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Abstract

It is well known in the literature that human behavior can change as a re-
action to disease observed in others, and that such behavioral changes can be
an important factor in the spread of an epidemic. It has been noted that hu-
man behavioral traits in disease avoidance are under selection in the presence
of infectious diseases. Here we explore a complimentary trend: the pathogen
itself might experience a force of selection to become less “visible”, or less
“symptomatic”, in the presence of such human behavioral trends. Using a
stochastic SIR agent-based model, we investigated the co-evolution of two
viral strains with cross-immunity, where the resident strain is symptomatic
while the mutant strain is asymptomatic. We assumed that individuals exer-
cised self-regulated social distancing (SD) behavior if one of their neighbors
was infected with a symptomatic strain. We observed that the proportion
of asymptomatic carriers increased over time with a stronger effect corre-
sponding to higher levels of self-regulated SD. Adding mandated SD made
the effect more significant, while the existence of a time-delay between the
onset of infection and the change of behavior reduced the advantage of the
asymptomatic strain. These results were consistent under random geometric
networks, scale-free networks, and a synthetic network that represented the
social behavior of the residents of New Orleans.

Keywords: Mandated social distancing; Self-regulated social distancing; Net-
work; Viral evolution; Symptomatic variant; Asymptomatic variant
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1 Introduction

Epidemic spread of infectious diseases is a topic that has received much attention
among computational modelers, see e.g. [1, 2, 3, 4, 5]. One important aspect of this
process is the rise and spread of mutant variants of the pathogen [6, 7, 8, 9, 10, 11].
For example, in a spatially expanding epidemic, it was shown that less virulent
strains will dominate the periphery while more virulent strains will prevail at the
core [12]. It has also been observed that in epidemic models where infection events
happen on an interaction network, evolutionary dynamics of the pathogen change
depending on the structure of the network [13, 14, 15, 16]. It has been shown, for
example, that heterogeneities in contact structure (i.e. network degree) may ac-
celerate the spread of a single disease, and at the same time slow down the rise
of a rare advantageous mutation under susceptible-infected-susceptible (SIS) infec-
tion dynamics [17]. In the context of spatial networks with host migration, it was
reported that the spatial network structure may have important effects on the tran-
sient evolutionary dynamics during an epidemic [18]; in particular, the front and the
rear of the expanding epidemic are expected to be phenotypically different. Pinotti
et. al. [19] studied the influence of the social network structure on competition
dynamics of strains (with identical parameters) that are spread via a stochastic SIS
model on the network. It was found that network structure can affect the ecol-
ogy of pathogens: in a more heterogeneous network, a reduction in the number of
strains and an increase in the dominance of one strain were observed, while strong
community structure in the social network increased the strain diversity.

Another relevant characteristic of epidemic dynamics that has been investigated
is the effect of human behavior on disease spread, see e.g. [20, 21, 22, 23]. Differ-
ent aspects of human behavior have been considered, including relational exchange
(e.g. replacement of sick individuals by healthy ones in the workplace) [24], people’s
hygiene [25], voluntary vaccination and vaccination compliance [26], “risky” versus
“careful” individual behavior [27, 28, 29, 30, 31], and the related concept of social
distancing. Social distancing is a change of behavior that can roughly be classi-
fied into (1) self-regulated (or spontaneous) where individuals may choose to limit
their contacts based on information that they receive or on their personal beliefs
[32, 33, 31, 34, 35, 36]; and (2) mandated (public), where the decrease in social
contacts is regulated centrally and affects either the entire population or certain
subpopulations [37, 38]. The COVID19 pandemic has triggered much research into
the role of social distancing in viral spread, especially because before the advance
of vaccination, non-pharmaceutical intervention (NPI) measures were the only way
of intervention available [39]. NPI policies have taken a variety of forms such as ex-
treme lock-downs, school closure, road and transit systems restrictions, and manda-
tory isolation/ quarantine [40], see e.g. [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51] on
the effects of mandated social distancing on SARS-CoV-2 spread. In a recent paper
[52] the authors considered the combination of both mandated and self-regulated
types of social distancing, and studied their effect on the outbreak threshold of an
(asymptomatic) infectious disease.

In this paper we explore the role of mandated and self-regulated social distanc-
ing on viral evolution. The focus of this study is the co-evolution of two types
of a pathogen, the resident, more symptomatic, pathogen, and an emerging, less
symptomatic (or asymptomatic), variant. The two may or may not differ in their
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infectivity properties, but because they present differently, they will trigger different
behavior of the individuals, which may result in different levels of self-regulated so-
cial distancing. As a result, the less symptomatic variant may experience a selective
advantage. We will use the usual framework of the susceptible-infectious-removed
(SIR) model on networks, and investigate how the network structure (including
random networks of different types and a synthetic network representing social in-
teractions of real individuals) modifies the co-dynamics of the two viral strains.

