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 2 

Abstract 22 

Infection is a major co-morbidity that contributes to impaired healing in diabetic wounds. 23 

Although impairments in diabetic neutrophils have been blamed for this co-morbidity, what 24 

causes these impairments and whether they can be overcome, remain largely unclear. Diabetic 25 

neutrophils, extracted from diabetic individuals, exhibit chemotaxis impairment but this peculiar 26 

functional impairment has been largely ignored because it appears to contradict the clinical 27 

findings which blame excessive neutrophil influx (neutrophilia) as a major impediment to 28 

healing in chronic diabetic ulcers. Here, we report that exposure to glucose in diabetic range 29 

results in impaired chemotaxis signaling through the FPR1 chemokine receptor in neutrophils, 30 

culminating in reduced chemotaxis and delayed neutrophil trafficking in wound in diabetic 31 

animals, and rendering diabetic wound vulnerable to infection. We further show that at least 32 

some auxiliary chemokine receptors remain functional under diabetic conditions and their 33 

engagement by the pro-inflammatory cytokine CCL3, overrides the requirement for FPR1 34 

signaling and substantially improves infection control by jumpstarting the neutrophil response 35 

toward infection, and stimulates healing in diabetic wound. We posit that CCL3 may have real 36 

therapeutic potential for the treatment of diabetic foot ulcers if it is applied topically after the 37 

surgical debridement process which is intended to reset chronic ulcers into acute fresh wounds. 38 

 39 

40 
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Introduction 41 

Diabetic foot ulcers are the leading cause of lower extremity amputations in the United 42 

States and are responsible for more hospitalizations than any other complication of diabetes (1-43 

5). Infection with pathogenic bacteria, such as Pseudomonas aeruginosa, is a major co-morbidity 44 

that contributes to impaired healing in diabetic ulcers (6-10). Phagocytic leukocytes, particularly 45 

neutrophils (PMNs), play a major role defending wounds from invading pathogens (11). 46 

Neutrophil is the first inflammatory leukocyte that infiltrates into the wound (12). In addition to 47 

its antimicrobial functions mediated by phagocytosis, bursts of reactive oxygen species (ROS), 48 

antimicrobial (AMP) production, and neutrophil extracellular trap (NET) (13, 14), it also 49 

expresses various cytokines and chemokines that set the stage for the subsequent inflammatory 50 

and non-inflammatory responses, which further contribute to infection control and partake in 51 

healing processes (15-19). There appears to be a disconnect in that diabetic ulcers suffer from 52 

persistent non-resolving inflammation - characterized by increased neutrophils - yet they fail to 53 

control infection. Bactericidal functional impairments in diabetic neutrophils (PMNs) is thought 54 

to underlie defective infection control in diabetic wound (20, 21). What causes these 55 

impairments in diabetic neutrophils remains poorly understood, although the impairment severity 56 

has been associated with the degree of hyperglycemia (20), suggesting that exposure to high 57 

glucose levels may be to blame.  58 

In addition to impaired bactericidal functions, diabetic neutrophils - (purified from the 59 

blood of diabetic patients) - also exhibit impaired chemotactic response (22). This peculiar 60 

functional impairment in diabetic neutrophils has not received much attention primarily because 61 

it appears to contradict the clinical findings which finds and blames excessive neutrophil 62 

response as a major impediment to healing in chronic diabetic ulcers (23, 24). Driven by this 63 

disconnect and in lieu of the fact that very little is known about neutrophil trafficking into 64 
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diabetic wounds particularly early after injury and in response to infection, we sought to assess 65 

the possible impact of diabetic neutrophil chemotaxis impairment on the dynamics of neutrophil 66 

response and impaired infection control in diabetic wounds. 67 

  68 

Results  69 

Neutrophil trafficking is delayed in diabetic wounds. We generated full-thickness 70 

excisional wounds in db/db type 2 diabetic mice and their normal littermates C57BL/6, as 71 

described (10, 25), and challenged these wounds with PA103 P. aeruginosa bacteria (10
3
 CFU), 72 

which we have shown to establish a robust and persistent infection and cause wound damage in 73 

diabetic mice (10). Consistent with our previous report (10), db/db wounds contained 2-4 log 74 

orders more bacteria than normal wounds, indicating that diabetic wounds are vulnerable to 75 

increased infection (Fig. S1). We next collected wound tissues on days 1, 3, 6, and 10 post-76 

infection and assessed them for their neutrophil contents by immunohistochemistry (IHC) using 77 

the neutrophil marker Ly6G (26, 27). Surprisingly, diabetic wounds exhibited substantially 78 

reduced neutrophil influx in diabetic wounds early after injury at days 1 and 3 but significantly 79 

higher neutrophil contents in day 6 and day 10 older diabetic wounds, as compared to normal 80 

wounds (Fig. 1a-b). Corroborating these data, myeloperoxidase (MPO) - (a marker for primarily 81 

activated neutrophils (28)) - was also substantially reduced in diabetic wounds early after injury 82 

at days 1 and 3 but significantly higher in day 10 wounds (Fig. 1c). Assessment of neutrophil 83 

contents in normal and diabetic infected day 1 wounds by flow cytometry - where neutrophils 84 

were identified as CD45
+
Ly6C/G

hi
CD11b

hi 
(29, 30) - further corroborated the inadequate 85 

neutrophil trafficking into diabetic wounds early after injury (Fig. 1d and Fig. S2). These data 86 

indicated that neutrophil response – (which is needed to combat infection) – is delayed in 87 

diabetic wounds, rendering these wounds vulnerable to infection early after injury.  88 
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 89 

