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ABSTRACT8

Biophysical models that attempt to infer real-world quantities from data usually have many9

free parameters. This over-parameterisation can result in degeneracies in model inversion and10

render parameter estimation ill-posed. However, often, we are not interested in estimating the11

parameters per se, but rather in identifying changes in parameters between experimental conditions12

(e.g. patients vs controls). Here we present a Bayesian framework to make inference on changes in13

the parameters of biophysical models even when model inversion is degenerate, which we refer to14

as Bayesian EstimatioN of CHange (BENCH).15

We infer the parameter changes in two steps; First, we train models that can estimate the pattern16

of change in the measurements given any hypothetical change in the parameters using simulations.17

Next, for any pair of real data sets, we use these pre-trained models to estimate the probability that18

an observed difference in the data can be explained by each model of change.19

The approach is general and particularly useful for biophysical models with parameter de-20

generacies. In this paper, we apply the approach in the context of microstructural modelling of21

diffusion MRI data, where the models are usually over-parameterised and not invertible without22

injecting strong assumptions. Using simulations, we show that in the context of the standard23
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model for diffusion our approach is able to identify changes in microstructural parameters from24

multi-shell diffusion MRI data. We also apply our approach to a subset of subjects from the25

UK-Biobank Imaging to identify the dominant standard model parameter change in areas of white26

matter hyperintensities.27

INTRODUCTION28

Modelling diffusion MRI (dMRI) data comes in two flavours. Phenomenological models, such29

as diffusion tensor imaging (DTI) (Basser et al. 1994) and DKI (Jensen et al. 2005)) attempt to30

capture the structure of the data, while (bio)physical models such as the standard model (Novikov31

et al. 2019a), NODDI (Zhang et al. 2012), Ball andRackets (Sotiropoulos et al. 2012) andAxCaliber32

(Assaf et al. 2008)) attempt to infer properties of the tissuemicrostructure given the data. This active33

field of research relies on the inversion of biophysical forward models, but it is also notoriously34

difficult to overcome model degeneracies (Jelescu et al. 2016). To resolve these degeneracies,35

the conventional approach is to constrain a subset of the parameters and only make inferences on36

the remaining parameters (Zhang et al. 2012). However, the validity of the extra assumptions,37

specifically under different experimental conditions is unclear. As a result, not only is there a38

limit to the number of microstructural parameters that can be estimated, but the reliability of the39

estimated parameters can also be questionable (Jelescu et al. 2016; Reisert et al. 2017; Lampinen40

et al. 2019).41

However, in many real-world applications, the model parameters may not be of direct interest.42

Rather, we are often interested in the “change” in the parameters under different experimental43

conditions. For example, to study mechanisms underlying a disease one would normally compare44

the parameter estimates of biophysical models between patient and control groups, with little45

attention paid to the actual parameter estimates. However, the parameter estimation is only tractable46

when the model of interest is invertible given the data. This limits one to simple biophysical models47

or requires injection of prior assumptions.48

In this work, we show that we can make precise inferences on the change in model parameters49

even in complex degenerate models. We argue that, using a sparsity assumption on the pattern50
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Figure 1. Illustration of the inversion-free inference on change (BENCH). Consider a toymodelwith two parameters
and two measurementsM(E1, E2) = [<1, <2]. Each oval in the parameter space (left) corresponds to a single point in
the measurement space (right) with the same color; meaning that there is a one to many mapping from measurements
to parameters (i.e., the model is degenerate). Despite the degeneracies we are able to estimate which of the parameters
best explains the change in the measurements. We do so by comparing the observed change (ΔH) with the expected
change in the measurements (`1, `2) as a result of each hypothesised pattern of change ( ˆΔE1, ˆΔE2).

of change, we can limit the hypothesis space, and so circumvent the degeneracy in the parameter51

estimation (see Figure 1). Our approach proceeds in two steps: First, we use simulated data52

generated from a forward model to train models that calculate how each parameter affects the53

measurements. Once these models of change have been trained for all hypothetical patterns of54

change, we use them to infer the posterior probability of which parameter(s) can best explain the55

change between real datasets. We call this approach BENCH,which stands for Bayesian EstimatioN56

of CHange.57

When confronted with a degenerate biophysical model, BENCH makes a different set of58

assumptions from the traditional approach of fixing some parameters and identifying any change59

in the remaining free parameters. When comparing patients and controls, the traditional approach60

assumes that the prior values for the fixed parameters hold across the region of interest in both61

groups. Hence, any change of signal across the region of interest between the two groups is assumed62

to be fully explained by the predetermined set of free parameters. In contrast, by not relying on63

model inversion, BENCH can work directly with the degenerate biophysical model without fixing64

any parameters. However, this comes at the price of limiting the patterns of change to some65
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predetermined set of possible patterns of change set by the user (e.g., parameter A could change, or66

parameter B increases by the same amount as parameter C decreases). While the number of such67

proposed microstructural changes can be large, each of them has to be sparse (i.e., they have a lower68

degree of freedom than the number of free parameters that could be estimated in the traditional69

approach). In this work, we will limit ourselves to changes of just one parameter at a time.70

BENCH is a general framework that is applicable to any situation where we are interested in71

comparing parameters of a generative (bio)physical model across different conditions. Here we72

apply the framework to dMRI microstructure modelling. As an example use case, we studied73

microstructural changes in White Matter Hyperintensities (WMH), which are extra bright regions74

that are commonly seen in T2-weighted images at specific brain regions in elderly people. Despite75

the abundance and clinical implications of WMHs (Prins and Scheltens 2015; Debette and Markus76