2 Methods

The model includes the infection dynamics transmission and intervention strategies.
It is assumed that the disease spreads within a Susceptible–Infected–Removed (SIR)
framework. Dynamics take place on a network, and three different network types
are studied.

2.1 Network structure

We assume that the epidemic spreads on a network of size N , where each node
represents a person, and the edges represent interactions. Here we study two types
of random, unweighted networks: the random geometric network, and the scale-free
network (with N = 10, 000 nodes). Each of these networks represents a different
type of abstraction that retains certain features of human interactions. In addition
to these two types of random networks, we also studied disease spread on a real-
world synthetic network of a much larger size (N = 150, 000), where the edges are
weighted by the time the two individuals spend together. This synthetic network
was constructed based on interaction data of people in New Orleans [53, 54].

Random Spatial-Geometric Network. This network is constructed by placing
N points in a unit square and connecting only the points that are within a prescribed
Euclidean distance, r, from each other. Such networks are characterized by a strong
local structure and clustering properties, and have been studied extensively in the
literature [55, 56]. Such networks could represent local social contacts of individuals
in the absence of any long-range connections.

Scale-free Network. This network is characterized by a power law degree distri-
bution. As a result, while most individuals only have a limited number of contacts,
there are “super-spreaders” of very high degrees [57, 58]. Examples of applications
of such networks are the number of sexual partners in a college environment [59] or
the network of a city with buildings (nodes) and flows of people as connecting edges
[60].

We use Networkx open software platform [61] to generate Spatial-Geometric
random networks in dimension 2 and and distance threshold r = 0.02. We also use
the Barabási–Albert preferential attachment model in Networkx to generate scale-
free networks with degree distribution P (k) ∼ k−2.11. The random networks have the
same size and average degree, but they differ in terms of their degree distributions
and other properties, since they have different structures.

3

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.09.459585doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.09.459585


Each of these networks has advantages and disadvantages when used to model
epidemic spread in populations. Random spatial-geometric networks successfully
model clustering properties of human interactions but do not include long-range
connections or superspreaders. Superspreaders are a natural part of scale-free net-
works, but the latter network type has no clustering or neighborhood structure. For
these reasons we perform all the analyses for different network types, to investigate
whether observed phenomena depend on any particular network properties. Finally,
we implement the most realistic network in the study, the New Orleans synthetic
network, which is described below.

Real World Network. Our real world network is based on the synthetic data
generated by Simfrastructure [53, 54] for N = 150, 000 synthetic people residing in
New Orleans. Simfrastructure is a high-performance, service-oriented, agent-based
modeling and simulation system for representing and analyzing interdependent in-
frastructures. In the New Orleans network, each edge ij between two nodes i and
j is weighted by ωij, which represents the strength of connectivity between i and j,
and reflects the type of connection as well as the amount of time the two individuals
spend with each other.

2.2 SIR model on a network for two virus strains

In our stochastic Susceptible–Infectious- Removed (SIR) model superimposed on the
network, an individual i at time t is either susceptible to being infected, infected,
or removed from the infection because of recovery or death. During a time-interval
∆t, an infected individual can infect any of their susceptible neighbors (that is,
susceptible individuals connected with them by an edge). We denote by β the
infection rate per edge, such that during time ∆t, the probability that a susceptible
individual j will be infected by an infected neighbor i is given by βωij∆t. (Note
that for the random spatial and scale-free networks, we will use ωij = 1). For
each infected individual, a recovery event occurs during the time-interval ∆t with
a probability γ∆t, or a death event occurs with a probability δ∆t, and we refer to
the rate of death or recovery as the rate of removal, ρ = γ + δ.

We assume the existence of two distinct variants (strains) of the virus, which we
denote by V1 and V2. Our model incorporates permanent cross-immunity for either
viruses, that is, if an individual is infected by virus k, then they are immune to
virus k′ for k′ 6= k during their infection and after recovery (here k, k′ ∈ {1, 2}). We
further assume that an individual infected with virus k can only induce infection
with virus k, that is, we do not consider spontaneous mutations from one type of
virus to the other.

Unless noted otherwise, the two virus strains are assumed to have identical pa-
rameters, that is, the same values of β, δ, and γ. The only difference between the
two strains is that one (V1) causes a symptomatic disease, while the other (V2) is
asymptomatic. This gives rise to differences in people’s behavior, as described in
the next subsection. Later on, we consider scenarios in which symptomatic infection
is coupled to a higher viral infectivity.

For initialization, we start the epidemic by randomly infecting one individual
with V1. We then advance the simulation until the epidemic grows to 0.1% V1-
infected individuals. At this time we introduce the next randomly generated newly
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infected case as a V2 infection; this represents a single mutation event of the resident
strain.

At this point, we reset the time to zero and use this state as the initial condition
to study the virus co-dynamics in the absence of any further mutant generation.