Chemotactic response through the FPR chemokine receptor is impaired in diabetic 90 

neutrophils. Depending on the tissue or the condition, neutrophil trafficking in response to 91 

injury and/or infection occurs in multiple waves mediated by ~30 chemokine receptors on 92 

neutrophils and involves multiple signaling pathways (31-37). However, the initial neutrophil 93 

chemotaxis in response to injury or infection involves the activation of G protein–coupled formyl 94 

peptide chemokine receptors (e.g., FPR1) by N-formyl peptides, such as fMet-Leu-Phe (fMLF, 95 

a.k.a., fMLP), which is released either by injured tissues or by invading bacteria (31, 38). 96 

Activation of FPR receptors then leads to the upregulation and secretion of lipid signals, such as 97 

the leukotriene B4 (LTB4), which in turn activate BLT1, (another G protein-coupled receptor on 98 

neutrophils), amplifying neutrophil trafficking by enhancing the signaling through the FPR 99 

chemokine receptors (36). BLT1 activation in neutrophils by LTB4 also results in upregulation 100 

and secretion of pro-inflammatory cytokines, particularly IL-1 which in turn induces the 101 

expression and secretion of other chemokine ligands (i.e, CCL3 and CXCL1) in tissue resident 102 

epithelial cells and inflammatory leukocytes, which further amplify neutrophil trafficking and 103 

other inflammatory leukocytes including monocytes, by engaging their respective auxiliary 104 

chemokine receptors, such as CCR1 and CXCR2 (36, 37, 39, 40).  105 

To assess the role of chemotaxis impairment in reduced neutrophil influx into diabetic 106 

wounds early after injury, we extracted neutrophils from blood of normal and diabetic mice and 107 

assessed chemotaxis signaling through FPR in response to fMLF. Compared to normal 108 

neutrophils extracted from C57B, db/db neutrophils were significantly impaired in their ability to 109 

chemotax toward fMLP (Fig. 2a). Consistent with reduced signaling through the FPR chemokine 110 

receptor, expression of FPR1 was significantly diminished in db/db neutrophils, as assessed by 111 

Western bloting (Fig. 2b-c). Further corroborating these data, the percentage of FPR1-positive 112 
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neutrophils was significantly reduced in day 1 diabetic wounds, after accounting for reduced 113 

number of neutrophils in diabetic wounds early after injury by assessing equal number of 114 

neutrophils by flow cytometry (Fig. 2d).  115 

Various studies have shown direct correlations between plasma glucose levels and 116 

prevalence and/or severity of infection in diabetic patients (41-43), suggesting that exposure to 117 

high glucose levels may be responsible for impaired neutrophil functions in diabetes. Consistent 118 

with these reports, short-term and long-term glycemic control in diabetic rats, significantly 119 

improved their ability to control Staphylococcus aureus infection (44). To assess the impact of 120 

high glucose on signaling through the FPR chemokine receptor, we purified neutrophils from 121 

human blood and C57B mice bone marrow (Fig. S4a-c and Materials & Methods), incubated 122 

them in media containing glucose in the normal range (90 mg/dl) or in the diabetic range (200-123 

500 mg/dl) for 1h, and evaluated their chemotactic responses toward fMLF. (Of note, 1h 124 

exposure to high glucose in diabetic range had no effect on viability of neutrophils). 125 

Exposure to high glucose levels caused significant reduction in chemotactic response to 126 

fMLF in both human and mouse neutrophils (Fig. 2e-f). While neutrophils exposed to normal 127 

glucose showed a bell-shaped curve in their chemotaxis response toward fMLF concentrations 128 

(0.01- 1000nM) with 100nM being the optimum concentration, neutrophils exposed to high 129 

glucose showed flat chemotaxis response toward these fMLF concentrations, trending toward 130 

lower chemotaxis at higher concentrations (Fig. S4d), indicating that high fMLF ligand 131 

concentrations cannot rescue chemotaxis signaling through FPR1 receptor. The bell-shaped 132 

response to fMLF in normal neutrophils is in line with previous reports showing reduction in 133 

neutrophil chemotactic responses to other ligands at high concentrations (45, 46). Of note, 134 

exposure to high glucose also caused drastic reductions in FPR1 and PLC protein levels, as well 135 

as cAMP levels (Fig. 2i-k), which are all required to mediate FPR-mediated chemotaxis in 136 
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neutrophils (36, 47, 48). Corroborating these data, exposure to high glucose resulted in 137 

significant reductions in the FPR1 and PLCtranscription as determined by mRNA analysis by 138 

RT-PCR (Fig. 2l-m). Collectively, these data indicated that elevated glucose levels in diabetes is 139 

responsible for the reduced chemotactic response through the FPR1 chemokine receptor in 140 

diabetic neutrophils. 141 

 142 

Some auxiliary chemokine receptors remain functional under diabetic conditions. 143 

Although, the initial neutrophil chemotactic response through the FPR receptors and the 144 

amplification of neutrophil chemotactic responses via other auxiliary chemokine receptors are 145 

interconnected and occur sequentially in vivo (32-37), none of these receptors appear to be 146 

essential on their own and their defects can be overcome by engaging other receptors (37, 49, 147 

50). Chronic diabetic ulcers suffer from increased neutrophil contents (23, 24), indicating that 148 

diabetic neutrophils are capable of migrating into the wound, albeit at dysregulated kinetics as 149 

our data show (Fig. 1). Together, these findings suggested that chemotactic responses of diabetic 150 

neutrophils - though impaired through the FPR1 receptor (Fig. 2) - may be functional through 151 

one or more auxiliary chemokine receptors that mediate the amplification phase of neutrophil 152 

trafficking in wound and toward infection. 153 

To evaluate this possibility, we assessed chemotactic responses toward CCL3 in human 154 

and mouse neutrophils after 1h exposure to glucose at normal or diabetic levels. The reason we 155 

focused on CCL3 was because it activates multiple auxiliary chemokine receptors, namely 156 