2010), the underlying changes in the histopathology and microstructure remain unknown (Wardlaw77

et al. 2013).78

The structure of this paper is as follows. In the Theory section, we present the general inference79

method and how we train the models of change. In the Methods section, we cover the diffusion-80

specific materials including the computation of summary measurements that are used to represent81

diffusion data and the microstructural model for diffusion MRI. In the Results section, we first82

demonstrate the ability of our model in detecting the underlying parameter changes using simulated83

data. We then apply the method to study microstructural changes in white matter hyperintensities84

as an example application. In the Discussion section, the potential applications, limitations, and85

possible future directions of this work are presented.86

THEORY87

Inference on change in parameters88

Given a baseline measurement (y), an observed change in the measurement (ΔH), and a gen-89

erative biophysical model (M), we aim to investigate what pattern of change (Δ̂E) in the model90

parameters (E) can best explain this observed change in the measurements (Figure 1). A pattern91

of change is a unit vector in the parameter space, e.g. it can be a change in a single parameter, or92
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any linear combination of the model parameters. For simplicity of the explanations and notation,93

we only assume a single parameter change in the rest of paper, but all the equations apply to any94

linear combination of the parameters. If the model is invertible, we may directly estimate ΔE by95

inverting the model on y and H +ΔH to get the corresponding parameter estimates and calculate the96

differences. Alternatively, in BENCH we estimate %(Δ̂E | H,ΔH), the posterior probability for the97

pattern of change Δ̂E conditioned on the observations H and ΔH. Using Bayes’ rule:98

%(Δ̂E | H,ΔH) = %(ΔH | H, Δ̂E)%(Δ̂E | H)∑
Δ̂E
′ %(ΔH | H, Δ̂E′)%(Δ̂E′ | H)

(1)99

We assume no prior preference between the patterns of change (i.e. %(Δ̂E | H) is uniform),100

so to estimate the posterior probability distribution we only need to estimate the likelihood term101

%(ΔH |H, Δ̂E). The pattern of change Δ̂E represents the direction but not the amount of the change102

in the parameters. We therefore marginalize the likelihood with respect to the amount of change (103

|ΔE |):104

%(ΔH | H, Δ̂E) =
∫

%(|ΔE |)%(ΔH | H, Δ̂E,|ΔE |)3 |ΔE | (2)105

We assume that the prior distribution for the amount of change follows a log-normal pdf with a106

fixed mean and scale parameter (adjustable hyper parameters). A log-normal PDF is chosen to107

allow for changes across several order of magnitudes.108

The likelihood term inside the integral, %(ΔH |H, Δ̂E,|ΔE |), defines how themeasurements change109

as a result of a fully characterised vector of change in the parameters with the given direction (Δ̂E)110

and amount (|ΔE |). To relate this parameter change to a change in data one also needs to know the111

baseline parameters (E), as112

ΔH =M(E +|ΔE | Δ̂E) −M(E) + n (3)113

where n is the measurement noise. However, for a degenerate biophysical model, we cannot114

estimate a unique set of baseline parameters E for which to estimate equation 3. While, one could115

integrate over all possible values of E, this is a very high-dimensional integral, which would be very116
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computationally expensive. Instead, we propose an alternative way to avoid the need of estimating117

the baseline parameters to estimate the likelihood.118

Assuming that |ΔE | is reasonably small, and M is behaving smoothly w.r.t E, using a Taylor119

expansion we can express ΔH as :120

ΔH = ∇Δ̂EM(E) |ΔE | + n (4)121

Where ∇Δ̂EM(E) is the gradient ofM in the direction of Δ̂E at point E, and n is the measurement122

noise. Given the baseline measurements (H), but not the baseline parameters (E), there can be an123

infinite number of ∇Δ̂EM(E) for a degenerate model (Figure 2). To account for all instances of the124

gradient, we model ∇Δ̂EM given H as a random variable that follows a normal distribution with125

hyperparameters `(H) and Σ(H), i.e.126

%(∇Δ̂EM | H) = # (∇Δ̂EM; `Δ̂E (H),ΣΔ̂E (H)) (5)127

where `Δ̂E represents the average expected change in the measurements as a result of change in128

parameters in the direction Δ̂E, ΣΔ̂E represents the uncertainty around this expectation due to the129

unknown baseline parameters (Figure 2), and # (G;<,�) represents a Gaussian PDF with mean <130

and covariance � evaluated at point G. This allows us to transfer the uncertainty in the baseline131

parameters to an uncertainty in themeasurement space, which we canmodel and predict. In the next132

section we will describe a method for estimating these hyperparameters from the measurements133

by training regression models on simulated data. Once we compute these hyperparameters, by134

inserting equation 5 back into equation 4 we can compute the likelihood term inside the integral as135

%(ΔH | H, Δ̂E,|ΔE |) = # (|ΔE | `Δ̂E,|ΔE |
2 ΣΔ̂E + Σ=) (6)136

where Σ= is the noise covariance matrix.137

Finally, by computing the integral over the size of the parameter change in equation 2 numeri-138
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Figure 2. Distribution of gradients. Thewaymeasurements change as a result of a particular change in the parameters
can only be calculated if we know the baseline parameters. When we are only given the measurements, there are several
instances of equally likely gradient directions depending on the underlying baseline parameters. We model all of these
gradients given the baseline measurements as a random variable with a presumed distribution. This allows us to transfer
the uncertainty due to the inverse model degeneracy into the measurement space. The blue oval in the parameter space
(left) represents all the parameter settings that map onto the same blue point in measurement space(right). Each
of these parameter settings can produce a different gradient direction in the measurements space. The collection of
such gradients of change Δ̂E for the measurement H are modelled as a Gaussian distribution with mean `Δ̂E (H) and
covariance ΣΔ̂E (H).

cally, we are able to approximate the likelihood function %(ΔH | H, Δ̂E) which we can then use in139

equation (1) yielding the desired posterior distribution on the change in parameters.140

Moreover, using the approximation of the likelihood function in equation 6 the posterior prob-141

ability of the amount of change in each parameter is proportional to142

%(|ΔE | | ΔH, H, Δ̂E) ∝ %(ΔH | H, Δ̂E,|ΔE |)%(|ΔE |) (7)143

Accordingly, we can estimate the most likely amount of change in the parameter given the measure-144

ments by finding the |ΔE | that maximizes the above posterior probability (maximum a posteriori145

estimation). Alternatively, we can estimate the expected value of the amount of change by integrat-146

ing this posterior probability distribution multiplied by |ΔE | over |ΔE |.147
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Training models of change148

