. On the top, only 100 nodes are drawn for ease of

illustration with p = 0.1, π = 1 and K = 4.
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The situation is very different for scale-free networks. Per definition, their power-law414

degree distribution implies drastically different levels of cultural influence depending on415

network position. Individuals central to the network will spread their cultural variant to416

a great number of individuals while more peripheral individuals will pass on their variant417

to just a few. This increased variance in cultural influence results in substantially lower418

effective numbers and also lower levels of cultural diversity. In the extreme case, strong419

preferential attachment results in a star-shaped network and all individuals will learn from420

few very central models.421

Finally, effective numbers tend to be greater than census numbers for small-world net-422

works. This demonstrates that Ne can also exceed N in cultural systems. As a consequence423

of strongly local cultural transmission, the variance in cultural influence is reduced com-424

pared to random or fully-connected networks. That way, rare cultural variants that would425

otherwise be quickly lost due to drift, can be shared in local clusters maintaining higher426

levels of cultural diversity. As either the number of initial neighbors, K, or the rewiring427

probability, pr (not shown here), goes up, we approach a fully connected network where428

everyone can learn from anyone else and Ne approaches census size N .429

4. Discussion430

We have systematically examined effective population size, a concept derived from the-431

oretical population genetics, for culturally evolving traits. The effective size allows us to432

compare populations, where it would otherwise be difficult to do so. We showed that both433

modes of cultural transmission and relevant elements of population structure can change434

the effective size compared to the census size, sometimes considerably. One-to-many and435

frequency-dependent transmission can substantially lower effective population size with the436

strongest effects of frequency dependence occurring when the system is out-of-equilibrium.437

Investigating different forms of connectedness between populations, we found that migra-438

tion as we define it does not increase Ne and cultural exchange among groups increases439

inbreeding effective number but not variance effective number. This implies that consid-440

erable precision and caution is needed in defining cultural effective sizes. Finally, while441

random networks with varying densities leave Ne unchanged, scale-free networks tend to442

decrease and small-world networks tend to increase Ne compared to the census number.443

Population size has been invoked to explain several patters of cultural change, most444

notably the emergence and loss of cultural complexity observed in the ethnographic and445

archaeological record. Several theoretical models have been developed to better understand446

the interplay between learning and demography in generating cultural complexity [Shennan,447

2001, Henrich, 2004, Powell et al., 2009, Fogarty et al., 2017]. Although quite diverse in448

terms of underlying mechanisms, these models generally agree in predicting more complex449

cultural repertoires in larger populations. Both real-world ethnographic and archaeological450

data as well as controlled lab experiments have been used to test the relationship between451

population size and cultural complexity. Results with both approaches have been mixed452

with some studies supporting the hypothesis [e.g. Powell et al., 2009, Kline and Boyd, 2010,453

Derex et al., 2013, Muthukrishna et al., 2014, Kempe and Mesoudi, 2014] but others not454

[e.g. Collard et al., 2005,0, Caldwell and Millen, 2010, Fay et al., 2019].455

These inconsistent findings do not necessarily refute the theoretical models but might456

instead reflect a poor correspondence between theory and empirical tests. Here, we have457
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demonstrated that obtaining correct and comparable values for the population size in com-458

plex cultural scenarios is not straightforward. In order for the results from theoretical459

models to apply correctly to empirical cases, we need to ensure that model parameters are460

correctly translated into measures from complex real-world scenarios.461

Our results show that, when there are a few highly influential individuals who—through462

transmission modes—strongly influence the cultural makeup of the population, the census463

size and the effective size can diverge. Similarly, where populations are organised into464

social networks in which individuals are heterogeneous with respect to their degree, the465

ratio between census and effective size can either increase or decrease depending on network466

structure. These results also highlight that even relatively small populations might be able467

to maintain comparatively high levels of cultural diversity if connections are structured in468

a certain way. Through predominantly local transmission in small-world networks, cultural469

variants can persist in parts of the network over long periods of time resisting the effects of470

drift. In this case, larger local clusters or more links between clusters somewhat counter-471

intuitively reduce the effective population size even though individuals now share ties with472

more potential cultural models.473

In cultural evolutionary studies, effective size has mostly been invoked as a rhetorical474

device to explain why the demographic hypothesis fails to predict observed levels of com-475

plexity in certain cases [however, see Premo, 2016, for a first formal approach]. Our results476

suggest that this reasoning is too simplistic. For instance, the effects of interconnectedness477

depend not only on the exact process of exchange but also on the way effective size is de-478

fined. Neither migration nor cultural exchange, as we have modelled them, have consistent479

effects on the effective population size. These results do not imply that connectedness be-480

tween populations is not an important factor for cultural dynamics, rather that its effect481