CCR1, CCR4, and CCR5 (51-53). Of note, CCR1 is an important chemokine receptor that is 157 

implicated in neutrophil trafficking to post-ischemic tissues (54) and ischemia is an important 158 

co-morbidity associated with impaired healing in diabetic wound (2, 55). Data indicated that 159 

exposure to glucose in the diabetic range did not affect the chemotactic responses toward CCL3 160 
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in human or mouse neutrophils (Fig. 3a-b), suggesting that these auxiliary receptors are 161 

unaffected by high glucose. To corroborate these data, we assessed the impact of high glucose 162 

exposure on CCR1 auxiliary chemokine receptor. In line with chemotaxis data, CCR1 expression 163 

remained unaffected in neutrophils after exposure to high glucose as assessed by Western 164 

blotting (Fig. 3c-d), by mRNA analysis (Fig. 3e), and by surface expression analysis (Fig. 3f). 165 

Further corroborating these data, CCR1 expression was similar in neutrophils extracted from the 166 

blood of db/db and C57B mice (Fig. 3h-i), and the percentage of CCR1-positive neutrophils in 167 

db/db day 1 wounds were similar to C57B day 1 wounds, after accounting for the reduced 168 

number of leukocytes in day 1 diabetic wounds by assessing equal number of neutrophils by 169 

flow cytometry (Fig. 3j). Of note, surface expression of auxiliary chemokine receptor CXCR2, 170 

(another important auxiliary chemokine receptor involved in the amplification of neutrophil 171 

response in wound and toward infection (31, 56)), on neutrophils and chemotaxis through the 172 

CXCR2 in response to CXCL1 (a.k.a. KC) - a known ligand for CXCR2 (57) - were also 173 

unaffected by high glucose exposure in neutrophils (Fig. S5). Collectively, these data suggested 174 

that at least CCR1 and CXCL2 auxiliary chemokine receptors may remain functional under 175 

diabetic conditions. 176 

Topical treatment with CCL3 bypasses the requirement for FPR signaling and 177 

enhances neutrophil trafficking and infection control in diabetic wound. If CCL3 can rescue 178 

neutrophil chemotactic response in a situation where FPR signaling is impaired as our data 179 

indicate (Fig. 3a-b), why is neutrophil trafficking so severely diminished in diabetic wounds 180 

early after injury (Fig. 1). As discussed above, production of ligands for auxiliary chemokine 181 

receptors in tissue ultimately depends on FPR chemokine receptor activation (36, 37, 39, 40), 182 

suggesting that CCL3 expression may also be reduced in diabetic wounds early after injury. In 183 

line with this notion, CCL3 expression was substantially reduced in day 1 diabetic wounds, as 184 
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assessed by mRNA analysis and Western blotting, after accounting for reduced number of 185 

leukocytes by normalizing the data with 18S or GAPDH loading control respectively (Fig. 4a-c). 186 

These data suggested that although auxiliary chemokine receptors on neutrophils may be 187 

functional in diabetic neutrophils, they may not be functioning in diabetic wounds early after 188 

injury because of inadequate ligands. If this is the case, augmenting diabetic wounds with CCL3 189 

early after injury should be able to overcome deficiency in the FPR signaling and enhance 190 

neutrophil migration into diabetic wounds. 191 

To test our hypothesis, we treated db/db wounds topically with CCL3 (1µg/wound) prior 192 

to infection and assessed its impact neutrophil response and infection control in diabetic wounds. 193 

One-time topical treatment with CCL3 significantly increased neutrophil trafficking in day 1 194 

diabetic wounds, as assessed by Ly6G histological analysis (Fig. 4d-e), by flow cytometry (Fig. 195 

4f), and by MPO analysis (Fig. 4g). Importantly, CCL3 treatment significantly enhanced the 196 

ability of diabetic wounds to control infection, as demonstrated by nearly a 2 log-order reduction 197 

in the number of bacteria contained in the CCL3-treated db/db wounds (Fig. 4h).  198 

To assess the dependence enhanced infection control on neutrophils in CCL3-treated 199 

diabetic wounds, we depleted db/db mice of neutrophils by anti-Ly6G antibody (58), 24h prior to 200 

wounding and assessed the impact of neutrophil depletion on the ability of CCL3-treated db/db 201 

wounds to control P. aeruginosa infection. Anti-Ly6G reduced the neutrophil contents in 202 

circulation by ~97% and in wound by ~75% (Fig. 4i and Fig. S5a-b). Neutrophil-depletion 203 

resulted in 2 log-order more bacteria in diabetic wounds, indicating that despite their known 204 

bactericidal functional impairments (20, 21), diabetic neutrophils still contribute to infection 205 

control in these wounds (Fig. 4j). Importantly, neutrophil-depletion completely abrogated 206 

CCL3’s beneficial effects in boosting antimicrobial defenses against P. aeruginosa in diabetic 207 
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wounds (Fig. 4j), indicating that CCL3-induced enhanced infection control in diabetic wound is 208 

completely dependent on its ability to enhance neutrophil response in diabetic wound.  209 

 210 

Treatment with CCL3 does not lead to persistent non-resolving inflammation in 211 

infected diabetic wounds and stimulates healing. Although, treatment with CCL3 substantially 212 

improved diabetic wound’s ability to control infection by enhancing neutrophil response toward 213 

infection early after injury in day 1 wounds (Fig. 4), it remained a possibility that CCL3 214 

treatment could have long-term adverse consequences, as it could lead to heightened 215 

inflammatory environment which would be detrimental to the process of tissue repair and 216 

healing in diabetic wounds. Afterall, persistent non-resolving inflammation, (as manifested by 217 

increases in pro-inflammatory cytokines and neutrophils), is considered a major contributor to 218 

healing impairment in diabetic foot ulcers (23, 24).  219 

We assessed the long-term impact of CCL3 treatment on neutrophil responses in diabetic 220 

wound. Data indicated that while neutrophils continued to rise in the mock-treated db/db infected 221 

wounds as they aged, in the CCL3-treated diabetic wounds, neutrophils were significantly higher 222 

during the acute phase of healing early after injury on days 1 and 3 but declined substantially in 223 

old wounds on days 6 and 10 (Fig. 5a-b).  224 

Encouragingly, CCL3 treatment also significantly stimulated healing in infected diabetic 225 

wounds, as assessed by wound area measurement (Fig. 6a-b), while mock-treated diabetic 226 

wounds became exacerbated as the result of P. aeruginosa infection, as we had previously shown 227 