Simulation speed depends on the size of time-step ∆t, so it is desirable to pick
the largest value for ∆t such that the simulations exhibit reasonable convergence
accuracy, see also [62]. We have implemented the program for the null scenario (no
social distancing) with ∆t values representing 1 day, 1 hour, and 1 minute, and while
results differed significantly between ∆t = 1 day and ∆t = 1 hour, the the result for
∆t = 1 hour and ∆t = 1 minute were almost identical. Therefore, we chose ∆t = 1
hour for our simulations in this study.

2.3 Social distancing strategies

We model two types of social distancing (SD) strategies: (1) mandated SD imple-
mented by the government, and (2) self-regulated SD.

Mandated SD is implemented as follows: when the prevalence of virus (i.e. the
fraction of infected individuals among the population) reaches a fixed threshold ψ,
all individuals start practicing temporary social distancing. To this end, the fraction
σM of all the edges in the network are removed for τM consecutive days; connections
to be removed are chosen randomly.

Self-regulated SD is also implemented only if the number of infections has reached
the threshold prevalence ψ. If an individual has at least one neighbor that is symp-
tomatically infected with V1 (after a delay τs following infection), they remove frac-
tion σS of their connections. The connections to be removed are chosen randomly,
and remain cut for as long as there is a symptomatically infected neighbor.

It is possible that fraction σS or σM of connections is a non-integer number, K.
In this case, if [K] stands for K’s integer part, [K]+1 connections are removed with
probability K − [K], and [K] connections are removed otherwise.

2.4 Parameter values

The definitions of all the variables and parameters of the proposed model are given
in the table 1. The parameter values have been chosen to be realistic for respiratory
infections and are specified in the figure legends. Under these parameters, the basic
reproduction number comes out to be between 2 and 3 for the examples considered.

To estimate the reproduction number R0, starting with randomly selected indi-
vidual as initial infected case, we count the number of neighbors who get infected
from them during their infection period. We repeat this process for a large number of
independent simulations, seeding different initial infected individuals. Intervention
parameters will change based on different scenarios explored here, and are specified
in figure legends.
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Notation Description Unit

N Number of nodes in the network People
Network Spatial network –
Parameters Scale-free random network –

Real world network –
ωij The connectivity level between two neighbors i and j 1
C̄ Average number of contact per time for random networks Contact/time

βk Prob. of Vk transmission per contact per time 1/contact
Infection ρ Per time removal (death or recovery) probability from virus k 1/time
Parameters τs Time-period between getting infection and showing the symp-

toms for V1 infected cases
Time

ψ Prevalence threshold: Infection prevalence to start SD 1
Intervention σM Mandated SD: fraction of removed contacts 1
Parameters σS Self-regulated SD against V1: fraction of removed contacts 1

τM Duration of mandated SD Time

Table 1: Parameter and state variable definitions and notations.

3 Results: positive selection of the asymptomatic

strain on different networks

Here we explore the consequences of behavioral changes (self-regulated social dis-
tancing) on the spread of an asymptomatic viral strain. First this is done by us-
ing two types of abstract random networks, the scale-free and the random spatial
network. Both types of random networks have some features resembling different
aspects of human social networks. Then we show how similar scenarios play out on
a more realistic network that emulates the behavior of a real-life population of New
Orleans.

3.1 Self-regulated social distancing selects for an asymp-
tomatic strain

In our model, individuals in the population exercise self-regulated SD if members of
their circle become symptomatically infected (that is, become infected with V1). To
explore the consequence of this behavior on the evolutionary dynamics of asymp-
tomatic virus variants (V2), we ran simulations where such a mutant was introduced
as a minority in the initial stages of the epidemic, see figure 1. We explored the
dynamics on two different networks: scale-free (left panels) and spatial (right pan-
els); the trajectories presented are averages over 5000 independent simulations. We
present four different degrees of self-regulated SD: σS = 0 (a control case where V2
is indistinguishable from V1 in the model, and no selection is expected), σS = 0.2
(low-degree self-regulated SD), σS = 0.4 (moderate self-regulated SD), and σS = 0.7
(high-degree self-regulated SD). As time goes by and the epidemic spreads, we plot
the prevalence of each virus (panels (1a) and (1b)), and also follow the relative share
of V2, that is V2

V1+V2
(panels (1c) and (1d)).

In the absence of self-regulated SD (black lines in panels (1a) and (1b)), the
epidemic on the two networks looks different despite similarR0 parameters: infection
burns through the scale-free network faster and reaches a higher infection peak, while
in the case of the spatial network it lasts longer at relatively low levels.
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a b