In this section we describe how to train a regression model to estimate the hyperparameters of149

the distribution of ∇Δ̂EM(E), namely the average (`Δ̂E (H)) and uncertainty (ΣΔ̂E (H)) of change in150

the measurement (H) for a parameter change (Δ̂E).151

Given some baseline parameters (E) we can calculate the baseline measurements as H =M(E)152

and approximate the gradient in direction Δ̂E using153

∇Δ̂EM(E) ≈ lim
C→0

M(E + CΔ̂E) −M(E)
C

(8)154

Therefore, by sampling E from the parameter space using a prior distribution, we generate a155

simulated dataset of pairs [H,∇Δ̂EM] that we use for training regression models.156

We use a regression model parameterised by F`
Δ̂E

to estimate `Δ̂E as:157

`Δ̂E (H;F`Δ̂E ) = � (H).F`Δ̂E (9)158

where � (H) is the design matrix, which depends on arbitrary affine or non-linear transformations of159

H. Note that the subscript `Δ̂E of the weights indicates that each pattern of change in the parameters160

has its own set of weights.161

We also employ a regression model for the uncertainty hyperparameter ΣΔ̂E parameterised by162

FΣ
Δ̂E
. However, ΣΔ̂E must be positive definite, which would not be guaranteed when directly163

estimating ΣΔ̂E by training an element-wise regression model. To account for the positive definite164

nature of ΣΔ̂E, we instead train regression models for elements of the lower triangular matrix of165

its Cholesky decomposition (!). Also, since the diagonal elements of the lower-triangular matrix166

in Cholesky decomposition must be non-negative, we use their log-transform in the regression.167

Hence168

ΣΔ̂E (H;FΣΔ̂E ) = T (� (H).FΣΔ̂E ) (10)169

where T is the transformation of the regressed vector to the full covariance matrix that includes170
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the arrangement of elements, exponentiation of the diagonals, and matrix multiplication.171

Putting back the above regression models into equation 5 the likelihood of observing pairs of172

baseline measurements and gradients in terms of the parameters of regression models is:173

! (F`
Δ̂E
, FΣ

Δ̂E
) =

∏
8

# (∇Δ̂EM8; � (H8).F`
Δ̂E
,T (� (H8).FΣ

Δ̂E
)) (11)174

Accordingly, we estimate the optimal weights F`
Δ̂E
, FΣ

Δ̂E
by maximizing the above likelihood175

function for the simulated dataset using using a combination of the BFGS andNelder-Meadmethods176

as implemented in SciPy (Virtanen et al. 2020).177

This procedure is repeated for each hypothetical pattern of change, yielding two sets of weights178

for the average and uncertainty of change, which we refer to as a “ change model”. Once we179

estimated these weights, for any given baseline measurement we use the regression models in180

equations 9 and 10 to estimate the distribution of gradients. Figure 3 shows a schematic overview181

of the inputs, outputs and steps that are required to train a change model, as well as how to use them182

to infer the change in parameters.183

In this work, we used a second degree polynomial function of the data for the regression models184

that estimate themean change (`Δ̂E) from the baselinemeasurements. For the uncertainty parameter185

(ΣΔ̂E) a first degree (linear) model is chosen as we expect less variability across samples for this186

parameter. The weights for the regression models were estimated using a maximum likelihood187

optimization and a training dataset with 100,000 simulated samples.188

Biophysical model of diffusion189

In this section we explain the biophysical model of diffusion that we used to model brain190

microstructure with diffusion MRI data. The diffusion signal ( in the brain is conventionally191

modelled as the sum of signals from multiple compartments. We will here adopt the three-192

compartment standard model (Novikov et al. 2019a) consisting of an isotropic free water (denoted193
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Prior distribution on the 
parameters

Pairs of 
measurements 
and derivatives

Train machine 
learning models 

Probability of change in 
the parameter

Forward model

Measurements Observed Change

Estimated 
derivatives

Trained model 
of change

a) Training b) Inference

Figure 3. Schematic flowchart for training inference of change models. The blue, white and green blocks indicate
user defined inputs, intermediate variables and outputs respectively. In the training phase for each parameter change,
samples that are drawn from the provided prior distribution are passed through the forward model to estimate pairs of
measurements and derivatives. Then, regression models are trained to estimate the distribution of derivatives given
the measurements using a maximum likelihood estimation. This phase does not require real data and needs to be done
only once. In the inference stage using these trained models we estimate the distribution of the derivatives for any
given baseline measurements. We then calculate the posterior probability that change in each parameter caused the
change in the measurements using the derivative distributions.

by the subscript “iso”), an intra-axonal ( “in”), and an extra-axonal ( “ex”) compartment:194

( = (8B>�8B> + (8=�8= + (4G�4G (12)195

where (8 represents the baseline signal contribution (at 1 = 0), and �8 represents the signal196

attenuation due to the diffusion weighting in each compartment (Figure 4).197

The attenuation for the isotropic compartment is modelled as an exponential decay:198

�8B> = 4
−138B> (13)199
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where 38B> is the diffusion coefficient of free water.200

The intra-axonal compartment is modelled as a set of dispersed identical sticks with no per-201

pendicular diffusivity. Therefore, the signal attenuation for this compartment is the spherical202

convolution of a stick response function with an orientation distribution function. The stick re-203

sponse function for gradient direction 6 and b-value 1 is given by204

'(1, 6; `, 38=,0) = 4−138=,0 (`
) 6)2 (14)205

where 38=,0 is the diffusion coefficient along the orientation of the stick `. The fibre Orientation206

Distribution Function (fODF) is modelled with a Watson distribution, which is defined as207

5 (G) = 1
2
4^(`

) G)2 (15)208

where ` is the average orientation, ^ is the concentration coefficient and 2 is a normalization209

constant. To assimilate the dispersion coefficient to the notion of variance and limit it to a210

bounded range, we use the change of variable from ^ to Orientation Dispersion Index (ODI) as211

