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Abstract 36 
 37 

Trypanosoma brucei gambiense is the primary causative agent of human African trypanosomiasis (HAT), 38 
a vector-borne disease endemic to West and Central Africa. The extracellular parasite evades antibody 39 
recognition within the host bloodstream by altering its Variant Surface Glycoprotein (VSG) coat through a 40 
process of antigenic variation. The serological tests which are widely used to screen for HAT use VSG as 41 
one of the target antigens. However, the VSGs expressed during human infection have not been 42 
characterized. Here we use VSG-seq to analyze the VSGs expressed in the blood of patients infected with 43 
T. b. gambiense and compared them to VSG expression in T. b. rhodesiense infections in humans as well 44 
as T. b. brucei infections in mice. The 44 VSGs expressed during T. b. gambiense infection revealed a 45 
striking bias towards expression of type B N-termini (82% of detected VSGs). This bias is specific to T. b. 46 
gambiense, which is unique among T. brucei subspecies in its chronic clinical presentation and 47 
anthroponotic nature, pointing towards a potential link between VSG expression and pathogenesis. The 48 
expressed T. b. gambiense VSGs also share very little similarity to sequences from 36 T. b. gambiense 49 
whole genome sequencing datasets, particularly in areas of the VSG protein exposed to host antibodies, 50 
suggesting that wild T. brucei VSG repertoires vary more than previously expected. Overall, this work 51 
demonstrates new features of antigenic variation in T. brucei gambiense and highlights the importance of 52 
understanding VSG repertoires in nature.  53 
 54 
Significance Statement 55 
 56 
Human African Trypanosomiasis is a neglected tropical disease primarily caused by the extracellular 57 
parasite Trypanosoma brucei gambiense. To avoid elimination by the host, these parasites repeatedly 58 
replace their Variant Surface Glycoprotein (VSG) coat. Despite the important role of VSGs in prolonging 59 
infection, VSG expression during human infections is poorly understood. A better understanding of natural 60 
VSG gene expression dynamics can clarify the mechanisms that T. brucei uses to alter its VSG coat and 61 
improve trypanosomiasis diagnosis in humans. We analyzed the expressed VSGs detected in the blood of 62 
patients with trypanosomiasis. Our findings indicate that there are features of antigenic variation unique to 63 
human-infective T. brucei subspecies and VSGs expressed in natural infection may vary more than 64 
previously expected.  65 
  66 
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Introduction 67 
 68 
Human African Trypanosomiasis (HAT) is caused by the protozoan parasite Trypanosoma brucei. 69 
T. brucei and its vector, the tsetse fly, are endemic to sub-Saharan Africa (1). There are two 70 
human-infective T. brucei subspecies: T. b. gambiense, which causes chronic infection in West 71 
and Central Africa (~98% of cases), and T. b. rhodesiense, which causes acute infection in East 72 
and Southern Africa (~2% of cases) (2, 3). In humans, infections progress from an early stage, 73 
usually marked by a fever and body aches, to a late stage associated with severe neurological 74 
symptoms that begins when the parasite crosses the blood-brain barrier (4). HAT is considered 75 
fatal without timely diagnosis and treatment. While around 50 million people are at risk of infection 76 
(5), the number of annual human infections has declined significantly in recent years, with only 77 
864 cases reported in 2019 (6). The World Health Organization is working towards zero human 78 
transmissions of HAT caused by T. b. gambiense (gHAT) by 2030 (7). Case detection and 79 
treatment is an important component of current public health initiatives to control the disease.  80 
 81 
Prospects for developing a vaccine are severely confounded by the ability of African 82 
trypanosomes to alter their surface antigens (8). As T. brucei persists extracellularly in blood, 83 
lymph, and tissue fluids, it is constantly exposed to host antibodies (9–12). The parasite 84 
periodically changes its dense Variant Surface Glycoprotein (VSG) coat to evade immune 85 
recognition. This process, called antigenic variation, relies on a vast collection of thousands of 86 
VSG-encoding genes (13–16). T. brucei also continually expands the number of usable antigens 87 
by constructing mosaic VSGs through one or more recombination events between individual VSG 88 
genes (17, 18). 89 
 90 
Although the VSG repertoire is enormous and potentially expanding, these variable proteins are 91 
the primary antigens used for serological screening for gHAT (there is currently no serological 92 
test for diagnosis of infection with T. b. rhodesiense). One VSG in particular, LiTat 1.3, has been 93 
identified as an antigen against which many gHAT patients have antibodies (19) and thus serves 94 
as the main target antigen in the primary serological screening tool for gHAT, the card 95 
agglutination test for trypanosomiasis (CATT/T. b. gambiense) (20). More recently developed 96 
rapid diagnostic tests use a combination of native LiTat1.3 and another VSG, LiTat1.5 (21, 22), 97 
or the combination of a VSG with the invariant surface glycoprotein ISG 65 (23).  98 
 99 
Despite the widespread use of VSGs as antigens to screen for gHAT, little is known about how 100 
the large genomic repertoire of VSGs is used in natural infections; the number and diversity of 101 
VSGs expressed by wild parasite populations remain unknown. It is unclear whether VSG 102 
repertoires are evolving in the field, potentially affecting the sensitivity of serological tests that use 103 
VSG as an antigen. Notably, some T. b. gambiense strains lack the LiTat 1.3 gene entirely (24, 104 
25). A study from our lab that evaluated VSG expression during experimental mouse infections 105 
by VSG-seq, a targeted RNA-sequencing method that identifies the VSGs expressed in a given 106 
population of T. brucei, revealed significant VSG diversity within parasite populations in each 107 
animal (26). This diversity suggested that the parasite’s genomic VSG repertoire might be 108 
insufficient to sustain a chronic infection, highlighting the potential importance of the 109 
recombination mechanisms that form new VSGs (13, 17).  110 
 111 
Given the role of VSGs during infection and their importance in gHAT screening tests, a better 112 
understanding of VSG expression in nature could inform the development of improved screening 113 
tests while providing insight into the molecular mechanisms of antigenic variation. To our 114 
knowledge, only one study has investigated VSG expression in wild T. brucei isolates (27). For 115 
technical reasons, this study relied on RNA isolated from parasites passaged through small 116 
animals after collection from the natural host. As VSG expression may change during passage, 117 
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the data obtained from these samples are somewhat difficult to interpret. To better understand 118 
the characteristics of antigenic variation in natural T. brucei infections, we sought to analyze VSG 119 
expression in T. brucei field isolates from which RNA was directly extracted.  120 
 121 
In the present study, we used VSG-seq to analyze the VSGs expressed by T. b. gambiense in 122 
the blood of 12 patients with a confirmed infection. To complement these data, we also used our 123 
pipeline to analyze published RNA-seq datasets from both experimental mouse infections and T. 124 
b. rhodesiense patients. In addition to VSG-seq, we searched for evidence of sequence homology 125 
in a large set of whole genome sequences for a variety of T. b. gambiense isolates. Our analysis 126 
revealed distinct biases in VSG expression that appear to be unique to the T. b. gambiense 127 
subspecies and a divergence between expressed patient VSG and previously characterized T. b. 128 
gambiense strains that suggests patient VSG repertoires are more diverse than previously 129 
expected. 130 
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Results 131 
 132 
Parasites in gHAT patients express diverse sets of VSGs  133 
 134 
To investigate VSG expression in natural human infections, we performed VSG-seq on RNA 135 
extracted from whole blood collected from 12 human African trypanosomiasis patients from five 136 
locations in the Kwilu province of the Democratic Republic of the Congo (DRC) (Figure 1A). We 137 
estimated the relative parasitemia of each patient by SL-QPCR (28), and we estimated the 138 
number of parasites after mAECT on buffy coat for all patients except patient 29 (Table 1). Using 139 
RNA extracted from 2.5 mL of whole blood from each patient, we amplified T. brucei RNA from 140 
host/parasite total RNA using a primer against the T. brucei spliced leader sequence and an 141 
anchored oligo-dT primer. The resulting trypanosome-enriched cDNA was used as a template to 142 
amplify VSG cDNA in three replicate reactions, and VSG amplicons were then submitted to VSG-143 
seq sequencing and analysis. To determine whether a VSG was expressed within a patient, we 144 
applied the following stringent cutoffs: 145 
 146 