(10). Corroborating these results, CCL3-treated infected diabetic wounds were completely re-228 

epithelized and exhibited epidermal thickening as assessed by H&E histological analysis, while 229 

mock-treated infected diabetic wounds became exacerbated (Fig. 6c-d).  230 
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Fibroblasts and myofibroblasts are key players in extracellular matrix production and 231 

granulation tissue maturation during the proliferation and the remodeling phases of wound 232 

healing (59-61). However, persistent inflammatory environment in diabetic wounds adversely 233 

impacts the functions of fibroblast and myofibroblast, culminating in reduced collagen and 234 

elastin extracellular matrix deposition and impaired healing in diabetic chronic wounds (19, 62, 235 

63). P. aeruginosa infection further exacerbates inflammation and reduces collagen deposition in 236 

diabetic wounds (10). We evaluated the impact of CCL3 treatment on fibroblast, myofibroblast, 237 

collagen, and elastin in day 10 diabetic wounds, using their respective markers: Vimentin, α-238 

SMA, Elastin, and Masson’s Trichrome staining (10, 59, 64). CCL3-treated wounds showed 239 

significant increases in all these healing markers (Fig. 6e-f and Fig. S7). Collectively, these data 240 

indicate that diabetic wounds are not destined to develop persistent non-resolving inflammation, 241 

provided that the dynamics of neutrophil trafficking is restored in these wounds early after 242 

injury.  243 

 244 

Discussion  245 

Diabetic wounds are highly susceptible to infection with pathogenic bacteria, such as P. 246 

aeruginosa, which in turn drives these wounds toward persistent non-resolving inflammation and 247 

contributes to impaired healing (10, 23, 24). Here, we demonstrate that early after injury, the 248 

diabetic wound exhibits a paradoxical and damaging decrease in essential neutrophil trafficking, 249 

which in turn renders diabetic wounds vulnerable to infection. Our data point to impaired 250 

signaling through the FPR1 chemokine receptor (resulting from exposure to high glucose levels), 251 

as an important culprit responsible for the delay in the neutrophil influx in response in diabetic 252 

wounds early after injury.  253 
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 It is worth noting that 1h exposure to high glucose levels dramatically impaired 254 

chemotaxis signaling through the FPR1, suggesting that even a short-term rise in serum glucose 255 

levels could potentially make non-diabetic people transiently immunocompromised and 256 

susceptible to infection. In line with this notion, hyperglycemia during the perioperative and 257 

postoperative periods are found to be significant risk factors for surgical site infections (SSIs) 258 

(65, 66), while glycemic control during the perioperative period has been shown to significantly 259 

reduce SSI rates both in human and animals (44, 66). It remains unclear why exposure to high 260 

glucose dampens the expression and signaling through the FPR1 chemokine receptor. We posit 261 

that it may involve metabolic changes, resulting from high glucos in neutrophils. We are actively 262 

investigating this possibility. 263 

Our data demonstrate that at least the expression and signaling through CCR1 and 264 

CXCR2 auxiliary receptors are not adversely affected by high glucose, but they may not be 265 

signaling in diabetic wounds early after injury because of deficiency in the production of their 266 

ligands. It remains a possibility that other auxiliary chemokine receptors which amplify the 267 

neutrophil migration in wounds and toward infection (e.g, CXCR1, BLT1, etc. (31)), may also 268 

remain functional under diabetic condition and their engagement with their respective ligands 269 

could similarly enhance antimicrobial defenses in diabetic wounds. Future studies should assess 270 

these possibilities and evaluate how serum glucose level affects the expression and activity of all 271 

the ~30 chemokine receptors that mediate chemotaxis in neutrophils in diabetic individuals and 272 

toward infection.  273 

It is encouraging that one-time topical treatment with CCL3 substantially boosted 274 

antimicrobial defenses and stimulated healing in diabetic wounds. However, given that diabetic 275 

foot ulcers are already suffering from neutrophilia and heightened inflammation, the therapeutic 276 

value of CCL3 treatment may seem questionable. We posit that CCL3 topical treatment may 277 
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have real therapeutic potential in diabetic wound care, at least in a subset of diabetic individuals 278 

represented by our animal model, if applied topically after the surgical wound debridement 279 

process. The purpose of surgical debridement, which is performed as a standard-of-care weekly 280 

or biweekly in the clinics, is to convert a chronic non-healing wound environment into an acute 281 

healing environment through the removal of necrotic and infected tissue, and the senescent and 282 

non-responsive cells (67-69). Therefore, debrided wound environment is likely to be more 283 

similar to day 1 fresh wounds than day 10 chronic wounds in our studies. Future studies are 284 

needed to evaluate the therapeutic potential of CCL3 in diabetic wound care.     285 

 286 

287 
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Materials and Methods 288 

Procedures related to animal studies: We have an approval from the Rush University 289 

Medical Center Institutional Animal Care and Use Committee (IACUC) to conduct research as 290 

indicated. All procedures complied strictly with the standards for care and use of animal subjects 291 

as stated in the Guide for the Care and Use of Laboratory Animals (Institute of Laboratory 292 