c d

Figure 1: The role of self-regulated SD in the spread of viruses. Time series
are shown for four scenarios of no (σS = 0, black), low (σS = 0.2, blue), moderate
(σS = 0.4, red), and high (σS = 0.7, green) self-regulated SD, in the absence of
mandated SD. Scale-free (left) and spatial (right) networks of 10, 000 individuals
and average degree 10 are used. Panels (a, b) plot are the prevalence of V1 (solid)
and V2 (dashed); panels (c,d) show the proportion of V2 (V2/(V1 + V2)). The rest
of the parameters are γ + δ = 0.1 per day, ψ = 0.0012, β1 = β2 = 0.028 per
day per contact for scale-free and β1 = β2 = 0.037 per day per contact for spatial
network (corresponding to R0 = 2.5). Means and standard errors are shown for
5000 stochastic realizations.
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Under zero self-regulated SD (black lines in panels (1c) and (1d)), as expected,
the proportion of V2 remains approximately constant throughout the course of the
epidemic, although we do observe an initial increase in the abundance of V2 in
the spatial network. This initial increase is due to a somewhat “advantageous”
initial location of the V2 infection. In the spatial network, it gets placed on the
“outskirts” of the growing infected neighborhood, which results in a larger mean
number of uninfected neighbors that V2-infected individuals have compared to V1-
infected individuals. This initial increase of the proportion of V2 is therefore due to
the initial placement and does not represent an ongoing selection.

A different pattern is observed in the presence of self-regulated SD: the propor-
tion of V2 infected individuals increases well beyond the initial boost. This effect is
stronger for a larger extent of self-regulated SD (compare green (σS = 0.7) to red
(σS = 0.4) to blue (σS = 0.2) lines in the bottom panels of figure 1). The exact
extent to which the fraction of V2 increases in the course of the epidemic depends,
besides σS, on the network size and type. Larger networks will result in a larger
increase in V2 fraction, simply because they experience a larger and longer epidemic,
and V2 will have a longer time to gain on V1 before the epidemic runs out of targets
(not shown); a similar result can be demonstrated by using an ODE model of an
SIR infection with two viral strains, see supplementary material.

We note a significant difference in the amount of gain experienced by the asymp-
tomatic strain under scale-free (panel (c)) and spatial (panel (d)) networks. Self-
regulated SD results in much more effective protection on a spatial network, because
if an individual has an infected neighbor, they are likely to have more than one in-
fected neighbor, and self-regulated SD induced by one of the neighbors will work
against future infections in the vicinity. This results in a much larger force of se-
lection experienced by the asymptomatic strain on a spatial network, compared to
the case of scale-free network, which does not have a community structure. More
details are presented in supplementary material.

3.2 Advantage mediated by self-regulated SD can off-set a
fitness cost of the asymptomatic strain

Figure 2 explores a scenario where the asymptomatic mutant, V2, has a fitness
cost compared to the resident virus, V1, which is manifested through a reduction
in the probability of transmission parameter. We can see that although having a
small disadvantage in β2 reduces the fraction of V2, we still observe a rise in the
prevalence of V2 caused by self-regulated SD against symptomatic cases. In other
words, the behavior-based selection mechanism can work even in the presence of a
degree of disadvantage in the transmissibility of the mutant compared to the resident
type. We observe that even in the presence of a significant disadvantage of virus
V2, self-regulated SD can provide enough pressure to lead to positive selection of
the asymptomatic virus. Again, we note a difference in the force of selection for the
asymptomatic strain under scale-free and spatial networks. In the case of a scale-free
network, (figure 2(a)) a 15% disadvantage of V2 almost completely eliminates any
advantage gained through self-regulated SD. In the case of a spatial network (figure
2(b)), an asymptomatic strain with a 15% fitness costs still rises to almost 90% in
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a b

Figure 2: Selection for V2V2V2 in the presence of a fitness cost. Time series of
proportion of V2 under moderate self-regulated SD, σS = 0.4 (and with σM = 0),
are shown for 0% fitness cost (β2 = β1, black), 5% fitness cost (β2 = 0.95β1, blue),
10% fitness cost (β2 = 0.9β1, red), and 15% fitness cost (β2 = 0.85β1, green), for (a)
scale-free and (b) spatial networks. All the other parameters are as in Figure 1.

the population.

3.3 Mandated social distancing makes selection stronger

Next, we explored the consequence of mandated SD implementation on the selection
for the asymptomatic strain. Mandated SD affects transmission of both viral strains
equally, and it is not immediately clear whether the presence of mandated SD can
modify the dynamics and change the advantage experienced by V2 through self-
regulated SD. Figure 3 assumes the presence of self-regulated SD at an intermediate
level, and shows that increasing the level of mandated SD increases the positive
selection pressure experienced by the asymptomatic strain. As a function of time,
the fraction of V2 grows at the same rate for all levels of mandated SD (that is,
the initial slope of the fraction is defined by the level of self-regulated SD and
independent of the mandated SD). The dynamics are however different at later
times, where the peak of the V2 fraction is higher (and is reached later) for higher
levels of mandated SD. The reason for this event is that increasing mandated SD
results in a reduction in the reproduction number, R0, which generally leads to a
longer, lower-level epidemic, so the fitter virus (V2) has a longer time to expand
relative to its symptomatic counterpart. Once the epidemic is on the decline, the
fraction of V2 decreases (see supplementary material; the same trend is observed
for the spatial network on a longer time-scale, not shown). Figure 3 shows that the
fraction of the asymptomatic strain among all infected individuals increases with the
level of mandated SD. A similar result is demonstrated in an ODE SIR model for two
viral strains, see supplementary material, figure 1(a). In the ODE model, we could
not directly include a network structure or details of mandated or self-regulated SD.
Instead, to gain indirect insights into the system of interest, we investigated the co-
dynamic of two strains in a population with complete mixing, where strain V2 was
characterized by a larger fitness compared to strain V1. This was achieved explicitly
by increasing V2’s infectivity, and represents fitness differences due to self-regulated
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Figure 3: The effect of mandated SD on the proportion of V2V2V2. The proportion
of the asymptomatic strain, V2, is shown as a function time, for three different levels
of mandated SD: (a) Scale-free network, σM = 0 (black), σM = 0.2 (blue), and
σM = 0.4, with σS = 0.4; (b) spatial network, σM = 0 (black), σM = 0.2 (blue),
and σM = 0.3 (red), with σS = 0.2. All the other parameters are as in Figure 1.
The levels for mandated and self-regulated SD are selected in such a way that R0