1) We conservatively estimate that each 2.5 mL patient blood sample contained a 147 
minimum of 100 parasites. At this minimum parasitemia, a single parasite would 148 
represent 1% of the population (and consequently ~1% of the parasite RNA in a 149 
sample). As a result, we excluded all VSGs comprising <1% of the total VSG-seq pool 150 
in each patient as unlikely to represent the major expressed VSG in at least one cell 151 
from the population. 152 

2) We classified VSGs as expressed if they met the expression cutoff in at least two of 153 
three technical library replicates.  154 

 155 
1112 unique VSG open reading frames were assembled de novo from the patient reads and 44 156 
met our expression criteria. Only these 44 VSGs, which we will refer to as “expressed VSGs,” 157 
were considered in downstream analysis, except when otherwise noted. TgsGP, the VSG-like 158 
protein which partially enables resistance to human serum in T. b. gambiense (29), assembled in 159 
samples from patients 2, 11, 13, and 17, and met the expression threshold in patients 2, 11, and 160 
17. The absence of this transcript in most samples is likely due to the low amount of input material 161 
used to prepare samples.  162 
 163 
At least one VSG met our expression criteria in each patient, and in most cases, multiple VSGs 164 
were detected. Patient 2 showed the highest diversity, with 14 VSGs expressed (Figure 1B, 165 
Supplemental Figure 1). There is a positive correlation between parasitemia, as estimated by 166 
qPCR, and the number of detected VSGs (Supplemental Figure 2), suggesting that Our blood 167 
volumes may not be sampling the full diversity of circulating expressed VSG at low parasitemia. 168 
Nevertheless, two VSGs were shared between patients: VSG ‘Gambiense 195’ was expressed in 169 
both patient 12 and patient 17 from Village C; VSG ‘Gambiense 38’ was expressed in patient 12 170 
from Village C and patient 23 from Village D (Figure 1C). Because our sampling did not reach 171 
saturation, resulting in some variability between technical replicates, we focused only on the 172 
presence/absence of individual VSGs for further analysis, rather than relative expression levels 173 
within each population. 174 
 175 
 176 
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 177 
 178 
Table 1. Patient stage and parasitemia data. We used the following staging definitions: First: 179 
0-5 WBC/µl, no trypanosomes in cerebrospinal fluid (CSF). Second: >5 WBC/µl or trypanosomes 180 
in CSF (with early 2nd: 6-20 WBC/µl and no trypanosomes in CSF; severe 2nd: >100 WBC/µl). 181 
WBC: white blood cells.  182 
 183 
  184 
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 185 

 186 

Figure 1. Parasites isolated from gHAT patients express multiple VSGs. (A) Map showing 187 
the location of each patient’s home village. Maps were generated with ArcGIS® software by Esri, 188 
using world imagery and National Geographic style basemaps. (B) Graph depicting the total 189 
number of VSGs expressed in each patient. (C) The intersection of expressed VSG sets in each 190 
patient. Bars on the left represent the size of the total set of VSGs expressed in each patient. 191 
Dots represent an intersection of sets with bars above the dots representing the size of the 192 
intersection. Color indicates patient origin. 193 
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Natural T. b. gambiense infections show a strong bias towards the expression of type B 195 
VSG 196 
 197 
To further characterize the set of expressed VSGs in these samples, we sought to define the VSG 198 
domain types encoded by each VSG. T. brucei VSG contains two domains: a variable N-terminal 199 
domain of ~350-400 amino acids, and a less variable C-terminal domain of ~40-80 amino acids, 200 
characterized by one or two conserved groups of four disulfide-bonded cysteines (13, 30). On the 201 
surface of trypanosomes, the VSG N-terminal domain is readily exposed to the host. In contrast, 202 
the C-terminal domain is proximal to the plasma membrane and largely hidden from host 203 
antibodies (31–33). The N-terminal domain is classified into two types, A and B, each further 204 
distinguished into subtypes (A1-3 and B1-2), while the C-terminal domain has been classified into 205 
six types (1-6) (13, 30). These classifications are based on protein sequence patterns anchored 206 
by the conservation of cysteine residues, but the biological implications of VSG domain types 207 
have not been investigated. 208 
 209 
We evaluated two automated approached for determining the type and subtype of each VSG’s 210 
N-terminal domain. The first approach was to create a bioinformatic pipeline to determine each 211 
N-terminal domain subtype, using HMM profiles we created for each subtype from sets of N-212 
terminal domains previously typed by Cross et al. (15). The second approach was to create a 213 
BLASTp network graph based on a published method (34) where the N-terminal subtype of a 214 
VSG is determined by the set of VSGs it clusters with, and clusters are identified using the leading 215 
eigenvector method (35). We used each approach to determine the N-terminal subtype of each 216 
expressed VSG in our patient sample dataset, along with 863 VSG N-termini from the Lister 427 217 
genome. We compared these results to either existing N-terminal classification (for Lister 427 218 
VSGs) or classification based on position in a newly-generated BLASTp-tree (15) (for T. b. 219 
gambiense VSGs; Figure 2A).  220 
 221 
Both the new HMM profile and BLASTp network graph approaches generally recapitulated 222 
previous VSG classification based on BLASTp-tree, with all three methods agreeing 93.7% of the 223 
time (Figure 2B). The HMM pipeline method agreed with BLASTp-tree typing for all patient VSGs, 224 
while the network graph approach agreed for 43/44 VSGs (Figure 2B, Figure S3, Table S4 (15). 225 
It is not surprising that the HMM pipeline would better reflect the results of the BLASTp-tree 226 
method, as the N-terminal subtype HMM profiles were generated using VSGs classified by this 227 
method. Based on these data, we determined that the HMM method is a fast and accurate 228 
approach for determining the N-terminal domain types of unknown VSGs.  229 
 230 
Our N-terminal domain typing pipeline identified the domain sequence and subtype for all 44 231 
patient VSGs (Figure 2C). Of the expressed T. b. gambiense VSGs, 82% had type B N-terminal 232 
domains, and 50% or more of expressed VSGs within each patient were type B. This bias was 233 
not restricted to highly expressed VSGs, as 74.5% of all assembled VSG (813 of 1091 classifiable 234 
to an N-terminal subtype) were also type B.  235 
 236 
Using the network graph approach, we also tentatively assigned C-terminal domain types to the 237 
T. b. gambiense VSGs (Figure S5). In line with previous observations, we saw no evidence of 238 
domain exclusion: a C-terminal domain of one type could be paired with any type of N-terminal 239 
domain (Figure S5E) (20). Most patient C-terminal domain types were type 2, while the 240 
remaining types were predominantly type 1, with only one type 3 C-terminus identified in the 241 
patient set. Overall, these data suggest that, like N-termini, expressed VSG C-termini are also 242 
biased towards certain C-terminal types. Together, these observations motivated further 243 
investigation into the VSG domains expressed during infection by other T. brucei subspecies. 244 
We focused this analysis on expressed N-terminal domains which make up most of the VSG 245 
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protein, are more variable than C-terminal domains (15, 34), and are most likely to directly 246 
interface with the host immune system during infection (36). 247 