$�� = 2
c

arctan( 1
^
). Unlike ^ which is unbounded, $�� is limited to the range (0, 1), where212

higher $�� values correspond to more dispersion. The diffusion signal for this compartment is213

the spherical convolution of the fiber response function with the Watson ODF:214

�8= =

∬
(2
4−138=,0 (6

) =)2 1
2
4

2
c
C0=−1 ($��) (`) =)23= (16)215

where the integral is over the surface of the unit sphere (2 representing all possible fibre orientations216

in 3D.217

The extra-axonal compartment is modelled similar to the intra-axonal compartment, with the218

addition of a non-zero diffusion perpendicular to the fiber orientation. The fiber response function219

in this case is given by220

' = 4−1[34G,0 (`
) 6)2+34G,A (1−(`) 6)2)] (17)221
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where 34G,A ≤ 34G,0 is the radial diffusion coefficient. To avoid this dependence between the222

diffusivity parameters, the parameter g defined as the ratio of perpendicular to parallel diffusivity is223

used as a substitute to 34G,A . The free parameter g - subject to g ∈ [0, 1] to maintain the inequality224

constraint for the diffusivities - can be considered as a measure of tortuosity as it measures the225

extent to which water diffusion perpendicular to the fibre orientation is hindered with respect to the226

parallel diffusion. Therefore, the fiber response function for the extra axonal compartment is227

' = 4−134G,0 [(`
) 6)2+g(1−(`) 6)2)] (18)228

As the compartments share the same geometry, the same fibre orientation distribution is used.229

Accordingly, the signal attenuation for extra-axonal compartment is given by230

�4G =

∬
(2
4−134G,0 [(`

) 6)2+g(1−(`) 6)2)] 1
2
4

2
c
C0=−1 ($��) (`) =)23= (19)231

We use the confluent hypergeometric function of the first kind with matrix argument to compute232

the integrals for both intra and extra axonal compartments similar to (Sotiropoulos et al. 2012).233

Table 1 reports all the free parameters of the described biophysical diffusion model along with234

their valid range.

Parameter Description Range
B8B> Signal fraction for isotropic (free water) diffusion compartment [0, 1]
B8= Signal fraction for intra-axonal compartment [0, 1]
B4G Signal fraction for extra-axonal compartment [0, 1]
38B> Isotropic (free water) diffusivity coefficient [0,∞]
38=,0 Parallel diffusivity for the intra-axonal compartment [0,∞]
34G,0 Parallel diffusivity for the extra-axonal compartment [0,∞]
g radial to axial diffusivity ratio for the extra-axonal compartment [0, 1]

$�� Orientation dispersion index [0, 1)

TABLE 1. Microstructural parameters of the diffusion model. All diffusion coefficients are in `<2/<B

235
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Figure 4. Compartments of the diffusion model. We use a three compartment model that can model diffusion MRI
signals from various brain tissues namely CSF, white matter and gray matter. The isotropic compartment models
unrestricted diffusion of water molecules outside of tissue (CSF) with a single free parameter 38B>. The intra-axonal
compartment models the diffusion of water within axons as several sticks with the same parallel diffusivity parameter
38=,0, with zero radial diffusivity, that are dispersed by a Watson distribution with orientation dispersion index $��.
The extra-axonal compartment is also a Watson dispersed stick model with parallel diffusivity 34G,0 and perpendicular
diffusivity 34G,A = g34G,0. Including the signal fraction parameters (B8B>, B8=, B4G) this model has 8 free parameters,
which are more than that can be fitted to a conventional dMRI data.

Summary measurements236

Diffusion MRI data are usually measured in multiple shells to capture tissue properties that are237

sensitive to diffusion of water molecules at various spatial scales. Within each shell, gradients are238

applied in several directions to measure the geometrical structure of the tissue. However, since239

we are only interested in the microstructural characteristics, any orientation-related information240

is irrelevant. We therefore need summary measurements from each shell that are invariant to241

orientations. We create these summary measurements using real spherical harmonics, which are242

analogous to the Fourier transform for the spherical domain.243

Spherical harmonics are a complete set of orthonormal functions over the surface of a unit244

sphere. That is to say, any bounded real function that is defined over the unit sphere can be245

represented by a unique linear combination of these functions with real coefficients. Each real246

spherical harmonic is denoted by .;,< (\, q) where ; = 0, 1, 2, ... is the degree and < = −;, ..., ; is247
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the order, and \ ∈ [0, c] , q ∈ [−c, c] are the polar and longitudinal angles in standard spherical248

coordinate system respectively. The diffusion signal at each shell is decomposed as:249

((\, q) =
∞∑
;=0

;∑
<=−;

�;,<.;,< (\, q) (20)250

Since the harmonics are a linear basis, one can easily calculate the coefficients for the signal in each251

shell by inverting the design matrix formed by the harmonics sampled at the gradient directions.252

The coefficients are not orientationally invariant. However, the total power in each degree,253

which is defined as the vector norm of all the coefficients in that degree, is rotationally invariant254

(Kazhdan et al. 2003; Zucchelli et al. 2020; Novikova et al. 2018). Also, since the diffusion signal255

is symmetric around the origin and the harmonics of odd degree are odd functions (anti-symmetric256

w.r.t origin), all odd degrees have zero coefficients.257

Consequently, for each shell of diffusion data, we calculate the mean squares of all coefficients258

for degrees ; = 0, 2, 4, ... as the orientationally-invariant summary measurements.259

H; =
1

2; + 1

;∑
<=−;

�2
;,< (21)260

The mean is chosen over the norm to make the scale equal across all degrees. For the case of261

; = 0, we simply use the only coefficient (without the square), so that it represents the mean signal.262

The higher order summary measurements quantify the signal anisotropy; with greater ; being more263

sensitive to sharper changes. We used a logarithm transformation on the power of the coefficients264

to make the distribution across the brain closer to a Gaussian and more sensitive to smaller changes.265

METHODS266

Simulations267

For all the simulations we used the acquisition protocol conducted by the UK Biobank (UKB)268

(Miller et al. 2016; Alfaro-Almagro et al. 2018) which includes two shells of diffusion (1 = 1, 2 ms
`m2 )269

with linear diffusion encoding. Each shell consists of 50 gradient directions distributed uniformly270