Animal Resources, National Academy of Sciences, Bethesda, MD, USA). We obtained 8-week-293 

old C57BL/6 (normal) and their diabetic littermates, C57BLKS-m lepr
db

 (db/db) mice from the 294 

Jackson Laboratories (Bar Harbor, ME). These mice were allowed to acclimate to the 295 

environment for 1 week prior to experimentation. Wounding and wound infection were carried 296 

out as we described previously (10, 25). Hematoxylin & Eosin (H&E) staining were performed 297 

as we described previously (10, 27). Neutrophil trafficking into wounds was assessed by 298 

immunohistochemical (IHC) analysis using Ly6G staining as described previously (70). Wound 299 

tissues’ contents of myeloperoxidase (MPO) were assessed by ELISA as described (27). CCL3 300 

expression was assessed by RT-PCR, following the protocol we described previously (25). To 301 

account for reduced neutrophil migration into day 1 diabetic wounds, data were normalized by 302 

18S RNA levels. We used Pseudomonas aeruginosa PA103 in these studies. This strain has been 303 

described previously (71, 72) and we have shown that it causes massive infection and 304 

exacerbates wound damage in db/db wounds (10). Infection levels in wounds were evaluated by 305 

determining the number of bacteria (colony forming unit (CFU)) per gram of wound tissues, as 306 

we described (10, 44).   307 

 308 

Histological analyses and wound healing assessment: Wound healing was assessed by 309 

digital photography; by re-epithelization assessment using H&E staining; by fibroblasts and 310 

myofibroblasts tissue content analyses using vimentin and -SMA; and by elastin and collagen 311 
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matrix deposition assessment using elastin or Masson’s Trichrome staining, using previously 312 

described techniques(10, 25, 59, 73, 74). The histological data, (obtained from n≥5 mice/group 313 

and >9 random fields/wound/mouse), were normalized per wound surface area.  314 

 315 

Neutrophil isolation from human and mouse.  We have an Institutional Review Board 316 

(IRB)- approved protocol in accordance with the Common Rule (45CFR46, December 13, 2001) 317 

and any other governing regulations or subparts. This IRB-approved protocol allows us to collect 318 

blood samples from non-diabetic volunteers with their consents for these studies. The blood 319 

samples were first checked by a glucometer kit (FreeStyle Lite, Blood Glucose Monitoring 320 

System) to ensure that blood glucose level is within the normal range, <100 mg/dl. Next, human 321 

neutrophils were purified from blood using the EasySep™ Human Neutrophil Enrichment Kit 322 

(STEMCELL Technologies), according to manufacturer’s protocol.  323 

Murine neutrophils were isolated from either peripheral blood (used in Fig. 2a-c; Fig. 324 

S3a; Fig. 3h-i) or bone marrow (Fig. 2f-m, Fig. 3b-g, and Fig. S3d) for the studies involving 325 

glucose exposure using EasySep™ Mouse Neutrophil Enrichment Kit (STEMCELL 326 

Technologies), as per manufacture’s protocol and as described previously (25, 75). Mouse 327 

neutrophils involving comparisons between C57B normal and db/db diabetic neutrophils were 328 

extracted from N=4 blood pools/group, with each blood pool being from 4 mice: totaling 16 mice 329 

per group. This was to obtain enough neutrophils from mouse blood (~0.8 ml of blood/mouse, 330 

3.2 ml total) for analyses to achieve statistical significance.   331 

 332 

Neutrophil chemotactic response: Purified human and murine neutrophils were 333 

incubated in (IX HBSS with 2% HSA) containing glucose at indicated concentrations for 1h at 334 
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37
o
C and stained with Calcein AM (5ug/mL) for 30 minutes. After washing the cells, the cell 335 

migration assay was performed in vitro using 96-well disposable chemotaxis chambers (Cat. No. 336 

106-8, Neuro Probe, Gaithersburg, MD, USA). Neutrophils chemotaxis toward the 337 

chemoattractants (chemokines) were performed at indicated concentrations, or PBS (to account 338 

for the background neutrophil migration), following the manufacturer’s protocol. Cell migration 339 

was assessed by a fluorescence (excitation at 485nm, emission at 530nm) plate reader Cytation 3 340 

Cell Imaging Multi-Mode Reader (Biotek Instruments, Inc). The actual chemotaxis values were 341 

obtained by subtracting random chemotaxis values (PBS) from the chemotaxis values in 342 

response to chemokines. 343 

 344 

Flow cytometry:  345 

Wound tissue digestion and flow cytometric. C57B and db/db wound tissues were 346 

obtained at indicated timepoints as described (25), weighed, and place immediately in cold 347 

HBSS (Mediatech, Inc., Manassas, VA). Subcutaneous fat was removed using a scalpel and 348 

scissors were used to cut the tissue into small <2mm pieces. The tissue was enzymatically 349 

dissociated in DNAse I (40µg/ml; Sigma-Aldrich Co., St. Louis, MO) and Collagenase D 350 

(1mg/ml HBSS; Roch Diagnostics, Indianapolis, IN) at 37°C for 30 minutes. Cold PBS was used 351 

to stop the dissociation process. The tissue was then mechanically dissociated using the 352 

gentleMACS octoDissociator (program B; Miletynyi Biotec, Auburn, CA) and passed through 353 

70µm nylon screens into 50ml conical tubes. Cells were washed twice with PBS. Resultant 354 

single-cell suspensions were stained using the indicated fluorescently labeled antibodies against 355 

cell surface markers, according to standard protocols described previously (76, 77). All 356 

antibodies were purchased from eBioscience, Inc. (San Diego, CA). Flow cytometry was 357 

performed using a the LSRFortessa cell analyzer (Becton, Dickinson, and Company)) and data 358 
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were analyzed using FlowJo software (Tree Star, Ashland, OR), as previously described (25, 78). 359 