 248 
Figure 2. T. b. gambiense samples show a bias towards the expression of type B VSG. (A) 249 
Visualization of relatedness between N-terminal domain peptide sequences inferred by Neighbor-250 
Joining based on normalized BLASTp scores. Legend indicates classification by HMM pipeline 251 
(for Lister 427 VSGs, to highlight agreement between the two methods) or by subspecies for 252 
VSGs expressed in patients. (B) Agreement between three VSG typing methods for Lister 427 253 
VSG set and the expressed T. b. gambiense patient VSG set. (C) N-terminal domain subtype 254 
composition of expressed T. b. gambiense VSGs as determined by HMM analysis pipeline. 255 
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Type B VSG bias is unique to T. b. gambiense infection 258 
 259 
To determine whether the bias towards type B VSGs was specific to T. b. gambiense infections, 260 
we analyzed RNA-seq data from a published study measuring gene expression in the blood and 261 
cerebrospinal fluid (CSF) of T. b. rhodesiense patients in Northern Uganda (37). These libraries 262 
were prepared conventionally after either rRNA-depletion for blood or poly-A selection for CSF 263 
samples. We analyzed only those samples for which at least 10% of reads mapped to the T. 264 
brucei genome. Raw reads from these samples were subjected to the VSG-seq analysis pipeline. 265 
Because the parasitemia of these patients was much higher than in our T. b. gambiense study, 266 
we adjusted our expression criteria accordingly to ≥0.01%, the published limit of detection of VSG-267 
seq (26). Using this approach, we identified 77 unique VSG sequences across all blood and CSF 268 
samples (Figure 3A, Figure S6). SRA, the VSG-like protein that confers human serum resistance 269 
in T. b. rhodesiense (38), was detected in all patient samples.  270 
 271 
The HMM pipeline determined types for 74 of these VSG sequences; the remaining sequences 272 
appeared to be incompletely assembled, presumably due to insufficient read depth from their low 273 
level of expression. Multiple VSGs assembled in each patient (Figure 3A), and a large proportion 274 
of VSGs were expressed in multiple patients (Figure 3C). Although most VSGs detected in these 275 
patients were type B (57%, Figure 3B), this VSG type was much less predominant than in T. b. 276 
gambiense infection. Interestingly, T. b. rhodesiense patient CSF revealed another possible layer 277 
of diversity in VSG expression, with 5 VSGs expressed exclusively in this space.  278 
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 279 

Figure 3. T. b. rhodesiense samples reveal diverse VSG expression but little N-terminal 280 
type bias. (A) The total number of expressed T. b. rhodesiense VSGs in each patient and sample 281 
type. Bar color represents the sample type from which RNA was extracted. (B) N-terminal domain 282 
subtype composition of all expressed VSGs. (C) Intersections of VSGs expressed in multiple 283 
infections. Bars on the left represent the size of the total set of VSGs expressed in each patient. 284 
Dots represent an intersection of sets, with bars above the dots representing the size of the 285 
intersection. Color indicates patient origin. 286 
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The composition of the genomic VSG repertoire is reflected in expressed VSG N-terminal 288 
domain types  289 

One source for bias in expressed VSG type is the composition of the genomic VSG repertoire. To 290 
investigate the relationship between expressed VSG repertoires and the underlying genome 291 
composition, we took advantage of our published VSG-seq analysis of parasites isolated from 292 
mice infected with the T. b. brucei EATRO1125 strain. As the ‘VSGnome’ for this strain has been 293 
sequenced, we could directly compare the proportion of expressed N-terminal types to the full 294 
repertoire of types contained within the strain’s genome. In this experiment, blood was collected 295 
over time, providing data from days 6/7, 12, 14, 21, 24, 26, and 30 post-infection in all four mice, 296 
and from days 96, 99, 102, and 105 in one of the four mice (Mouse 3). Of 192 unique VSGs 297 
identified between days 0-30, the python HMM pipeline typed 190; of 97 unique VSGs identified 298 
between days 96-105, the pipeline typed 93 VSGs. The remaining VSGs were incompletely 299 
assembled by Trinity. Our analysis of VSG types over time revealed that the predominantly 300 
expressed N-terminal domain type fluctuates between type A and type B throughout the early 301 
stages of infection and in extended chronic infections (Figure S7), but the expressed VSG 302 
repertoire across all time points generally reflects the composition of the genomic repertoire (chi-303 
squared p = 0.0515, Figure 4A). Parasitemia did not correlate with either the diversity of VSG 304 
expression or N-terminal domain type predominance (Figure S2C). 305 
 306 
Unfortunately, the entire repertoire of VSGs encoded by most trypanosome strains is unknown, 307 
so such a direct comparison is impossible for T. b. gambiense and T. b. rhodesiense patient 308 
samples. Although the content of the ‘core’ T. brucei genome (containing the diploid, 309 
housekeeping genes) is similar enough among subspecies for short-read resequencing projects 310 
to be scaffolded using the TREU927 or Lister 427 reference genomes (39–41), this method 311 
cannot be applied to investigate the VSG repertoires of subspecies (or even individual parasite 312 
strains (27)). Because no near-complete VSGnome for any T. b. rhodesiense strain was available, 313 
we compared the makeup of T. b. rhodesiense expressed VSGs with the closely related and near-314 
complete T. b. brucei Lister 427 repertoire (40). We observed no difference in the proportions of 315 
N-terminal types (p = 0.2422, χ2 test) (Figure 4B). Similarly, the proportion of N-terminal domains 316 
identified in the T. b. gambiense patient samples is not statistically different from the incomplete 317 
T. b. gambiense DAL972 genomic repertoire (p = 0.0575) (Figure 4B). Both T. b. gambiense 318 
patient VSGs (p = 2.413e-4) and the 54 VSGs identified in T. b. gambiense DAL972 (p = 0.0301) 319 
have A and B type frequencies that differ significantly from the Lister427 genome. Despite 320 
limitations in the available reference genomes, together these data support a model in which VSG 321 
types are drawn from the repertoire at a roughly equal frequency to their representation in the 322 
genome, with T. b. gambiense exhibiting an N-terminal type composition that differs from other 323 
subspecies. 324 
 325 