is likely not through increasing the effective size of a population. The finding that small482

amounts of cultural exchange result in the most diverse populations confirms previous the-483

oretical results suggesting that partial connectivity among populations maximizes cultural484

accumulation [Baldini, 2015, Derex et al., 2018].485

Overall, these results highlight that census numbers cannot generally be relied on when486

evaluating hypotheses about the effects of demography on culture. It is the effective size that487

matters and inferring effective population sizes requires detailed knowledge about underlying488

cultural and demographic processes. To our knowledge, there are no existing methods489

applicable to estimating effective size in complex cultural systems [for genetic data, see Foll490

et al., 2015, for an approximate Bayesian computation method to infer genome-wide average491

effective population size]. The basic theory of Ne in cultural systems is complicated and492

in need of considerable development before estimation could become feasible through, for493

instance, generative inference [Kandler and Powell, 2018]. Estimation methods will need to494

take account of several relevant mechanistic deviations from ideal models simultaneously,495

where, for example, transmission modes and social networks both play important roles.496

Our results can also be used as more informal heuristics to decide when census numbers497

could be used as proxies for the theoretically relevant effective numbers. In societies where498

cultural influence is highly skewed in favor of a small elite, for instance, there is no reason499

to expect that the overall size of that population should be related to cultural complexity.500

In relatively egalitarian societies, in contrast, where all individuals are equally likely to501

transmit their ideas and behaviors, census size could be a reasonable approximation of502
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effective size. With respect to transmission biases (or social learning strategies), our results503

suggest that census numbers might be used as proxies for Ne as long as biases are relatively504

weak and do not drastically change the relative success of certain cultural variants. Further,505

if due to recent transformative events, cultural system are out of equilibrium, researchers506

should not expect census numbers to conform to the theoretically relevant quantity. Finally,507

if social network structure prevents ideas from flowing freely through the community, census508

numbers might still be appropriate to test demographic hypotheses as long as connections509

are relatively random. Most real-world social ties, however, are unlikely to be random and,510

in that case, census population size might as well under- or overestimate the effective size511

of cultural populations depending on exact network configurations.512

In summary, in order to use the concept of effective population size as an explanatory tool513

in cultural systems, we must first understand how uniquely cultural processes impact its514

calculation and use this understanding to develop sophisticated estimation methods capable515

of capturing the complexity of real world cultural dynamics.516
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Etienne Danchin, Sabine Nöbel, Arnaud Pocheville, Anne-Cecile Dagaeff, Léa Demay,
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Overview
Appendix (1) shows how to calculate effective population size and expected number of cul-

tural traits for the simple example used in section 1.1. in the introduction.

Appendix (2) explains why both mean and variance in offspring number are approximately

1 for in the haploid Wright-Fisher population.

Appendix (3) shows the derivation of both inbreeding and variance effective population sizes

as appropriate for cultural evolution.

Appendix (4) derives the appropriate formula for calculating the pooled variance for trans-

mitting and non-transmitting sub-populations that is used to calculate effective population

size for one-to-many transmission.

Appendix (5) contains additional results.

1. Calculations for example used in section 1.1. in the introduction

Remember that we assumed there are two populations, A and B, with current census

population sizes of 1000 and 500 individuals, respectively. Population A had a population

bottleneck ten generations ago when its census size fell to just 10 individuals before imme-

diately returning to its current size of 1000. If population size is fluctuating over time and

we have information from a total of T non-overlapping generations, the effective size Ne is

given by the harmonic mean (i.e. the reciprocal of the arithmetic mean of the reciprocals)

of the population sizes at each point in time t:

(1.1) Ne =
1

1
T

T∑
t=1

1
Nt

.

In our example, for population A, N1 = 10 and N[2:10] = 1000, for population B, N[1:10] =

500. Plugging these values into Eq. (1.1) gives the effective population sizes of Ne = 91.7

for population A and Ne = 500 for population B.

Based on these effective sizes and assuming a certain innovation rate (here µ = 0.1) and

unbiased cultural transmission, we can use results from population genetics [see Ewens,

2012, p. 115] to approximate the mean number of cultural traits we expect to see each

generation, E(K), as follows:

(1.2) E(K) ≈ θ +

∫ 1

N−1
e

θx−1(1 − x)θ−1dx,

1
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where θ = 2Neµ is the standard population mutation parameter. For population B with

Ne = 500, the expected number of traits is, thus, E(K) ≈ 223. For population A with

Ne = 91.7, we expect to see on average E(K) ≈ 41 traits in a given generation.