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.09.459626doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.09.459626
http://creativecommons.org/licenses/by/4.0/


over the surface of the unit sphere, in addition to 5 acquisitions with 1 = 0, yielding a total of 105271

measurements.272

We used the rotationally invariant summary measurements computed from spherical harmonics273

for signal representation. The summary measurements for each shell are norms of coefficients at274

; = 0 (absolute value) and ; = 2 (log mean squared). This produces 5 rotational invariant summary275

measurements from a diffusion data, namely b0-mean, b1-mean, b1-l2, b2-mean, and b2-l2.276

The described standard model for diffusion is used for both simulated test data and for training277

models of change. The prior distributions for the parameters are shown in figure 5. We note that278

these priors are not used for constraining the model parameters but rather they are used to generate279

training samples for the regression models. The choice of the prior distributions is arbitrary as long280

as they can reflect all hypothetical parameter combinations that can produce measurements similar281

to real data.282

The standard model is not invertible given a conventional multishell diffusion data with linear

diffusion encoding (Novikov et al. 2019a; Jelescu et al. 2016) . Typically, additional constraints

are imposed to render the model invertible, e.g. in NODDI (Zhang et al. 2012), the diffusion

coefficients are fixed to a prior value as follows:

38B> = 3
`<2

<B
, 38=,0 = 34G,0 = 1.7

`<2

<B

Additionally, the tortuosity parameter g is coupled to the signal fractions:283

g =
B8=

B8= + B4G
(22)284

Accordingly, this constrained model has four free parameters: B8B>, B8=, B4G and $��.285

For both the constrained and unconstrained models, we generated a test dataset containing286

pairs of simulated diffusion signals, such that in each pair at most one microstructural parameter is287

different. To generate each pair, we sample a baseline parameter setting from the prior distributions288

and change one of the parameters by an effect size of 0.1. We also generate pairs of data where no289
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Figure 5. Prior distributions for the parameters of the standard model. These priors are used for generating
pairs of measurements and gradients for training the models of change. Also, the same priors are used for simulating
test datasets. The priors are chosen such that they contain all probable parameter combinations that can produce
measurements similar to real data. The delta function along with uniform distribution in the isotropic signal fraction
is used to model pure tissue types as well as partial volume effect. In the training phase, the volume fractions are
normalized to sum up to 1. A beta (shape parameters U = 2, V = 5) distribution is used for $�� to impose a uniform
distribution for effective fibre dispersion. The prior for isotropic and axial diffusivities are normal distributions with
mean 3 and 1.7 ( `<

2

<B
) and standard deviation 0.1 and 0.3 respectively; as we expect faster diffusion as well as less

variability in the free water component.

parameter changes and the difference between the two samples is only due to the addition of noise.290

We then apply the forward model to both parameter settings to produce diffusion MRI signals.291

Gaussian noise with standard deviation f= = 0.02 (SNR=50) is added to all diffusion signals.292

The signal fraction parameters are constrained to sum up to 1 for training models of change.293

Note that whilst this imposes a constraint that the b0-mean for the baseline measurement is equal294

to 1, it does not constrain a change in that summary measurement. Accordingly, all the summary295

measurements (both in the baseline and the change vector) are normalized by the b0-mean of the296

baseline measurement for any real data. This differs from the conventional NODDI, where there is a297

constraint on the signal fractions to sum up to 1 for each sample, which reduces the free parameters298
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to 3, but here we assume all the parameters can change independently.299

For the direct inversion approach, a maximum a-posteriori algorithm is employed to estimate300

the parameters of the constrained model from each diffusion signal separately. Then using a z-test301

across the parameter estimates in each pair, we calculate a p-value for the change in each parameter302

(corrected for multiple comparisons across parameters). The parameter with the minimum p-value303

is identified as the changed parameter. All the cases with minimum ? > 0.05 are identified as no304

change.305

We also used BENCH for identifying change on the same dataset. To estimate the noise306

covariance in the summary measurements Σ=, 100 noisy instances of signals were generated, and307

the sample covariance of the difference between summarymeasurements in each pair was estimated.308

We then estimated the posterior probability of change in each parameter using the trained models309

of change. The no change model has a zero mean and covariance Σ= everywhere. The change310

model with the maximum posterior probability is selected as the predicted change.311

White matter hyperintensities312

We employed the trained models of for the parameters of the standard model to investigate313

the microstructural changes in white matter hyperintensities (WMH). In this experiment, we used314

diffusion MRI of 2400 randomly selected subjects from the UK biobank dataset. To account for315

the variability in overall intensity across subjects, we divided each subject’s diffusion data by the316

average intensity of the b0 image across the brain’s white and greymatter extracted using FSL FAST317

(Zhang et al. 2000). We then computed the spherical harmonics-based summary measurements318

from the diffusionMRI data for each subject and interpolated these measures into the standardMNI319

space using non-linear transformations estimated by FSL FNIRT (Woolrich et al. 2009; Andersson320

et al. 2019).321

Segmentations of the WMHs were generated from T2 FLAIR images using FSL’s BIANCA322

(Griffanti et al. 2016) as part of the UK Biobank pipeline (Miller et al. 2016). We computed323

the average summary measurements for normally appearing white matter (voxels within the white324

matter mask not classified as WMH) and the WMHs for all voxels that included more than 10325
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subjects with WMH. For each voxel, subjects were split into two groups according to whether the326

voxel has been classified asWMH or not. Averaging the summary measures within groups provides327

us with the baseline measurement (H) and the observed change (ΔH) related to WMH. The noise328

covariance (Σ=) in each voxel was estimated using the within group covariance matrix divided by329

the number of subjects in the normal appearing white matter group.330

RESULTS331

Summary measures332

A representative axial slice of the normalized summary measurements from a single subject are333

shown in Figure 6. The "mean" summary measures represent the normalised average signal. The334

;2 measures quantify the anisotropy in each voxel (similar to Fractional Anisotropy maps in DTI).335