Briefly, for the gating strategy, Live singlet lymphocytes were identified by gating on forward 360 

scatter-area (FSC-A) versus (vs.) side scatter-area (SSC-A), then LIVE/DEAD staining vs. SSC-361 

A, FSC-A vs. FSC-height (H), SSC-A vs. SSC-H, FSC-width (W) vs SSC-W, and CD45 vs 362 

SSC-A. T cells, B cells, and NK cells were excluded using antibodies against CD3, CD19, and 363 

NK1.1, respectively, all on one channel as a dump gate. Neutrophils were then identified using 364 

CD11b vs Ly6G staining, with neutrophils being CD11b high and Ly6G high. FPR1 and CCR1 365 

expression on neutrophils was then analyzed and is presented as percentage of cells (e.g., 366 

neutrophils) expressing the respective marker.  367 

 368 

Neutrophil depletion in mice. Neutrophil depletion in mice were performed as described 369 

(58, 79). Briefly, db/db mice received either anti-Ly6G (100µg/mouse) to cause neutrophil 370 

depletion or an IgG isoform control (100µg/mouse), by intraperitoneal (i.p.) injection. Neutrophil 371 

depletion was confirmed by the assessment of neutrophil content in the blood (circulation) by 372 

flow cytometry or in wound tissues by MPO analysis. 373 

 374 

Western blot analyses: We performed Western immunoblotting on cell lysates or on 375 

tissue lysates, using the indicated antibodies as we described previously (27, 71, 80). Equal 376 

amounts of proteins (as determined by BCA analysis) were loaded. GAPDH was used as a 377 

loading control. 378 

 379 

Gene expression analysis by Real-Time Polymerase Chain Reaction (RT-PCR): 380 

Gene expression was assessed by RT-PCR as we described (25): cDNA was generated using 381 
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SuperScript™ III First-Strand Synthesis System cDNA Synthesis Kit (Cat. No. 18080051) from 382 

Thermo Fisher, according to manufacturer’s protocol. RT-PCR was then preformed with gene-383 

specific primer pairs mentioned below, using the Applied Biosystems QuantStudio™ 7 Flex 384 

Real-Time PCR System. The data were calculated using the 2
−ΔΔCt

 method and were presented as 385 

ratio of transcripts for gene of interest normalized to 18S. We performed RT-PCR using the 386 

following primers: FPR1 forward: GAGCCTAGCCAAGAAGGTAATC, reverse: 387 

TCCCTGGTCCAAGTCTACTATT; Phospholipase C gamma 1 (Plcg1) forward: 388 

GGTGAGGCCAAATGTGAGATA, reverse: GGGCAACCAAGAGGAATGA; Chemokine (C-389 

C motif) receptor 1 (Ccr1) forward: GCTATGCAGGGATCATCAGAAT, reverse: 390 

GGTCCAGAGGAGGAAGAATAGA; Chemokine (C-C motif) ligand 3 (Ccl3) forward: 391 

TCACTGACCTGGAACTGAATG, reverse: CAGCTTATAGGAGATGGAGCTATG; 18S 392 

forward: CACGGACAGGATTGACAGATT, reverse: GCCAGAGTCTCGTTCGTTATC. 393 

 394 

Antibodies (for neutrophil depletion study):  Anti-Ly6G monoclonal antibody clone 395 

RB6-8C5 (Cat. No MA1-10401 from Invitrogen, Mouse (G3A1) mAb IgG1 Isotype Control 396 

#5415 (Cell Signaling Technologies). 397 

Antibodies (for IHC and Western blotting):  Anti-Ly6G antibody clone RB6-8C5 for 398 

IHC (#ab25377 from Abcam); anti-FPR1 (Cat. No. NB100-56473 from NOVUS Biological); 399 

anti- PLCϒ1 (Cat. No. cs2822 from Cell Signaling), GAPDH Antibody Rabbit Polyclonal, Cat. 400 

No. 10494-1-AP (Proteintech Cat. No. 1094-I-AP); and CCR1 Polyclonal antibody (Abnova Cat. 401 

No. PAB0176). Anti-α-SMA antibody (Cat. No. ab5694) and anti-vimentin antibody (Cat. No. 402 

ab92547) from Abcam. 403 

Antibodies (for flow cytometry): Mouse CCR1 Alexa Fluor® 488-conjugated Antibody 404 

#FAB5986G-100UG (R & D Systems); Alexa Fluor® 700 anti-mouse NK-1.1 Antibody 405 
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#108729 (BioLegend); Alexa Fluor® 700 anti-mouse CD3ε Antibody #152315 (BioLegend); 406 

Alexa Fluor® 700 anti-mouse CD19 Antibody #115527 (BioLegend); BV605 Hamster Anti-407 

Mouse CD11c Clone  HL3   (RUO) #563057 (BD Biosciences); LIVE/DEAD™ Fixable Aqua 408 

Dead Cell Stain Kit, for 405 nm excitation #L34966 (ThermoFisher Scientific); F4/80 antibody | 409 

Cl:A3-1 #MCA497PBT (Bio-Rad); BV650 Hamster Anti-Mouse CD11c Clone  HL3   (RUO) 410 

#564079 (BD Biosciences); BV711 Rat Anti-Mouse CD45 Clone  30-F11   (RUO) #563709 (BD 411 

Biosciences); NK1.1 Monoclonal Antibody (PK136), PE, eBioscience™ #12-5941-82 412 

(ThermoFisher Scientific); CD19 Monoclonal Antibody (eBio1D3 (1D3)), PE, eBioscience™ 413 

#12-0193-82 (ThermoFisher Scientific); CD3e Monoclonal Antibody (145-2C11), PE, 414 

eBioscience™ #12-0031-82 (ThermoFisher Scientific); FPR1 Polyclonal Antibody #PA1-41398 415 