2. Properties of the haploid Wright-Fisher population

Both mean and variance in offspring number are roughly 1 for a haploid Wright-Fisher

population. Why is this the case? For the Wright-Fisher population with a population size

of N , N parents are chosen at random with replacement from the full population. From

the point of view of any focal individual, the probability of being chosen as a parent to any

one of the N offspring is p = 1/N , the probability of not being chosen, correspondingly, is

q = 1−1/N . We conduct N trials and so the number of offspring produced by any member

of the population is a binomially distributed random variable. The mean of this is simply

k̄ = Np = N/N = 1. The variance is σ2 = Npq. This is σ2 = N
(

1
N

) (
1 − 1

N

)
. Simplifying,

we get σ2 = 1 − 1
N . It is common here to neglect terms on the order of 1

N ; they are very

small because N is usually very large, giving us σ2 ≈ 1.

3. Derivation of inbreeding and variance Ne

Different aspects of the evolution of the Wright-Fisher population have been used to

define Ne. We seek expressions for both inbreeding and variance effective numbers for

situations where (1) there is variation in offspring numbers and (2) population sizes might

differ between parental and offspring generation. Here, we follow the general presentation

of Kimura and Crow [1963], but make adjustments for haploid populations where necessary.

Haploids are characterized by only one set of variants, whereas diploids are characterized

by two sets. In cultural transmission, learners adopt a single variant of a cultural trait from

one or several role models, there is no inheritance of two corresponding alleles from sexually

reproducing parents.

Consider a population of Nt−1 individuals each contributing a variable number, ki, of

offspring to the next generation. In general, the mean number of offspring is

(3.1) k̄ =

Nt−1∑
i=1

ki

Nt−1
,

and the variance in offspring number is

(3.2) σ2 =

Nt−1∑
i=1

k2
i

Nt−1
− k̄2.

3.1. Inbreeding effective population size. The identity-by-descent (or inbreeding) ef-

fective population size N i
e utilizes the fact that in finite populations there is a certain

probability that two randomly selected individuals in generation t are descendant from the

same parent. As this single-generation probability of identity by descent, Pt, in the ideal
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Wright-Fisher population is simply 1/Nt−1, we can use an estimate of this probability in the

real population to calculate the effective population size as N i
e = 1/Pt. For our example, the

number of ways in which two offspring from a given parent i can be selected is ki(ki− 1)/2.

Summing over all members of the parental generation, the total number of ways in which

two offspring from the same parent can be selected is
Nt−1∑
i=1

ki(ki − 1)/2, whereas the total

number of offspring pairs is Nt−1k̄(Nt−1k̄− 1)/2. Dividing the former by the latter, Pt can

thus be calculated as

(3.3) Pt =

Nt−1∑
i=1

ki(ki − 1)

Nt−1k̄(Nt−1k̄ − 1)
=

Nt−1∑
i=1

k2
i −

Nt−1∑
i=1

ki

Nt−1k̄(Nt−1k̄ − 1)
.

From the definition of the mean (k̄; see equation 3.1),

(3.4)

Nt−1∑
i=1

ki = Nt−1k̄.

and from the definition of the variance (σ2; see equation 3.2),

(3.5)

Nt−1∑
i=1

k2
i = Nt−1σ

2 +Nt−1k̄
2.

Substituting these into equation 3.3 results in

(3.6) Pt =
Nt−1σ

2 +Nt−1k̄
2 −Nt−1k̄

Nt−1k̄(Nt−1k̄ − 1)
.

Rearranging, we can calculate the inbreeding effective number for haploid populations as

(3.7) N i
e =

1

Pt
=
Nt−1k̄ − 1

k̄ − 1 + σ2

k̄

.

3.2. Variance effective population size. The variance effective population size Nv
e , in

contrast, focuses on the amount of random variation in allele frequencies from one generation

to the next. Assume that p is the frequency of an allele in an ideal Wright-Fisher population

of size N . The sampling variance of the gene frequency drift from parent to offspring

generation is Vδp = p(1 − p)/N and, therefore, Nv
e = p(1 − p)/Vδp. Similarly to above,

we seek an expression for Vδp to infer the corresponding effective number. Again, assume

there is a population of Nt−1 individuals each contributing a number of ki offspring to the

next generation. Let p denote the frequency of allele A in the population and let n1 be the

number of individuals carrying allele A (n1 = Nt−1p). The number of A alleles contributed

to the next generation is
n1∑
i=1

ki. Thus, the increment in A alleles from generation t − 1 to

generation t is given by:

(3.8) Nt−1k̄δp =

n1∑
i=1

ki −Nt−1k̄p.
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Expressing p as
n1∑
1

k̄
Nt−1k̄

and substituting into equation (3.8) gives,

(3.9) Nt−1k̄δp =

n1∑
i=1

(ki − k̄).

Using expectation notation, we now write an expression for the variance in the change in

p, Vδp = E[δp]2.