The bottom panels of Figure 6 show histograms of the summary measurements across the brain336

for the same subject, as well as distributions of simulated data based on prior distributions over the337

model parameters. The distribution for the generated samples fully covers the range of the data and338

follows the same density distribution. This verifies that the prior distributions are wide enough to339

capture the full range of real data.340

Figure 7 shows estimated derivatives of the summary measurements at baseline data repre-341

sentative of putative voxels in the white matter and grey matter. The error bars show estimated342

standard deviations of the derivatives (the square root of diagonals of the estimated covariance343

matrix). This variance is reflecting the uncertainty in the underlying parameters that can generate344

these measurements, as well as residuals of the regression model for the mean.345

Simulations346

We first employed simulated data to evaluate the performance of the proposed approach in347

inferring microstructural changes from diffusion MRI data.348

Comparison with model inversion349

Figure 8 shows the confusion matrix using model inversion (left), and our inversion-free350

approach (right) for an invertible model with only 4 free parameters. Each element of these matrices351
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Figure 6. Maps of the summary measurements for a sample subject in the UK biobank dataset (top) and their
histogram (bottom). The mean summary measurements is reflecting the mean diffusivity in each shell. The ;2
summary measurements estimate the anisotropy, which is similar to the fractional anisotropy (FA), but computed with
a linear transformation of the signal. Histograms show the distribution of these measurements across the brain; as well
as the distribution of simulated data using the standard model and provided prior distributions. This shows that the
simulations capture the full range of the summary measures from real data.

represents the percentage of times a change in the parameter represented at the corresponding352

column is identified as a change in the corresponding row. Both approaches were able to detect the353

true change in most of the cases.354

For the standard model with all 8 free parameters, Figure 9 shows the confusion matrices355

using the direct model inversion (left) and change estimation (right). Since the uncertainties of the356

parameter estimates are very large due to the model degeneracies, almost all of the changes are357

confused with no changewhen using direct inversion. However, the inversion-free approach is able358

to identify changes in B8B>, B8=, B4G and $��. Although, there is confusion between the remaining359

parameters compared to the restricted model, here we do not make any strong assumptions on360

the value of those parameters. Also, most of the confusions for these parameters are between361

them, meaning that we are able to distinguish a change in those parameters (e.g. the diffusivity362
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Figure 7. The estimated amount of change in the summary measurements as a result of a unit change in each parameter
(`Δ̂E ) for a sample white matter and grey matter voxel. The error bars show the estimated standard deviation of change.
Colors correspond to parameters and columns indicate summary measurements. Due to differences in the baseline,
each voxel can have a different change vector for the same parameter change. This added degree of freedom can model
the variability of parameters (e.g. diffusivities) across the brain, which is not considered in restricted models; e.g.
NODDI.
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Figure 8. Confusion matrices for the constrained model using the direct inversion and the proposed approach.
The numbers indicate the percentage of time a change in the corresponding column is identified as a change in the
corresponding row for each approach. The diagonal elements show the accuracy in identifying true change. Both of
the approaches performed near to ideal in detecting the true change. The change estimation has more false positives,
but unlike the inversion approach, we did not explicitly define a false positive rate threshold.

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.09.459626doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.09.459626
http://creativecommons.org/licenses/by/4.0/


parameters) from others. Change in isotropic diffusivity is mostly confused with the no change363

model. This is due to the 1-values in the UKB protocol which are too high for this parameter;364

a change in this parameter has minimal effect on the signal. The changes in parallel diffusivity365

parameters 38=,0, 34G,0 are mostly detected correctly or confused with one another. This is because,366

specifically at low tortuosity, these two parameters affect the diffusion signal in a similar way.367
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Figure 9. Confusion matrices for the full model using parameter estimation (left) and change estimation (right).
Given diffusion data at few shells, the full model is not invertible, i.e. the parameter estimates have a high variance.
Therefore, almost no significant change is detected using parameter estimates. On the other hand, the change estimation
approach can still identify changes in all the parameters of the restricted model. Although there remains confusion
between a subset of the parameters when these have similar effects on the diffusion signal

Sensitivity to change in each parameters368

To evaluate the sensitivity of the approach to the amount of change in each parameter, we369

generated test datasets with variable effect sizes starting from 0 to 0.15 with step sizes of 0.01.370

Figure 10 shows the average posterior probability of change in each parameter versus the effect371

size. In all types of change, at very small effect sizes (< 0.01 ) the change is confused with no372

change, but as the effect size increases the probability of identifying the true change (red curves)373

increases. Changes in all signal fraction parameters and in the fibre dispersion are identified with374

high accuracy even at very small effect sizes (note that these are the parameters allowed to vary375
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freely in NODDI). However, changes in diffusivity parameters are confused with each other (but376

not with signal fraction parameters) even at larger effect sizes.377
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Figure 10. Sensitivity to the amount of change in the parameters of the standardmodel. Top: Red curves show the
average posterior probability of change in the actual changed parameter as a function of the amount of change. The gray
curves show the posterior probability for other parameters. Shaded areas show the 90 percentile range. Larger absolute
amount of change results in higher posterior probability for the true parameter change. Change in the signal fraction
parameters and $�� is distinguishable for effect sizes as small as 0.05. However, changes in diffusivity parameters
even at very large effect sizes is cluttered with other parameters. Bottom: The same plots shown as heatmaps to better
visualize which parameters are confused with each other.
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Estimating the amount of change378

So far we have only examined the posterior probabilities relating to the identity of the parameters379

that can best explain a change. However our framework also allows us to estimate the posterior380

probability on the amount of change for each parameter %(|ΔE | | H, 3H, Δ̂E) (eq.7). Figure 11381

shows the estimated (maximum a posteriori estimation) versus actual change in each parameter for382

different effect sizes.383
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Figure 11. Estimated amount of change in each parameter. Each plot shows the median of the estimated (maximum
a posteriori) change vs the actual change in the parameter. The shaded areas show the 10% interval. The estimated
change in the signal fractions follow the identity line (dashed gray line). The estimated change in 38B> is mostly around
zero with a high variance as the posterior distribution is very flat and symmetric around zero. The change in 34G,0g
and $�� is systematically biased at higher effect sizes.