remains above one so an outbreak for V1 is observed.

SD. Keeping the relative fitness of the strains fixed, we reduced the overall fitness
of both strains (this mimics degrees of mandated SD, which reduces the infectivity
of both strains equally). It was shown that the lower the overall viral fitness, the
larger the proportion of V2 among the infected population that is achieved.

3.4 The effect of time-lag on V2-selection

All the simulations shown so far assumed that self-regulated SD behavior was trig-
gered in an individual as soon as a V1-infected individual became infectious; i.e.
there is no pre-symptomatic infection period and the infection status is known in-
stantly. In reality, however, there could be a delay between a neighbor’s infection
and a change in the individual’s behavior, caused by a delayed onset of symptoms,
delayed testing, or a lag in information spread. Figure 4 explores the scenario where
a number of days passes between an infection event and the time when self-regulated
SD starts.

We can see that a delay reduces positive selection experienced by the asymp-
tomatic strain. Under scale-free networks, for the parameters in figure 4, in the
presence of a 5-day lag, an increase in the fraction of V2 is almost completely elim-
inated. Again, because the positive selection for V2 is much stronger under spatial
networks, we still observe a significant rise in the fraction of V2 in panel (b) even in
the presence of a 5-day delay in protection.

3.5 Co-dynamics of strains on New Orleans social network

So far we have investigated the co-dynamics of viral strains on two random networks,
scale-free and spatial. Both of them reflect different features of human interaction
networks, but possess many very different mathematical properties. All the major
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Figure 4: The effect of delay of self-regulated SD on selection of V2V2V2. The
proportion of V2 is shown as time series for (a) scale-free and (b) spatial networks,
in the presence of time delay. The different colors correspond to the time-delay of
0, 1, . . ., 5 days. Here σS = 0.4, σM = 0.0, and the rest of the parameters are as in
figure 1.

results were consistent for both networks. As the next step, we will use a real-world
network to demonstrate that the same trends continue to hold there.

Figure 5: Degree distribution of the New Orleans synthetic network. Red:
the basic network; black: the network under school closure (see supplementary
material). The network includes 150, 000 nodes and has average degree 15.82 (with
average degree 12.67 under school closure).

The synthetic network that we employ here was constructed to statistically match
the demographics of New Orleans residents, based on the 2009 census data. Of ap-
proximately 400, 000 residents living in 190, 000 households, the synthetic network’s
sample contains 150, 000 individuals. These individuals comprise the set of net-
work’s nodes, and the edges represent contacts of synthetic individuals through
some activity types, such as “home”, “work”, “school”, “shopping”, etc. The net-
work statistically reflects the social connections of the city’s population. Each edge
of the network is labeled with one of the activity types and contains information on
the amount of time spent on these contacts per day, resulting in a weighted network
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[53, 54]. We assumed that the amount of time of contact to cause an infection event
is 15 minutes (or 0.01 of day, which is based on COVID19 infection [63]); therefore,
we removed all edges with the weight less than 0.01. The resulting network has av-
erage degree 15.82 and average clustering coefficient 0.32. The degree distribution
of this synthetic network is shown in figure 5. To further parameterize the model,
we chose the same removal probability as in the random networks studied above,
and adjusted the probability of transmission to obtain R0 = 2.5.

Figure 6 presents the time series of prevalence of the two viruses and the propor-
tion of V2 under different levels of self-regulated SDs, in the absence of mandated
SD. As established with the two types of random networks, the presence of self-
regulated SD confers selective advantage to the asymptomatic virus strain, V2. We
observe that self-regulated SD at level σS = 0.4 reduces the peak of the symptomatic
strain, V1, to less than a half, and at level σS = 0.7 it reduces the peak of V1 by
about a factor of 10, while the impact on the peak of V2 is a lot more modest. The
proportion of V2 in the right panel of figure 6 increases to a peak, and this effect
is stronger for higher levels of self-regulated SD. These results are consistent with
those obtained for the random networks.

a b

Figure 6: New Orleans Network of size 150, 000150, 000150, 000 individuals: the role of
self-regulated SD in the spread of viruses. Time series are shown for four
scenarios of no (σS = 0, black), low (σS = 0.2, blue), moderate (σS = 0.4, red), and
high (σS = 0.7, green) self-regulated SD, in the absence of mandated SD. Panel (a)
plot is the prevalence of V1 (solid) and V2 (dashed); panel (b) shows the proportion
of V2 (V2/(V1 + V2)). β1 = β2 = 0.2 and all the other parameters are as in figure
1 (corresponding to R0 = 2.5). Means and standard errors are shown for 1000
stochastic realizations.