 326 
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 327 

Figure 4. VSG expression reflects the genomic VSG repertoire of the infecting parasites. 328 
(A) Columns show the proportion of VSG types identified in each mouse infection over all time 329 
points and the proportion of VSG types in the infecting T. b. brucei strain, EATRO 1125. The total 330 
number of unique VSG sequences is displayed above each column. (B) A comparison of the 331 
frequencies of type A and B VSGs expressed in patients and those present in Lister 427 and 332 
DAL972 reference genomes. Relevant statistical comparisons are shown, and asterisks denote 333 
p-value < 0.05.   334 
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VSGs expressed by T. b. gambiense parasites are highly diverged from those found in the 335 
whole genome sequences of other isolates  336 
 337 
We sought to understand how the VSGs expressed in the T. b. gambiense patient isolates related 338 
to known T. b. gambiense VSG sequences and whether there was evidence of recombination 339 
within the expressed VSGs. Initial attempts to BLAST the assembled VSGs against the DAL972 340 
whole genome assembly provided very few hits even using extremely permissive settings (-341 
word_size 11 -evalue 0.1). This was unexpected but may reflect the relatively low coverage of the 342 
total VSG repertoire in the DAL972 genome assembly, which primarily covers the ‘core’ genome. 343 
 344 
To evaluate the relationship between the expressed VSGs and other isolates, we took advantage 345 
of publicly available short-read whole genome datasets for 36 T. b. gambiense strains from three 346 
groups defined by their region and date of isolation: Côte d’Ivoire 1980’s, Côte d’Ivoire 2000’s, 347 
and DRC 2000’s (42, 43).  We searched for similarity between the expressed VSGs and each 348 
isolate genome by mapping short reads to each assembled expressed VSG: regions in which 349 
reads align to a specific VSG are present somewhere in the genome of the isolate, while regions 350 
with no alignments must either be unique to gHAT patients or sufficiently diverged to no longer 351 
map. 352 
 353 
Using representative genes from the model organisms C. elegans, D. melanogaster, and E. coli 354 
as negative controls and T. b. gambiense GAPDH as a positive control, we determined the 355 
appropriate read length for evaluating sequence representation. The majority of each negative 356 
control gene (66.3% average across all controls) was covered by a successful alignment using 357 
20 bp sequences and allowing 2 or fewer mismatches (Figure S8A), indicating that read mapping 358 
at this length is not sufficiently specific. Increasing the sequence query length to 30bp greatly 359 
decreased mapping to the negative controls, such that an average of 1.4% of each gene was 360 
represented within the genomic datasets. The T. b. gambiense GAPDH control, on the other hand, 361 
retained 100% read coverage across the whole gene at all read lengths (Figure S8B). Thus, a 30 362 
bp query is of appropriate stringency to measure the sequence representation of the patient VSGs 363 
within the whole genome datasets. 364 
 365 
Using this query length, ~70% of the patient VSG ORF on average was absent from each genome 366 
dataset (Figure S9). Further analysis showed that C-terminal domain sequences were well 367 
represented within all genomic datasets regardless of origin (mean mapped read coverage = 368 
77.4%), while there was relatively little nucleotide sequence similarity between the isolate 369 
genomes and the N-termini expressed by parasites in gHAT patients (16.4%, Figure 5A). Aligned 370 
nucleotide coverage was significantly higher for the genomic datasets from strains also isolated 371 
in the DRC (where the gHAT patients originated) than those isolated in Côte d’Ivoire from either 372 
time period (Figure 5B), suggesting a geographic component to VSG repertoires. Nonetheless, 373 
nucleotide coverage was still very low for DRC isolates when mapping to expressed N-termini 374 
(18.4%) with no expressed VSG entirely present within the genomic datasets. 375 
 376 
To understand where diverged sequences occurred on the VSG protein, we modeled the regions 377 
of sequence divergence on predicted N-terminal domain monomer structures of each patient 378 
VSG. Strikingly, we found that the DNA sequences that encoded residues in the top lobe of the 379 
protein were invariably absent from all genomic datasets (Figure 5C). Overall, this analysis 380 
indicates that the VSGs expressed in the T. b. gambiense patient isolates are highly diverged 381 
from those within the DAL972 genome as well as from other sequenced field isolates, particularly 382 
within the parts of N-terminal domain most likely to interface with host antibody. These results are 383 
also consistent with geographic variation in T. b. gambiense VSG repertoires.  384 
  385 
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 386 