(3.10)
(Nt−1k̄)2Vδp = E[

n1∑
i=1

(ki − k̄)]2

= n1σ
2 + n1(n1 − 1)Ckk′ ,

where Ckk′ = − σ2

Nt−1−1 is the covariance in offspring number for randomly selected pairs

from the parental generation. Substituting this and simplifying results in

(3.11) =
σ2

Nt−1 − 1
n1(Nt−1 − n1).

If we then replace n1 by Nt−1p, we get

(3.12) (Nt−1k̄)2Vδp =
σ2

Nt−1 − 1
Nt−1p(Nt−1 −Nt−1p),

and

(3.13) k̄2Vδp =
σ2

Nt−1 − 1
(1 − p).

Replacing Vδp with p(1−p)
Nv

e
gives

(3.14) k̄2 p(1 − p)

Nv
e

=
σ2

Nt−1 − 1
(1 − p).

Solving for Nv
e results in

(3.15) Nv
e =

(Nt−1 − 1)k̄2

σ2
=

(Nt−1 − 1)k̄
σ2

k̄

.
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4. Expressing the variance of the full population in terms of

sub-population variances and means

The combined variance, σ2
c , is given by

(4.1) σ2
c =

1

N

N∑
i=1

(ki − k̄c)
2,

where, again, N is the total population size, ki is the number of cultural offspring of the

ith individual in the parental generation, and k̄c is the combined mean offspring number for

the whole population (including both the group of cultural transmitters and the group of

non-transmitters). To write a general expression for the variance in the full population, we

split the population into two arbitrary groups of size n1 and n2 where n1 + n2 = N . We

label the mean offspring number within those subpopulations as k̄1 and k̄2 respectively, and

the variances in offspring number, similarly, as σ2
1 and σ2

2.

Now, it is possible to express the variance of the complete population (σ2
c ) in terms of

the means and variances of the two subpopulations.

Nσ2
c =

N∑
i=1

(
ki − k̄c

)2
=

n1∑
i=1

(
ki − k̄c

)2
+

N∑
i=n1+1

(
ki − k̄c

)2
.

(4.2)

With some rearranging, we get

Nσ2
c =

n1∑
i=1

((
ki − k̄1

)
−
(
k̄c − k̄1

))2
+

N∑
i=n1+1

((
ki − k̄2

)
−
(
k̄c − k̄2

))2
=

n1∑
i=1

(
ki − k̄1

)2
+ n1

(
k̄c − k̄1

)2
+

N∑
i=n1+1

(
ki − k̄2

)2
+ n2

(
k̄c − k̄2

)2
,

(4.3)

using the fact that in general
∑M

j=1 kj − k̄M = 0. So, we have

Nσ2
c = n1σ

2
1 + n2σ

2
2 +DN ,(4.4)

where

(4.5) DN = n1

(
k̄1 − k̄c

)2
+ n2

(
k̄2 − k̄c

)2
.

To allow some simplifications we can rewrite DN as

(4.6) DN =
n1n2

N

(
k̄1 − k̄2

)2
.

Details of this simplification can be found in O’Neill [2014]. The decomposed expression for

σ2
c , then is

(4.7) σ2
c =

n1σ
2
1 + n2σ

2
2 + n1n2

N

(
k̄1 − k̄2

)2
N

.

Now, to apply this to our population and to the calculation of effective population size,

we make the following assumptions. Population 1 is the transmitting population. Therefore,

n1 = R,n2 = (N − R). k̄1 is the mean number of cultural offspring per individual in the
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transmitting sub-population. Given that there are N learners and R role models, we get

that k̄1 = N
R , and the mean for the other sub-population is 0, since they cannot pass on their

trait (k̄2 = 0). The variance for the non-transmitters (σ2
2) is the same, 0. The variance

for the transmitting population is obtained in the same way as the variance for the full

Wright-Fisher population and is N
R

(
1 − 1

R

)
.

Inserting these values into equation 4.7 results in

(4.8) σ2
c =

RN
R

(
1 − 1

R

)
+ (N −R)(0) + R(N−R)

N (NR − 0)2

N
,

which simplifies to

(4.9) σ2
c =

N − 1

R
,

the solution for σ2
OTM shown in the main text (equation 6).

5. Additional results
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Figure S2. Alternative migration mechanism that gradually increases the census

size N in a focal population. We start by letting a large source population with

N = 10000 and a small focal population with N = 100 evolve separately until they

reach equilibrium; each generation, we then let a fixed number of individuals migrate

from the source population to the focal population and record effective numbers and

diversity indices in the focal population. Effective population size (left), number of

unique cultural variants (center) and Simpson Diversity (right) for different inno-

vation rates µ. Plots show trajectories for 150 generations after immigration starts

(1000 independent simulations with 50 immigrants per generation).
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