Figure 7 explores the effect of mandated SD in the presence of an intermediate-
level self-regulated SD, σS = 0.4. Again, the results are consistent with those
observed for random networks. Increasing the level of mandated SD can make the
selection for V2 significantly stronger.

4 Discussion

It has been reported in the literature that human behavior can change as a reaction
to disease observed in others, see e.g. [64, 65, 66, 68, 69, 70]. It has further been
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a b

Figure 7: New Orleans Network of size 150, 000150, 000150, 000 individuals: the role of
mandated SD in the spread of viruses. Time series are shown for four scenarios
of no (σM = 0, black), low (σM = 0.2, blue), moderate (σM = 0.4, red), and high
(σM = 0.6, green) mandated SD, in the presence of moderate self-regulated SD
(σS = 0.4). Panel (a) plot is the prevalence of V1 (solid) and V2 (dashed); panel (b)
show the proportion of V2 (V2/(V1+V2)). β1 = β2 = 0.2 and all the other parameters
are as in figure 1 (corresponding to R0 = 2.5). Means and standard errors are shown
for 1000 stochastic realizations.

emphasized that such behavioral changes can be an important factor in epidemic
spread, e.g. in the context of sexually transmitted diseases [71, 72], or more gen-
erally [20, 21, 22, 23]. It has been noted that human behavioral traits in disease
avoidance are under selection in the presence of infectious diseases [28]. Here we
explore a complimentary trend: the pathogen itself might experience a force of selec-
tion to become less “visible”, or less “symptomatic”, in the presence of such human
behavioral trends.

We used a discrete-time stochastic network model to investigate the spread of
two co-circulating virus strains, one of which (V1) is symptomatic and the other
(V2) asymptomatic. The resident strain (V1) is assumed to give rise to a mutant
strain (V2) sometime during the epidemic. Three types of networks are studied:
scale-free and spatial random networks, and a real-world synthetic network statisti-
cally describing social activity of individuals in New Orleans. We implemented two
types of social distancing, self-regulated SD and mandated SD. Under mandated so-
cial distancing, individuals cut a given fraction of their contacts randomly, while in
self-regulated social distancing, individuals opt to protect themselves based on their
contacts’ infection status. More precisely, individuals cut some of their connections
randomly if they find a symptomatically infected individual among their contacts.

We observed that in the presence of self-regulated protection against symp-
tomatic cases (self-regulated SD), the proportion of asymptomatic carriers increased
over time with a stronger effect corresponding to higher levels of self-regulated SD.
Adding mandated SD made the effect more significant: the proportion of V2 in-
creased for a longer duration of time and reached a higher maximum in the presence
of mandated SD. Interestingly, the intensity of these trends was higher for spatial
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(more homogeneous and clustered) networks compared with the scale-free network,
which was a result of more local infection spread and community structure. When
the simulations were repeated for the real-world social network based on the New
Orleans data, the selection effect was more similar to that observed for the scale-free
than for the spatial network.

The selection effects observed could be weakened, e.g., by the existence of an
inherent fitness disadvantage of V2 (as a result for example of a lower infectivity of
this strain), or by a time-delay that exists between the onset of infection V1 and the
change of behavior triggered under self-regulated SD. Nonetheless we have shown
that even in the presence of these factors the selective advantage of the asymp-
tomatic strain resulting from human behavior can still be significant and lead to a
noticeable shift in the prevalence of this virus type.

While our model suggests that cautious human behavior can select for a virus
variant that is less symptomatic, this selection pressure can in principle also lead to
more complex outcomes. A similar advantage would be gained if the onset of symp-
toms was delayed and if the host could transmit the virus during this prolonged pre-
symptomatic phase. Such a virus variant would also evade the behavioral reduction
of network connections, yet this variant does not have to be less symptomatic or be
less pathogenic. This might be at work to some extent with the SARS-CoV-2 delta
variant, which is characterized by a longer window between testing positive and de-
veloping symptoms compared to previous variants [73]. Although the delta variant
appears to produce higher viral loads than previous variants [74], which alone can
lead to a significant transmission advantage, the longer duration of an infectious
pre-symptomatic phase of delta can lead to a strong amplification of this advantage
if people adjust their behavior in response to symptomatic social contacts. This
might be an important contributor to the rapid rise of this variant across the globe.