387 
Figure 5.  Diversification is most dramatic in exposed regions of the VSG. A) Density plot 388 
showing the percentage of each of the patient VSG ORF sequence that had at least one whole 389 
genome sequencing read (30bp length) align for each of three representative whole genome 390 
datasets (n = 12 per group). The average coverage is shown by a vertical line. B) Plots comparing 391 
sequence representation within the patient VSG N-terminal and C-terminal domains for each 392 
group. Representation for each VSG is quantified as the proportion of nucleotides in each domain 393 
with at least one alignment to the total number of nucleotides in that domain, with the average 394 
representation of all VSGs for each genome shown. Crossbars indicate mean and standard 395 
deviation within group. Significant differences between groups were determined using Kruskal-396 
Wallis followed by a post-hoc Dunn’s test (** = p-vaue < 0.01, *** = p-value < 0.001). C) Models 397 
showing the predicted N-terminal domain structures of the three patient VSGs. The VSG shown 398 
are the type A (Gambiense 248) and type B (Gambiense 452) VSGs with highest reported ORF 399 
coverage, and a type B VSG (Gambiense 452) with average ORF coverage. Monomer structures 400 
are oriented so the polymerization interface is away from the viewer. To the right of each model 401 
is a map of coverage across each VSG ORF. Regions with at least one alignment from any of the 402 
36 genomic datasets are shown in gray, and regions with no alignment are shown in blue.  403 
 404 
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Discussion 406 
 407 
African trypanosomes evade the host adaptive immune response through a process of antigenic 408 
variation where parasites switch their expressed VSG (44). The genome of T. brucei encodes a 409 
large repertoire of VSG genes, pseudogenes, and gene fragments that can be expanded 410 
continuously through recombination to form entirely novel “mosaic” VSGs (17). While antigenic 411 
variation has been studied extensively in culture and animal infection models, our understanding 412 
of the process in natural infections, particularly human infection, is limited. Most experimental 413 
mouse infections are sustained for weeks to months, while humans and large mammals may be 414 
infected for several months or even years. Additionally, laboratory studies of antigenic variation 415 
almost exclusively use T. b. brucei, a subspecies of T. brucei that, by definition, does not infect 416 
humans. The primary hurdle to exploring antigenic variation in nature has been technical: it is 417 
difficult to obtain sufficient parasite material for analysis. This is especially true for infection with 418 
T. b. gambiense, which often exhibits extremely low parasitemia. Here we have demonstrated the 419 
feasibility of VSG-seq to analyze VSG expression in RNA samples isolated directly from HAT 420 
patients. Our analyses reveal unique aspects of antigenic variation in T. b. gambiense that can 421 
only be explored by studying natural infections.  422 
 423 
We have identified an intriguing bias towards the expression of type B VSGs in T. b. gambiense 424 
infection, which appears to be specific to this T. brucei subspecies. Comparison of expressed 425 
VSG repertoires to publicly available genomic VSG repertoires suggests that the genomic VSG 426 
repertoire determines the distribution of VSG N-terminal types expressed during T. brucei 427 
infection. Thus, the T. b. gambiense VSG repertoire may contain a larger proportion of type B 428 
VSGs than its more virulent counterparts. Could a bias towards certain VSG types, whether due 429 
to a difference in repertoire composition or expression preference, account for unique features of 430 
T. b. gambiense infection, including its chronicity and primarily anthroponotic nature (45)?  431 
 432 
Little is known about how differences in VSG proteins relate to parasite biology or whether there 433 
could be biological consequences to the expression of specific VSG N- or C-terminal types. Type 434 
A var genes in Plasmodium falciparum infection are associated with severe malaria (46–50), and 435 
similar mechanisms have been hypothesized to exist in T. vivax and T. congolense infections 436 
(51–54). In T. brucei, several VSGs have evolved specific functions besides antigenic variation 437 
(54). The first type B VSG structure was recently solved (55), revealing a unique O-linked 438 
carbohydrate in the VSG’s N-terminal domain that interfered with the generation of protective 439 
immunity in a mouse infection model. Perhaps structural differences between each VSG type, 440 
including glycosylation patterns, could influence infection outcomes. Further research will be 441 
needed to determine whether the observed predominance of type B VSGs could influence the 442 
biology of T. b. gambiense infection.  443 
 444 
Another possibility we cannot rule out, however, is that the gHAT samples are biased due to 445 
selection by the serological test used for diagnosis. Patients were screened for T. b. gambiense 446 
infection using the CATT, a serological test that uses parasites expressing VSG LiTat 1.3 as an 447 
antigen. LiTat 1.3 contains a type B2 N-terminal domain (56, 57). Patients infected with parasites 448 
predominantly expressing type B VSGs may be more likely to generate antibodies that cross-449 
react with LiTat1.3, resulting in preferential detection of these cases. In contrast, T. b. rhodesiense 450 
can only be diagnosed microscopically, removing the potential to introduce bias through 451 
screening. It remains to be investigated whether samples from patients diagnosed using newer 452 
screening tests, which include the invariant surface glycoprotein ISG65 and the type A VSG LiTat 453 
1.5 (23), would show similar bias towards the expression of type B VSGs.  454 
 455 
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Such a bias, if it exists, would be important to understand, as it could affect the ability to detect a 456 
subset of gHAT infections. The diversity and corresponding divergence of expressed VSGs from 457 
publicly available genomic sequences could have similar implications. Although diversity in T. b. 458 
gambiense infection appeared lower overall than previous measurements from experimental 459 
mouse infections (17, 18, 26), the correlation we observed between parasitemia and diversity in 460 
T. b. gambiense isolates suggests that our sampling was incomplete. Indeed, in our analysis of 461 
T. b. rhodesiense infection (a more reasonable comparison to mouse infection given similar 462 
expression cutoffs and parasitemia), we observed diversity similar to or higher than what has 463 
been observed in T. b. brucei mouse infections. Moreover, T. b. rhodesiense patient CSF revealed 464 
another layer of diversity in VSG expression, with 5 VSGs expressed exclusively in this space. 465 
Although this observation is difficult to interpret without information about the precise timing of 466 
sample collection, a recent study in mice showed that extravascular spaces harbor much of the 467 
antigenic diversity during infection (58). It is exciting to speculate that different organs or body 468 
compartments could harbor different sets of VSGs in humans as well.  469 
 470 
Overall, our analysis of VSG expression in T. b. gambiense and T. b. rhodesiense patients 471 
confirmed the long-held assumption that VSG diversity is a feature of natural infection. One 472 
potential consequence of this striking diversity is that the genomic VSG repertoire might be 473 
exploited very rapidly, creating pressure for the parasite to diversify its VSG repertoire as the 474 
mammalian host generates antibodies against each expressed VSG. Our results are consistent 475 
with this, revealing extreme divergence in the patient VSGs from 36 publicly available T. b. 476 
gambiense whole genome sequencing datasets. Even when mapping relatively short 30bp 477 
genomic sequences to each VSG, we could only find evidence for ~30% of each VSG ORF. 478 
Without assembled genomes, it is difficult to infer recombination patterns or mechanisms from 479 
this analysis. The fact that only very short stretches of homology could be found within the N-480 
terminal domain, however, is consistent with recombination through microhomology-mediated 481 
end joining, a DNA repair mechanism that uses short stretches of homology (5-20bp) to repair 482 
DNA damage (59). This appears to be the favored form of DNA repair in the VSG expression site 483 
and has been hypothesized to play a role in VSG switching (59, 60). The data presented here 484 
suggest this mechanism, or a similar one, may play a role in diversification of the VSG repertoire 485 
as well. 486 
 487 
We also observed divergence between geographically separate parasite populations. Past 488 
research has shown that the sensitivity of serological tests for gHAT, which detect antibodies 489 
against the LiTat 1.3 VSG, vary regionally, potentially due to differences in the underlying genomic 490 
or expressed VSG repertoire in circulating strains (56, 57). Our data is consistent with such a 491 
possibility, with the VSGs expressed in patients from the DRC sharing more sequence similarity 492 
with isolates from the same country than those from Côte d’Ivoire. Geographic variation has been 493 
observed in var gene repertoires of Plasmodium falciparum (61) and the VSG repertoire of 494 
Trypanosoma vivax, another African trypanosome (53). A better understanding of such 495 
differences in T. brucei could inform the development of future HAT diagnostics.  496 
 497 
The positions of divergent regions within the VSG protein demonstrate the enormous pressure 498 
exerted by host antibody on the repertoire of T. b. gambiense. While the C-termini of patient VSGs 499 
were well-represented, the majority of each N-terminal sequence was undetectable in the 36 500 
genomes we analyzed. Notably, in even the most conserved VSG N-termini, sequences encoding 501 
the top lobe of the VSG were completely absent from the genomes we analyzed. VSG proteins 502 
are packed together very closely on the parasite cell surface, presumably preventing host 503 
antibody from accessing epitopes close to or within the C-terminus (36). Thus, those regions with 504 
no nucleotide similarity correspond directly to the parts of the VSG protein most likely to be 505 
exposed to host antibody.  506 
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 507 
In addition to confirming that certain aspects of antigenic variation observed in experimental T. 508 
brucei infection are features of natural infection, this study has revealed unique features of the 509 
process in T. b. gambiense. This subspecies appears to preferentially express certain VSG N-510 
termini, which could be related to the unique biology of the parasite. Additionally, wild VSG 511 
repertoires may be more diverse than previously expected with potential geographic variation. 512 
While mouse models can recapitulate certain aspects of the process, new biology remains to be 513 
uncovered by studying antigenic variation in its natural context. 514 
 515 
 516 
  517 
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 518 
Methods 519 
 520 
Ethics statement 521 
The blood specimens from T.b. gambiense infected patients were collected within the projects, 522 
“Longitudinal follow-up of CATT seropositive, trypanosome negative individuals (SeroSui)” and 523 
“An integrated approach for identification of genetic determinants for susceptibility for 524 
trypanosomiasis (TrypanoGEN)” (62). In France, the SeroSui study received approval from the 525 
Comité Consultatif de Déontologie et d’Ethique (CCDE) of the French National Institute for 526 
Sustainable Development Research (IRD), May 2013 session. In Belgium, the study received 527 
approval from the Institutional Review Board of the Institute of Tropical Medicine (reference 528 
886/13) and the Ethics Committee of the University of Antwerp (B300201318039). In the 529 
Democratic Republic of the Congo, the projects SeroSui and TrypanoGEN were approved by the 530 
Ministry of Health through the Ngaliema Clinic of Kinshasa (references 422/2013 and 424/2013). 531 
Participants gave their written informed consent to participate in the projects. For minors, 532 
additional written consent was obtained from their legal representative. 533 
 534 
 535 
Patient enrollment and origin map 536 
Patients originated from the DRC and were identified over six months in the second half of 2013. 537 
This identification occurred either during passive screening at the center for HAT diagnosis and 538 
treatment at the hospital of Masi Manimba, or during active screening by the mobile team of the 539 
national sleeping sickness control program (PNLTHA) in Masi Manimba and Mosango health 540 
zones (Kwilu province, DRC).  541 
 542 
Individuals were screened for the presence of specific antibodies in whole blood with the CATT 543 
test. For those reacting blood positive in CATT, we also tested twofold serial plasma dilutions of 544 
1/2-1/32 were also tested and determined the CATT end titer was determined. CATT positives 545 
underwent parasitological confirmation by direct microscopic examination of lymph (if enlarged 546 
lymph nodes were present), and examination of blood by the mini-anion exchange centrifugation 547 
technique on buffy coat (63). Individuals in whom trypanosomes were observed underwent lumbar 548 
puncture. The cerebrospinal fluid was examined for white blood cell count and the presence of 549 
trypanosomes to determine the disease stage and select the appropriate treatment. Patients were 550 
questioned about their place of residence. The geographic coordinates of their corresponding 551 
villages were obtained from the Atlas of HAT (64) and plotted on a map of the DRC using ArcGIS® 552 
software by Esri. Distances were determined and a distance matrix generated (see Supplemental 553 
Table 2).  554 
 555 
 556 
Patient blood sample collection and total RNA isolation 557 
A 2.5 mL volume of blood was collected from each patient in a PAXgene Blood RNA Tube. The 558 
blood was mixed with the buffer in the tube, aliquoted in 2 mL volumes and frozen in liquid nitrogen 559 
for a maximum of two weeks.  After arrival in Kinshasha, tubes were stored at -70°C. Total RNA 560 
was extracted and isolated from each blood sample as previously described (65). 561 
 562 
 563 
Estimation of parasitemia 564 
Two approaches were used to estimate parasitemia. First, a 9 mL volume of blood on heparin 565 
was centrifuged, 500 microliters of the buffy coat were taken up and trypanosomes were isolated 566 
using the mini-anion exchange centrifugation technique. After centrifugation of the column eluate, 567 
the number of parasites visible in the tip of the collection tube were estimated. Second, Spliced 568 