White matter hyperintensities384

Figure 12 shows the observed and estimated amount of change in the summary measurements385

due to change in each parameter for average data from a small patch in white matter. The last bar386

in each panel shows the average and standard deviation (across voxels) of the observed amount of387

change due to WMH normalized by themean_b0 of the baseline measurement. For each parameter388

the best amount of change given the baseline, observed change and noise covariance is estimated389

using equation 3. The bars indicate the amount of change in the measurements that the estimated390

change in the corresponding parameter can produce.391
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The observed change inWMH is an increase in the b0_mean and b1_mean as well as an increase392

in anisotropy for the b1 shell. This pattern of change is better aligned with a positive change in B4G393

than in any other parameter.394
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Figure 12. Estimated change vectors along with change in white matter hyperintensities. Each panel shows the
estimated amount of change in the measurements if only the corresponding parameter changes, along with the actual
observed change in hyperintensities for a patch of voxels in white matter. Each bar is scaled with the best estimated
amount of change for that parameter. The observed change in WMH is an increase in the mean-b0 and, to a lesser
extent, and increase in mean-b1, and a positive change in the l2 measurements. This is best aligned with the pattern of
change that an increase in B4G can produce.

Figure 13 shows the estimated probability of change %(Δ̂E | ΔH, H) for each parameter of the395

standard model for an axial slice of the brain in voxels that included more than 10 WMH subjects.396

These probabilities are normalized to sum up to 1 for each voxel. The colors indicate the probability397

that a change in the corresponding parameter can explain the observed changes due to WMHs.398

Figure 14 shows the best explaining model of change in each voxel in a few axial slices of the399

brain. In more than 65% of the voxels, that are mostly in deep white matter, the best model is a400

change in B4G . However, in voxels adjacent to the ventricles, all other models compete and there401

is not a dominantly winning model. This might be due to a true difference in microstructure in402

these periventricular voxels, or may be caused by high variability across subjects due to CSF partial403

volume effects.404

Figure 15 shows the estimated amount of change in B4G in voxels where this was the most405

probable parameter. In most of the voxels an increase in B4G between 0 and 0.4 explains the406

observed change in WMH. The bottom right panel shows that the amount of change increases with407

distance from the ventricles, whereas in deep white matter the average amount of change remains408

24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.09.459626doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.09.459626
http://creativecommons.org/licenses/by/4.0/


1

0

𝑠!"# 𝑠!$ 𝑂𝐷𝐼

𝑑!"#

𝑠%&[	]

𝑑'!" 𝑑'#$ 𝜏

Figure 13. Posterior probability of change in each parameter %(Δ̂E | ΔH, H). Each map shows the estimated
probability that change in the corresponding parameter can explain the observed change in the summary measurements
from diffusion MRI between white matter hyperintensities and normally appearing white matter at a single axial slice
of the brain. The no change model represents the null model that the change is better explained by noise rather than a
change in any one of these parameters. In the majority of the voxels, the change model for B4G has a probability around
1 (yellow) and the remaining parameters are nearly zero(red). This means that a change in B4G is more likely to explain
the observed change than any other single parameter change.

relatively constant.409
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Figure 14. Best explaining model of change in each voxel. The colors indicate which model of change could best
explain, i.e. had the highest posterior probability given the observed change in the summary measurements between
WMH and normally appearing white matter. In the majority of voxels (68%) a change in B4G explained the data better
than any other model. However, in the regions very close to the ventricles there is no major winning model. This can
be either because of high between subject variability or a different type of change that is not captured by the trained
models of change.
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Figure 15. Estimated amount of change in B4G . The maps show the estimated amount of change in B4G in voxels
where B4G was the best model using a maximum a posteriori estimation ΔB4G = argmax

ΔE

%(ΔE | H,ΔH, ˆΔB4G). At most

of the voxels the estimated amount of change is positive, meaning that an increase in B4G can explain the change in the
summary measurements observed in the WMH voxels. The top right panel shows the distribution of estimated amount
of change at the voxels where change in B4G was the best model. Most of the estimated changes are between 0 and 0.4.
The bottom right panel shows the amount of change vs the distance (in millimeters) from the ventricles.
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DISCUSSION410

We presented a Bayesian framework to directly infer changes in parameters of a biophysical411

model from observed changes in a set of measurements. We applied the method to microstructural412

modelling of diffusion MRI, where biophysical models usually require many free parameters and413

are often degenerate.414

Comparison with model inversion415

The traditional approach to overcome these degeneracies is to constrain some of the parameters416

to biologically plausible values so that other parameters can be estimated using a conventional417

measurement (e.g., fixing the diffusivities in NODDI, (Zhang et al. 2012)). Such assumptions418

reduce the full model parameter space to a restricted subspace, where the model is invertible. This419

direct inversion approach has the advantage that it gives parameter estimates and that it can model420

any parameter change in this restricted subspace. However, violation of these assumptions can421

significantly bias the parameter estimates.422

Our proposed approach allows the initial set of parameters to lie anywhere within the full model423

parameter space (restricted only by broad user-defined priors); and any of these parameters might424

change. This extra flexibility comes at the price that the parameter changes are assumed to lie along425

1D lines in parameter space defined by the user-provided patterns of change Δ̂E. For each of these426

hypothesized 1D change models, we estimate the posterior probability of such a change as well as427

the most likely amount given the baseline data and the change in it.428

To compare this assumption with that made by direct inversion, let us consider a biophysical429

model with 8 free parameters. Let us further assume that, due to the limited degrees of freedom430

in our model, we can only fit 3 out of these 8 parameters. In this case direct inversion would431

require assuming that the microstructural change is limited to a subset of three parameters, i.e., a432

3-dimensional subspace of the full 8-dimensional parameter space. In contrast, BENCH assumes433

by default that the change is caused by one out of the 8 parameters, which corresponds to the434

microstructural change lying in one of 8 one-dimensional lines in parameter space. This suggests435

that if one has prior knowledge of which microstructural parameters are likely to change, it might436
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make sense to use direct inversion with those parameters as free parameters. BENCH would have437

the advantage in a more exploratory approach, where any of the underlying parameters might have438

changed. However note that this comparison between approaches is complicated by the fact that439

using model inversion requires setting a subset of the parameters to some fixed value, which might440

cause a bias in the free parameters if inaccurately fixed (Jelescu et al. 2016; Novikov et al. 2019b).441