(ThermoFisher Scientific); Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary 416 

Antibody, Alexa Fluor 594 #A-11037 (ThermoFisher Scientific); Ly6G Monoclonal Antibody 417 

(1A8-Ly6g), PE-Cyanine7, eBioscience™ #25-9668-82 (ThermoFisher Scientific), PerCP Cy5.5 418 

CD45 (BD Biosciences, Cat. 550994); APC Gr1, PE CD11b (BD Biosciences, Cat 553129); 419 

FITC CD69 (BD Biosciences, Cat #: 557392); and PECy7 F4/80 (Biolegends, Cat 123114). 420 

 421 

Reagents: Hematoxylin & Eosin Staining (Richard Allan Scientific Hematoxylin, Eosin 422 

Y, and Bluing Reagent Cat. Numbers: 7111L, 7211L, and 7301L from Thermo Fisher; 423 

Myeloperoxidase (MPO) Mouse ELISA Kit; cAMP measurement by ELISA (Cyclic AMP 424 

Competitive ELISA Kit); CCL3 (recombinant mouse CCL3/MIP-1 protein; 450-MA, 425 

rhCCL3/MIP-1 isoform LD78a; 270-LD from R&D); N-formyl-Met-Leu-Phe (fMLF), Cat. No. 426 

59880-97-6 from Sigma; Collagenase D (CAS No. 9001-12-1 from Sigma Aldrich); Masson’s 427 

Trichrome (Trichrome Stain Connective Tissue Stain; Cat. No. ab150686 from Abcam). EasySep 428 

Human neutrophil Enrichment Kit, EasySep Mouse neutrophil Enrichment Kit, EasySep Buffer 429 
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(Cat. No. 19762, 19666, and 20144 from STEMCELL Technologies), and Calcein AM (Cat no. 430 

C1430 from ThermoFischer).  431 

 432 

Statistical analysis: Statistical analyses were performed using GraphPad Prism 6.0 as we 433 

described previously (81, 82). Comparisons between two groups were performed using Student’s 434 

t-test. Comparisons between more than two groups were performed using one-way analysis of 435 

variance (one-way ANOVA). To account for error inflation due to multiple testing, the 436 

Bonferroni method was used. Data are presented as Mean ± SEM. Statistical significance 437 

threshold was set at P-values ≤ 0.05. 438 

439 
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 459 

 460 

Fig. 1. Neutrophil response is delayed in infected diabetic wound tissue. (a) Normal (C57B) 461 

and diabetic (db/db) wounds were infected with PA103 (10
3
 CFU). Wound tissues were 462 

harvested at indicated timepoints post-infection and assessed for neutrophil contents either by 463 

histological analysis using anti-Ly6G antibody (a-b), or by assessing MPO levels by ELISA (c). 464 

Representative regions from underneath the wounds extending in the dermis are shown at 40X 465 

and 400X magnification (top and bottom, respectively). A representative magnified region is also 466 

inserted in the 400X magnification images. Black scale bar = 500µm for 40x magnification and 467 

red scale bar = 200µm for 400x magnification. (d) Day 1 infected wound tissues of C57B and 468 

db/db were evaluated for their neutrophil response by flow cytometry. Corresponding data were 469 

plotted as the Mean ± SEM. (N=4; ns = not significant, *p<0.05; **p<0.01; ***p<0.001 – are 470 

comparisons made between C57B and db/db at indicated timepoints; or 
#
p<0.05; 

##
p<0.01; 471 

###
p<0.001 are comparisons made within each group to day 1 values respectively. Statistical 472 

analyses between groups were conducted by One-way ANOVA with additional post hoc testing, 473 

and pair-wise comparisons between groups were performed or by unpaired Student’s t-test).  474 
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 475 

 476 

Fig. 2. Chemotactic response is impaired in diabetic neutrophils through FPR1 chemokine 477 

receptor. (a-b) Neutrophils were extracted from the peripheral blood of C57B and db/db animals 478 

to assess their ability to chemotax toward 100nM fMLP (a), or for the expression of FPR1 by 479 

Western blotting (b). (c) Densitometry values associated with (b) are plotted as Mean ± SEM 480 

(N=4 mice/group). (d) Equal number of neutrophils (extracted from Day 1 C57B and db/db 481 

wounds) were assessed by for the expression of FPR1 on neutrophils by flow cytometry (N=4 482 

mice/group). (e-f) Purified neutrophils from C57B bone marrow (e), or peripheral blood of non-483 

diabetic individuals (f), were exposed to media containing glucose in normal (90 mg/dl) or 484 

diabetic range (200-500 mg/dl) for 1h to assess their ability to chemotax toward 100nM fMLP 485 

(N>3 mice/group). (g-m) Neutrophils from C57B bone marrow were exposed to glucose in 486 

normal level (90 mg/dl) or in diabetic range (300 mg/dl) for 1h and assessed: for surface 487 

expression of FPR1 by flow cytometry (g-h); for the expression of FPR1 and PLC by Western 488 

blotting (i) with corresponding densitometry values being plotted as Mean ± SEM (N=4 489 

mice/group) in (j-i); or for mRNA expression analyses of FPR1 and PLC by RT-PCR in (l-m) 490 

(Data were plotted as the Mean ± SEM; N=2, each experiment repeated at least twice;  ns = not 491 

significant, *p<0.05, **p<0.01, ***p<0.001; Student’s t-test); and for c-AMP levels in (m) (Data 492 

were plotted as the Mean ± SEM. (N>3 mice/group, ns = not significant, *p<0.05, **p<0.01, 493 