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Leader (SL) RNA expression levels were measured by real-time PCR as previously described 569 
(65). A Ct value was determined for each patient blood sample. Real-time PCR was performed 570 
on RNA samples before reverse transcription to verify the absence of DNA contamination. 571 
 572 
 573 
RNA sequencing 574 
DNase I-treated RNA samples were cleaned up with 1.8x Mag-Bind TotalPure NGS Beads 575 
(Omega Bio-Tek, # M1378-01). cDNA was generated using the SuperScript III First-strand 576 
synthesis system (Invitrogen, 18080051) according to manufacturer’s instructions. 8 microliters 577 
of each sample (between 36 and 944 ng) were used for cDNA synthesis, which was performed 578 
using the oligo-dT primer provided with the kit. This material was cleaned up with 1.8x Mag-Bind 579 
beads and used to generate three replicate library preparations for each sample. These technical 580 
replicates were generated to ensure that any VSGs detected were not the result of PCR 581 
artifacts(66, 67).  582 
 583 
Because we expected a low number of parasites in each sample, we used a nested PCR 584 
approach to prepare the VSG-seq libraries. First, we amplified T. brucei cDNA from the 585 
parasite/host cDNA pool by PCR using a spliced leader primer paired with an anchored oligo-dT 586 
primer (SL-1-nested and anchored oligo-dT; Supplemental Table 1).  20 cycles of PCR were 587 
completed (55ºC annealing, 45s extension) using Phusion polymerase (Thermo Scientific, 588 
#F530L). PCR reactions were cleaned up with 1.8x Mag-Bind beads. After amplifying T. brucei 589 
cDNA, a VSG-specific PCR reaction was carried out using M13RSL and 14-mer-SP6 primers 590 
(see primers; Supplemental Table 1). 30 cycles of PCR (42ºC annealing, 45s extension) were 591 
performed using Phusion polymerase. Amplified VSG cDNA was then cleaned up with 1X Mag-592 
Bind beads and quantified using a Qubit dsDNA HS Assay (Invitrogen Q32854).  593 
 594 
Sequencing libraries were prepared from 1 ng of each VSG PCR product using the Nextera XT 595 
DNA Library Preparation Kit (Illumina, FC-131-1096) following the manufacturer’s protocol except 596 
for the final cleanup step, which was performed using 1X Mag-Bind beads. Single-end 100bp 597 
sequencing was performed on an Illumina HiSeq 2500. Raw data are available in the National 598 
Center for Biotechnology Information (NCBI) Sequence Read Archive under accession number 599 
PRJNA751607. 600 
 601 
VSG-seq analysis of T. b. gambiense and T. b. rhodesiense sequencing libraries 602 
 603 
To analyze both T. b. gambiense (VSG-seq preparations) and T. b. rhodesiense (traditional 604 
mRNA sequencing library preparations; sequences were obtained from ENA, accession numbers 605 
PRJEB27207 and PRJEB18523), we processed raw reads using the VSG-seq pipeline available 606 
at https://github.com/mugnierlab/VSGSeqPipeline. Briefly, VSG transcripts were assembled de 607 
novo from quality- and adapter-trimmed reads for each sample (patient or patient replicate) from 608 
raw reads using Trinity (version 5.26.2) (68). Contigs containing open reading frames (ORFs) 609 
were identified as previously described (26). ORF-containing contigs were compared to Lister 427 610 
and EATRO1125 VSGs as well as a collection of known contaminating non-VSG sequences. 611 
Alignments to VSGs with an E-value below 1x10-10 that did not match any known non-VSG 612 
contaminants were identified as VSG transcripts. For T. b. gambiense replicate libraries, VSG 613 
ORFs identified in any patient replicate were consolidated into a sole reference genome for each 614 
patient using CD-HIT (version 4.8.1) (69) with the following arguments: -d 0 -c 0.98 -n 8 -G 1 -g 1 615 
-s 0.0 -aL 0.0. Final VSG ORF files were manually inspected.  616 
 617 
Two T. b. gambiense patient VSGs (Patients 11 and 13) showed likely assembly errors. In one 618 
case, a VSG was duplicated and concatenated, and in another, two VSGs were concatenated. 619 
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These reference files were manually corrected (removing the duplicate or editing annotation to 620 
reflect two VSGs in the concatenated ORF) so that each VSG could be properly quantified. VSG 621 
reference databases for each patient are available at 622 
https://github.com/mugnierlab/Tbgambiense2021/. For T. b. gambiense, we then aligned reads 623 
from each patient replicate to that patient’s consolidated reference genome using Bowtie with the 624 
parameters -v 2 -m 1 -S (version 1.2.3) (70).  625 
 626 
For T. b. rhodesiense, we aligned each patient’s data to its own VSG ORF assembly. RPKM 627 
values for each VSG in each sample were generated using MULTo (version 1.0) (71), and the 628 
percentage of parasites in each population expressing a VSG was calculated as described 629 
previously (26). For T. b. gambiense samples, we included only VSGs with an expression 630 
measurement above 1% in two or more patient replicates in our analysis. For T. b. rhodesiense 631 
samples, we included only VSGs with expression >0.01%. To compare VSG expression between 632 
patients, despite the different reference genomes used for each patient, we used CD-HIT to 633 
cluster VSG sequences with greater than 98% similarity among patients, using the same 634 
parameters used to consolidate reference VSG databases before alignment. We gave each 635 
unique VSG cluster a numerical ID (e.g., Gambiense #) and chose the longest sequence within 636 
each group to represent the cluster. Before analysis, we manually removed clusters representing 637 
TgsGP and SRA from the expressed VSG sets. UpSet plots were made with the UpSetR package 638 
(72). The R code used to analyze resulting data and generate figures is available at 639 
https://github.com/mugnierlab/Tbgambiense2021/. 640 
 641 
 642 
Analysis of VSG N-terminal domains 643 
 644 
Genomic VSG sequences 645 
The VSG repertoires of T. b. brucei Lister 427 (“Lister427_2018” assembly), T. b. brucei 646 
TREU927/4 and T. b. gambiense DAL972 were taken from TriTrypDB (v50), while the T. b. brucei 647 
EATRO 1125 VSGnome was used for analysis of the EATRO1125 VSG repertoire 648 
(vsgs_tb1125_nodups_atleast250aas_pro.txt, available at 649 
https://tryps.rockefeller.edu/Sequences.html or GenBank accession KX698609.1 - KX701858.1). 650 
VSG sequences from other strains (except those generated by VSG-seq) were taken from the 651 
analysis in Cross, et al. (15). Likely VSG N-termini were identified as predicted proteins with 652 
significant similarity (e-value ≤ 10-5) to hidden Markov models (HMMs) of aligned type A and B 653 
VSG N-termini taken from (15).  654 
 655 
N-terminal domain phylogenies 656 
Phylogenies of VSG N-termini based on unaligned sequence similarities were constructed using 657 
the method described in (73) and used previously to classify VSG sequence (15). We extracted 658 
predicted N-terminal domain protein sequences by using the largest bounding envelope 659 
coordinates of a match to either type A or type B HMM. A matrix of similarities between all 660 
sequences was constructed from normalized transformed BLASTp scores as in Wickstead, et al. 661 
(73) and used to infer a neighbor-joining tree using QuickTree v1.1 (74). Trees were annotated 662 
and visualized in R with the package APE v5.2 (75). 663 
 664 
HMM 665 
For N-terminal typing by HMM, we used a python analysis pipeline available at 666 
(https://github.com/mugnierlab/find_VSG_Ndomains). The pipeline first identifies the boundaries 667 
of the VSG N-terminal domain using the type A and type B HMM profiles generated by Cross et 668 
al. which includes 735 previously-typed VSG N-terminal domain sequences (15). N-terminal 669 
domains are defined by the largest envelope domain coordinate that meets e-value threshold 670 
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(1x10-5, --domE 0.00001). In cases where no N-terminal domain is identified using these profiles, 671 
the pipeline executes a “rescue” domain search in which the VSG is searched against a ‘pan-672 
VSG’ N-terminus profile we generated using 763 previously-typed VSG N-terminal domain 673 
sequences. This set of VSGs includes several T. brucei strains and/or subspecies: Tb427 (559), 674 
TREU927 (138), T. b. gambiense DAL972 (28), EATRO795 (8), EATRO110 (5), T. equiperdum 675 
(4), and T. evansi (21). The N-terminal domain type of these VSGs were previously determined 676 
by Cross et. al (2014) by building neighbor-joining trees using local alignment scores from all-677 
versus-all BLASTp similarity searches (15). Domain boundaries are called using the same 678 
parameters as with the type A and B profiles. 679 
 680 
After identifying boundaries, the pipeline extracts the sequence of the N-terminal domain, and this 681 
is searched against five subtype HMM profiles. To generate N-terminal domain subtype HMM 682 
profiles, five multiple sequence alignments were performed using Clustal Omega (76) with the 683 
763 previously-typed VSG N-terminal domain sequences described above; each alignment 684 
included the VSG N-terminal domains of the same subtype (A1, A2, A3, B1, and B2). Alignment 685 
output files in STOCKHOLM format were used to generate distinct HMM profiles for type A1, A2, 686 
A3, B1, and B2 VSGs using the pre-determined subtype classifications of the 763 VSGs using 687 
HMMer version 3.1b2 (77). The number of sequences used to create each subtype profile ranged 688 
from 75 to 211. The most probable subtype is determined by the pipeline based on the highest 689 
scoring sequence alignment against the subtype HMM profile database when HMMscan is run 690 
under default alignment parameters. The pipeline generates a FASTA file containing the amino 691 
acid sequence of each VSG N-terminus and a CSV with descriptions of the N-terminal domain 692 
including its type and subtype.  693 
 694 
Network graph 695 
N-terminal network graphs were made using VSG N-terminal domains from the TriTrypDB 696 
Lister427_2018 and T. b. gambiense DAL972 (v50) VSG sets described above, and the T. b. 697 
gambiense and T. b. rhodesiense patient VSG N-termini which met our expression thresholds. 698 
Identified N-terminal domains were then subjected to an all-versus-all BLASTp. A pairwise table 699 
was created that includes each query-subject pair, the corresponding alignment E-value, and N-700 
terminal domain type of the query sequence if previously typed in Cross, et al. (15). Pseudogenes 701 
and fragments were excluded from the Lister427_2018 reference prior to plotting by filtering for 702 
VSG genes annotated as pseudogenes and any less than 400 amino acids in length, as the 703 
remaining sequences are most likely to be full length VSG. Network graphs were generated with 704 
the igraph R package(78) using undirected and unweighted clustering of nodes after applying link 705 
cutoffs based on E-value < 10-2. The leading eigenvector clustering method (35) was used to 706 
detect and assign nodes to communities based on clustering (cluster_leading_eigen() method in 707 
igraph).  708 
 709 
Analysis of VSG C-terminal domains 710 
VSG C-termini were extracted from expressed T. b. gambiense VSGs, T.b. gambiense DAL972 711 
(v50), and 545 previously-typed VSG C-termini from the Lister 427 strain using the C-terminal 712 
HMM profile generated by Cross et al. (15) and the same HMMscan parameters as for N-termini 713 
(E-value < 1x10-5; largest domain based on envelope coordinates). An all-vs-all BLASTp was 714 
performed on these sequences, and network graphs were generated in the same manner as the 715 
N-terminal network graphs. Links were drawn between C-termini with a BLASTp E-value 1x10-3. 716 
The leading eigenvector method for clustering (35) was used to detect and assign nodes to 717 
communities based on clustering (cluster_leading_eigen() method in igraph).  718 
 719 
 720 
 721 
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Comparison of gHAT patient VSGs to sequenced whole genomes of T.b. gambiense 722 
isolates 723 
Publicly available whole genome Illumina sequencing reads for 24 T.b. gambiense isolates from 724 
Côte d’Ivoire were fetched from the ENA database and 12 datasets for isolates from the DRC 725 
were downloaded from DataDryad. All datasets analyzed exist as raw sequencing reads and do 726 
not have associated ORF assemblies or VSG gene annotations. We therefore determined the 727 
presence or absence of sequences similar to patient VSG by alignment. Raw reads were adapter 728 
and quality trimmed using Trim_Galore (version 0.5.0) under default parameters and truncated to 729 
desired query lengths of 20, 30, and 50 bp using Trimmomatic (79) (version 0.38) ‘CROP’ option. 730 
Whole genome sequence datasets were aligned to the assembled patient VSG nucleotide 731 
sequences using Bowtie with the parameters -v 2 -a -S (version 1.1.1). Bowtie does not support 732 
gapped alignments and the number of mismatched bases per read can be adjusted to control the 733 
stringency of alignments, therefore this aligner was used to assess the size of regions of sequence 734 
similarity between the patient VSG and genomic sequences. Bedtools (80) (version 2.27.0) 735 
genomecov was used to summarize alignment coordinates and read depth for downstream 736 
analysis. Alignment ranges were plotted with the IRanges R package(81). Patient VSG gene 737 
coverage was calculated as the regions of sequence with an aligned read depth of at least one 738 
divided by the full ORF sequence or domain length in bp.  739 
 740 
To model regions of sequence divergence and similarity, the secondary structures for each of   741 
the 44 gHAT patient VSG were predicted using Phyre2 (82) batch processing under default 742 
parameters. Automated threading returned hits to VSG N-terminal domain chain templates from 743 
the PDB with 100% confidence for all patient VSG. Predicted structures were visualized and 744 
figures generated in ChimeraX (83).745 
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 773 
Supplemental Figure 1. Heatmap of all assembled T.b. gambiense patient VSGs. Greyscale 774 
shows log10 of the estimated percentage of the parasite population expressing each VSG. Variants 775 
expressed by less than 1% of parasites considered not detected (n.d.). 776 
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 778 
Supplemental Figure 2. Correlation between parasitemia and diversity and N-terminal type 779 
distribution. (A) Correlation plots for T.b. gambiense infected patients. (B) Correlation plots for 780 
T.b. rhodesiense infected patients from Mulindwa et al. 2018. (C) Correlation plots for VSG 781 
diversity and percent of N-terminal domain type B for T.b. brucei infected mice from Mugnier et 782 
al. 2015. 783 
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 786 
 787 