It is important to note that the user-defined prior distributions for parameters do not directly442

imply a prior value for the parameters. These priors are used to train the regression models and443

are required to be wide enough to capture all possible underlying parameter settings. Nevertheless,444

using broader priors only requires more complex machine learning models that can capture the445

variation in the relation between the measurements and their derivatives.446

In the proposed approach we train the models with simulated data once (without requiring any447

real data) and use the trained models to estimate the desired probabilities for any real data with the448

same acquisition protocol. This precomputation saves one from having to integrate over all possible449

initial parameters when inferring the parameter change in each voxel. Therefore, the inference on450

real data which only consist of a few 1d integrations for each voxel, runs much faster than the451

non-linear optimizations in alternative inversion approaches.452

The results from simulations suggest that we are able to identify changes in signal fraction453

accurately for the given brain-like measurement. However, there is a considerable confusion in the454

diffusivities, meaning that the change in these parameters is not distinguishable from one another.455

These accuracy values depend on the baseline measurements, underlying parameters, and the nature456

of how each parameter affects the measurements. Nevertheless, an important point is even in the457

case of full confusion in diffusivities, the results from the proposed approach is more reliable458

compared to the model inversion with fixed parameters. That is because a wrong prior for the fixed459

parameters can bias the estimates for other parameters, while in the proposed approach we avoid460

such assumptions. For example, in NODDI we assume the B0 signal is fixed before and after a461

change (as a result of the sum constraint on the signal fractions), but in our approach we allow the462

B0 signal also to change arbitrarily.463
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The fact that the approach doesn’t require the models to be invertible makes it applicable to464

studying changes in over-parameterised models or models without closed form analytical solution,465

e.g. simulation-based models. Such simulation-based models provide the opportunity to explore466

more complex and realistic models of diffusion in a tissue. There is no limitation in the number of467

parameters as long as they affect the observed data in some way. If several parameters cause the468

data to change in the same (or very similar way), this approach will give a list of possible parameters469

underlying the observed change with a probability associated with each. The resulting probability470

estimates can be used to eliminate unlikely change scenarios.471

Weutilized the trainedmodels of change for the parameters of the “standard”model for diffusion472

to investigate which microstructural changes can explain white matter hyperintensities. The results473

suggest that the change can be associated with an increase in the extracellular signal. This is in474

line with other findings using more complex diffusion encodings (Lampinen et al. 2019), who475

found an increase in the extracellular T2, which would lead to an increase in the extracellular476

signal contribution. Comparing with the inversion approach, here we did not assume diffusivities477

are fixed in various brain regions, but we assumed only one of the parameters has changed as a478

result of white matter hyperintensity. However, it is possible that simultaneous changes in multiple479

parameters can better explain the change in the data, which could be tested in the same framework480

with the extended models of change. For example, a model with combination of the parameters481

might be able to explain a positive change in b0_mean and a negative change in b2_mean as it was482

observed in some voxels.483

Summary measures484

The choice of summary measurements to train change models is arbitrary, but this choice can485

affect the performance of the model. It is essential that the summary measurements are able to486

capture enough information from the data such that they are sensitive to changes in the parameters487

of interest and insensitive to other changes that are not part of the model parameters. For example,488

in our simulations we did not include the fibre orientation parameters as part of the free parameters,489

and therefore we required the summary measures to be rotationally invariant. Hence the choice490
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of decomposing the signals in each shell into spherical harmonics to extract rotationally invariant491

summary measurements. Of course one can instead use other signal representations, such as492

measures derived from the diffusion tensor model, or the kurtosis tensor model, etc, to compute493

the summary measurements. We chose spherical harmonics over other choices as they are fast to494

calculate, and the bases are orthogonal which leads to summary measures that capture different495

aspects of the data.496

Future developments497

While in the examples shown here these patterns of change only altered a single parameter at a498

time, in the current framework the pattern of change can be any vector in parameter space. In the499

future we plan to extend this framework to allow for parameter changes in 2D or 3D hyperplanes500

rather than just along 1D lines. However, the dimensionality of these hyperplanes will always be501

lower than that of the restricted parameter subspace in which parameters can freely change with the502

direct inversion approach. Note that computing posterior probabilities in a full Bayesian framework503

allows for comparison between models of change with different complexities without the need for504

arbitrary regularisation.505

In addition, the model of change can be extended to study continuous changes (e.g. ageing), as506

opposed to discrete group differences as shown in this work. To do so, one first needs to compute the507

gradient of change in the measurements with respect to the independent variable, e.g. time, using a508

regression model. Then one can use the chain rule to relate the rate of change in the measurements509

to the rate of change in the parameters. Such an approach makes modelling continuous change a510

straightforward extension of this framework.511

Although here we mostly show how our method can be applied to detect changes in parameters512

given the data, our framework can also be used to optimize data acquisition protocols for detecting513

changes in particular parameters of interest. For example, in the simulations we show that it is514

difficult to detect a change in the free-diffusion parameter. Our framework can be used to extend515

the acquisition (e.g. by adding lower bvalues) and, using the output confusion matrices, establish516

an optimal set of b-shells to enable detection of change in free diffusion.517
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Finally, while we applied the framework to the specific problem of studying microstructural518

changes using diffusion MRI in the brain, the framework is general and can be applied in any field519

where biophysical models are available. For example, the same approach as described in this paper520

can be applied to dynamical causal models (DCM) (Friston et al. 2003) for FMRI or MEG/EEG.521

These are notoriously over-parameterised, but often, are applied in a context where the values522

of the inferred parameters is of lesser interest than the change in the parameters under different523

experimental conditions; the ideal scenario for BENCH.524

SOFTWARE525

BENCH is an open source software implemented in python and available at https://git.526

fmrib.ox.ac.uk/hossein/bench.527
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