The model presented here is a simplification of reality. Modeling human behavior
is challenging, and here we ignored many complexities by for example assuming that
individuals remove connections probabilistically when learning of a symptomatically
infected individual among their circle. This approach does not distinguish between
agents’ acquaintances and random contacts such as encounters in a supermarket. It
also ignores demographic and socioeconomic factors that may be linked to adopting
new behaviors to avoid getting infected. In addition, a static network of contacts
has been assumed while in reality individuals may not have the same contacts every
time unit. While further modeling efforts might address some of these shortcomings,
the present model is a demonstration of principle, and not an attempt to quantita-
tively predict the dynamics.

Despite these uncertainties, our analysis shows robustly that human behavior
in response to an infection outbreak can modulate the evolutionary trajectory of
the virus. In particular, a cautious reaction of people to personal contacts that
display symptomatic disease can promote the emergence of virus strains that induce
less symptomatic disease. While we have not modeled one particular infection, the
modeling approach is geared to describing generic respiratory infections that are
transmitted through casual social contact, and therefore has implications for the
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current SARS-CoV-2 pandemic.
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Appendix

ODE modeling

SIR models based on ordinary differential equations are an important tool in epi-
demiological infection studies [67], and they have been widely used for various emerg-
ing infections such as COVID19 [75]. Here we denote by x the fraction of susceptible
individuals, and distinguish between two strains of infection, V1 and V2. The frac-
tion of individuals infected with V1 is denoted by y1 and the fraction of individuals
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infected with V2 is denoted by y2. We assume that an individual cannot be super-
infected with a different virus, and that recovered individuals cannot be infected
anymore. This gives rise to the following system:

ẋ = −x(β1y1 + β2y2), (1)

ẏ1 = xβ1y1 − γy1, (2)

ẏ2 = xβ2y2 − γy2, (3)

with initial conditions

x(0) = x0, y1(0) = y10, y2(0) = y20.

Here β1 and β2 are the rate of infection for the two strains, and γ the rate of removal.
Let us denote by z the proportion of the individals infected with V2:

z =
y2

y1 + y2
.

This quantity satisfies the following equation:

ż = z(1− z)(β2 − β1)x. (4)

In particular, if the two strains are neutral to each other (β1 = β2) then the fraction
z is expected to stay constant. It will increase if β2 > β1 and decrease if β2 < β1.
Let us consider the problem where V2 is an advantageous mutant (β2 > β1), which
is initially in a minority, that is, y20 � y10. We note that in this case, z will
be an increasing function of time. Its initial growth is exponential with the rate
approximately given by β2 − β1 (assuming that x ≈ x0 ≈ 1). As x decreases, the
growth slows down. Two extreme scenarios can be distinguished, see figure 8:

(1) z approaches 1 well before x decreases significantly; in this case the dynamics
of z is well described by the logistic growth model.

(2) The epidemic ends well before z approaches 1, in which case near the epidemic
end, the growth of z becomes linear with the rate approximately given by
(β2 − β1)x∞, where 1− x∞ is the final epidemic size.

We observe that larger overall values of R0 correspond to a more modest expansion
of the advantageous virus V2 (assuming that the % advantage is fixed; it is for
example 10% in figure 8).
In this context, it is useful to calculate the value

x∞ ≡ lim
t→∞

x(t).

If β2 = β1, the we have the following final size relation:

x∞ = e−
β1
γ
(1−x∞),

which is an implicit formula for x∞. In the case of two different pathogens, if we
denote R0 = max{β1

γ
, β2
γ
}, we have [76]

ln
x(0)

x∞
=

R0

x(0)
(x(0)− x∞) +

β1
γ
y1(0) +

β2
γ
y2(0).
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Figure 8: The fraction of an advantageous virus, V2V2V2. (a) The quantity z(t) obtained by
solving equations (1-3) is plotted as a function of time for several values of R0, obtained by changing
the death rate, a. (b) The corresponding susceptible populations as functions of time. The rest of
the parameters are β1 = 0.1, β2 = 0.11, y1(0) = 0.001, y2(0) = 0.1y1(0).

The ODE model can be used to calculate the proportion of V2 by the end of the
epidemic. Figure 9 shows an example where we fixed the values β1 and β2, such
that V2 has a 10% advantage in terms of infectivity, and also assumed that y2(0) =
0.1y1(0). Parameters γ and y1(0) were varied over a wide range, which corresponds
to varying R0 (associated with the resident virus) and the total population size
relative to the initial number of infected individuals. Panel (a) illustrates the way
we numerically calculate the end of epidemic time, tend, and panel (b) shows the
fraction of V2 at time tend as a function of R0 and log10 y1(0).

We observe that typically, increasing R0 leads to a smaller final fraction of V2. For
relatively large R0 values, the fraction of susceptible individuals decreases quickly
leading to an extremely slow linear growth of the fraction z(t). On the other hand,
decreasing y1(0) (which is equivalent to considering larger total populations) leads to
an increase in the final fraction of V2. Larger populations result in a longer epidemic,
and V2 consequently has a longer time to gain on V1.