 788 
Supplemental Figure 3. (A) Network plot showing peptide sequence relatedness between N-789 
terminal domains. Each point represents a VSG N-terminus. A link was drawn between points if 790 
the BLASTp e-value was less than 10-2. Colors and shaded circles represent community 791 
assignments determined by the clustering algorithm. (B) The same graph as in (A), but points are 792 
manually colored by known N-terminal subtype from Cross et al. or by subspecies for VSGs 793 
identified in patients. 794 
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 796 
Supplemental Figure 4. BLASTp-tree of all T. b. gambiense VSGs. File attached. 797 
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Supplemental Figure 5. Expressed VSG C-termini are primarily type 1 and type 2. A) 802 
BLASTp-tree of C-terminal domains. Points are colored based on previously determined C-803 
terminal type from Cross et al. or by the source of the sequence (genomic or expressed) for T. b. 804 
gambiense VSGs. B) Network plot showing peptide sequence relatedness between C-terminal 805 
domains in T. b. gambiense expressed VSGs. Each point represents a VSG C-terminus. A link 806 
was drawn between points if the BLASTp e-value was less than 1x103. Points are colored by the 807 
cluster determined by the clustering algorithm. Shaded circles also indicate clusters. C) Same 808 
network plot as in B but colored by previously determined C-terminal type from Cross et al., or by 809 
source for unclassified genomic or expressed VSGs. D) VSG C-terminal types, based on cluster 810 
assignment visualized in panel B, in genomic and expressed VSG sets. E) Pairing of C- and N-811 
termini in T. b. gambiense patients. F) C-termini detected in each patient village. 812 
 813 
 814 
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 815 
Supplemental Figure 6. Heatmap of all assembled T. b. rhodesiense patient VSGs. 816 
Greyscale shows log10 of the estimated percentage of the parasite population expressing each 817 
VSG. Variants expressed by less than 0.01% of parasites considered not detected (n.d.). 818 

C
SF_58

C
SF_71

rR
N

A_71

rR
N

A_73

rR
N

A_80

rR
N

A_81

Rhodesiense 81
Rhodesiense 54
Rhodesiense 25
Rhodesiense 90
Rhodesiense 47
Rhodesiense 12
Rhodesiense 27
Rhodesiense 50
Rhodesiense 7
Rhodesiense 30
Rhodesiense 24
Rhodesiense 26
Rhodesiense 34
Rhodesiense 22
Rhodesiense 40
Rhodesiense 52
Rhodesiense 53
Rhodesiense 91
Rhodesiense 93
Rhodesiense 66
Rhodesiense 69
Rhodesiense 17
Rhodesiense 78
Rhodesiense 23
Rhodesiense 35
Rhodesiense 75
Rhodesiense 79
Rhodesiense 13
Rhodesiense 32
Rhodesiense 51
Rhodesiense 14
Rhodesiense 33
Rhodesiense 62
Rhodesiense 95
Rhodesiense 97
Rhodesiense 46
Rhodesiense 96
Rhodesiense 28
Rhodesiense 39
Rhodesiense 41
Rhodesiense 48
Rhodesiense 45
Rhodesiense 37
Rhodesiense 80
Rhodesiense 42
Rhodesiense 77
Rhodesiense 76
Rhodesiense 29
Rhodesiense 38C

SF_58

C
SF_71

rR
N

A_71

rR
N

A_73

rR
N

A_80

rR
N

A_81

n.d.

−2

−1

0

1

2

Fluid
blood
CSF

N-Terminal Subtype
A1
A2
A3
B1
B2
unknown

blood
CSF

A1
A2
A3
B1
B2
unknown

−2

−1

0

1

2Rhodesiense 15
Rhodesiense 31
Rhodesiense 20
Rhodesiense 8
Rhodesiense 67
Rhodesiense 85
Rhodesiense 65
Rhodesiense 74
Rhodesiense 68
Rhodesiense 49
Rhodesiense 88
Rhodesiense 64
Rhodesiense 36
Rhodesiense 83
Rhodesiense 44
Rhodesiense 94
Rhodesiense 11
Rhodesiense 63
Rhodesiense 60
Rhodesiense 89
Rhodesiense 57
Rhodesiense 73
Rhodesiense 72
Rhodesiense 92
Rhodesiense 84
Rhodesiense 87
Rhodesiense 71

 Rhodesiense 56

Log10(Percent Expression)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2022. ; https://doi.org/10.1101/2021.09.09.459620doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.09.459620
http://creativecommons.org/licenses/by/4.0/


 819 

Supplemental Figure 7. VSG N-terminal type composition fluctuates over the course of 820 
infection in mice. Proportions of N-terminal domain types expressed in T. b. brucei infected mice 821 
over time. The black dotted line represents the total number of identified VSGs. A) N-terminal type 822 
composition days 0-30. B) Type composition days 96-105. 823 
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 825 

Supplemental Figure 8. Mapping controls show how read size affects stringency of 826 
alignments, and support presence of sequences within datasets. A) Base pair coordinates 827 
of bowtie alignment ranges using 20 bp read lengths and allowing 2 mismatches for each of the 828 
36 whole genome datasets. Positions of alignment hits are shown on the x-axis and each facet 829 
shows results for the 9 negative controls as well as 3 T. b. gambiense gene positive controls. The 830 
negative controls are randomly selected genes from other model organisms. B) Base pair 831 
coordinates for the same set of positive and negative gene mapping controls using 30 bp read 832 
lengths and allowing 2 mismatches. Coverage of the negative control genes is greatly reduced, 833 
while the T. b. gambiense gene positive controls still have alignment hits across the entirety of 834 
the gene.  835 
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 837 
Supplemental Figure 9. Summary of Bowtie alignment hits for each assembled gHAT 838 
patient VSG against the genomic sequences. A) Base-pair coordinates of each patient VSG 839 
are plotted as the X-axis, and each facet designates the patient VSG as well as the full ORF 840 
sequence length. Bars color-coded by genome dataset group show alignment length and position 841 
within the VSG ORF sequence for genomic sequence fragments of 30bp in length. 842 
 843 
  844 
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