Further details of viral co-dynamics

In figure 1 in the main text, as well as others (such as figures 2 and 3 in the main
text), we observe that the fraction of V2 often has a one-humped shape: it first
increases to a peak and then decreases as the epidemic dwindles down. This is
a phenomenon that does not have an analogy in the simple ODE model, (1-3).
Equation (4) for the fraction suggests that the proportion of V2 always increases
if β2 > β1. On the other hand, in the agent-based models for symptomatic virus
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Figure 9: Fraction of V2V2V2 at the end of the epidemic. (a) Calculation of tend, which represents
the end of the epidemic, is illustrated. The blue line is the fraction of susceptible individuals, x(t),
obtained as a solution of equations (1-3); tend = 2t1, where t1 corresponds to x(t1) = 1

2 (x(0)+x∞).
In other words, at time t1 the population of susceptible individuals reaches halfway to its final
value, x∞. (b) Quantity y2/(y1 + y2) obtained by solving equations (1-3), is plotted at time tend,
as a function of the initial proportion of individuals infected with V1, and R0. The rest of the
parameters are β1 = 0.1, β2 = 0.11, y2(0) = 0.1y1(0).

V1 and its asymptomatic counterpart, V2, we observe that, both for scale-free and
spatial networks, the numerical gain of V2 eventually decreases. This is related to the
epidemic duration of the two strands: the advantageous virus experiences a shorter
epidemic, and this effect increases with the amount of advantage. Figure 10 shows
that the time it take V2 to reach its infection peak is shorter compared to that for V1,
and as we increase the level of self-regulated SD (thus increasing the advantage of
V2), the difference in the peak time grows. Therefore, there is a time-interval during
which the amount of V2 infection already decreases while V1 still grows towards its
peak, resulting in a reduction in the V2 fraction.

Note that this is not observed in the ODE system and also was less pronounced
in more clustered spatial network. In ODE model, the peak of infection yi is reached
when ẏi = 0, which corresponds to the time ti when x = γ

βi
, for i ∈ {1, 2}. Since

x(t) is a decreasing function and β2 > β1 (in analogy with self-regulated SD), we
necessarily conclude that t2 > t1, that is, the epidemic corresponding to a more
infectious type is always longer.

Co-dynamics of strains on New Orleans social network under
school closure

School closure is an important component of social distancing measures, which has
for example been implemented widely during the SARS-CoV-2 pandemic. Therefore,
we have repeated the analysis of Section 3.5 in the main text after removing all the
edges related to “school”. Degree distribution of the resulting network is shown in
black in figure 5 in the main text. We tuned up the transmission rates β1 and β2 to
have R0 = 2.5 and reran our simulations on the new network, see figures 11 and 12.
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Figure 10: Time to reach infection peak for viruses V1 (blue) and V2(red), as a
function of σS (the measure of V2 advantage).

In figure 11, we implemented the impact of various levels for self-regulated SD
(σS = 0, 0.2, 0.4, and 0.7) in the absence of mandated SD (σM = 0). Similar
to previous results, increasing the level of self-regulated SD causes more selective
advantage to the asymptomatic virus strain, V2.

Figure 12 explores the effect of mandated SD in the presence of an intermediate-
level self-regulated SD, σS = 0.4. Again, and similar to the results of Section 3.5 in
the main text, increasing the level of mandated SD causes that the selection for V2
to become significantly stronger.

While the results for the New Orleans Network are qualitatively similar with
and without school closure, we notice that the effect of further SD measures on the
background of closed schools is stronger, since we start with a somewhat sparser
network.
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a b

Figure 11: New Orleans Network under school closure: the role of self-
regulated SD in the spread of viruses. Time series are shown for four scenarios
of no (σS = 0, black), low (σS = 0.2, blue), moderate (σS = 0.4, red), and high
(σS = 0.7, green) self-regulated SD, in the absence of mandated SD. Panel (a) plot
is the prevalence of V1 (solid) and V2 (dashed); panel (b) shows the proportion of
V2 (V2/(V1 + V2)). β1 = β2 = 0.29 and all the other parameters are as in figure 1 in
the main text (corresponding to R0 = 2.5). Means and standard errors are shown
for 1000 stochastic realizations.

a b

Figure 12: New Orleans Network under school closure: the role of man-
dated SD in the spread of viruses. Time series are shown for four scenarios
of no (σM = 0, black), low (σM = 0.2, blue), moderate (σM = 0.4, red), and high
(σM = 0.6, green) mandated SD, in the presence of moderate self-regulated SD
(σS = 0.4). Panel (a) plot is the prevalence of V1 (solid) and V2 (dashed); panel
(b) show the proportion of V2 (V2/(V1 + V2)). β1 = β2 = 0.29 and all the other
parameters are as in figure 1 in the main text (corresponding to R0 = 2.5). Means
and standard errors are shown for 1000 stochastic realizations.
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