***p<0.001. Comparisons were made to the normal glucose level. Statistical analyses between 494 

groups were conducted by One-way ANOVA with additional post hoc testing, and pair-wise 495 

comparisons between groups were performed or by unpaired Student’s t-test).  496 

 497 
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 499 

 500 
 501 

Fig 3. CCR1 receptor remains functional under diabetic conditions. Human (a) or mouse (b) 502 

neutrophils were examined for their chemotactic responses toward CCL3 (5ng/ml) after 1h 503 

exposure to glucose in normal (90 mg/dl) or diabetic range (200-500 mg/dl). (c-g) Neutrophils 504 

extracted from bone marrow of C57B were exposed to normal glucose (90 mg/dl) or high glucose 505 

(300 mg/dl) for 1h and assessed for CCR1 expression by Western blotting (c-d); for mRNA 506 

transcription analysis by RT-PCR (e); and for CCR1 surface expression (f-g). (h-i) Neutrophils 507 

were purified from peripheral blood of normal (C57B) or diabetic (db/db) mice and assessed for the 508 

expression of CCR1 by Western blotting (h) and their respective densitometry values were plotted 509 

as the Mean ± SEM and shown in (i). (j) Equal number of neutrophils (extracted from Day 1 C57B 510 

and db/db wounds) were assessed by for the expression of CCR1 on neutrophils by flow cytometry 511 

(N=4; ns = not significant, *p<0.05, **p<0.01, ***p<0.001. Statistical analyses between groups 512 

were conducted by One-way ANOVA with additional post hoc testing, and pair-wise comparisons 513 

between groups were performed or by unpaired Student’s t-test). 514 
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 516 

Fig 4. CCL3 topical treatment enhances neutrophil response and infection control in 517 

diabetic wound. (a-c) Day 1 wound tissues of C57B and db/db were harvested and assessed for 518 

the CCL3 mRNA levels by RT-PCR (a) and by Western blotting (b-c), and the data were plotted 519 

as the Mean ± SEM (N>4 mice/group), after normalization to 18S and GAPDH respectively, to 520 

account for reduced leukocytes in day 1 diabetic wounds. (d-e) db/db diabetic wounds were 521 

treated with either PBS or CCL3 (1μg/wound) and infected with PA103. 24h post-infection, 522 

wounds were collected and assessed for their neutrophil contents by histological analysis using a-523 

Ly6G antibody. (d) Representative wound images at 40X and 400X magnification (top and 524 

bottom, respectively) are shown. Inserts are representative magnified regions within the 400X 525 

magnification images. Black scale bar = 500µm for 40x magnification and red scale bar = 200µm 526 

for 400X magnification. (e) Data are shown as Mean ± SEM (N>4 mice/group, >9 random 527 

fields/wound/mouse). (f) Flow cytometry data showing increased neutrophil response in CCL3-528 

treated Day 1 db/db infected wounds. (g) Neutrophil response was assessed for neutrophil marker 529 

MPO by ELISA. (h-i) db/db mice received either a-Ly6G (100μg/mouse) to cause neutrophil 530 

depletion or an IgG isoform as control, by intraperitoneal (i.p.) injection. 24h after injection, IgG 531 

or a-Ly6G-treated animals were wounded and treated with either PBS or CCL3 and infected with 532 

PA103. The impact of neutrophil depletion on the ability of CCL3 treatment to boost infection 533 

control in diabetic wound was assessed by MPO analysis (i) and CFU count determination (j) in 534 

day 1 wounds. Data were plotted as Mean ± SEM (N>4 mice/group). (For all panels; ns = not 535 

significant, *p<0.05; **p<0.01, ***p<0.001. Statistical analyses between groups were conducted 536 

by One-way ANOVA with additional post hoc testing, and pair-wise comparisons between groups 537 

were performed or by unpaired Student’s t-test). 538 

 539 

 540 

 541 

  542 
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 543 

Fig. 5. Treatment with CCL3 does not lead to persistent inflammation in infected diabetic 544 

wounds. db/db wounds were treated with PBS or CCL3 (1μg/wound) and infected with PA103 545 

(1000 CFU). Wound tissues were collected at indicated timepoints and assessed for their 546 

neutrophils contents by histological analysis using neutrophil marker Ly6G staining. 547 

Representative images of regions from underneath the wounds extending in the dermis at 400X 548 

magnification are shown in (a). Representative magnified regions are inserted in the images. Red 549 

scale bars = 200μm. (Representative full wound images of these staining can be found in Fig. S7 550 

and Fig. 6c). The corresponding data are plotted as the Mean ± SEM and are shown in (b).  (N>3 551 

mice/group; ns = not significant; *p<0.05, **p<0.01, ***p<0.001, 
#
p<0.05, 

##
p<0.01, 

###
p<0.001. 552 

Statistical analyses between groups were conducted by One-way ANOVA with additional post 553 

hoc testing, and pair-wise comparisons between groups were performed or by unpaired Student’s 554 

t-test. (*) denotes significance between groups while (
#
) indicates significance within the same 555 

group in comparison to day 1 of respective wound groups).  556 
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   558 

 559 

Fig 6. Treatment with CCL3 stimulates healing in infected diabetic wounds. (a-d) db/db 560 

wounds were either treated with PBS or CCL3 and infected with PA103 (1000 CFU). Wound 561 

healing was assessed at indicated timepoints by digital photography (a) or by H&E histological 562 

analysis of re-epithelization (c). Representative regions from underneath the wounds extending 563 

in the dermis are shown at 40X magnification are shown in (c). (Black scale bar = 1mm, and the 564 

wound gap is shown by dotted line). The corresponding data for (a & c) are shown in (b & d) as 565 

the Mean ± SEM. (N>4 mice/group, >9 random fields/wound/mouse; ns = not significant; 566 

*p<0.05, **p<0.01, ***p<0.001, Student’s t-test). (e-f) Day 10 db/db wounds (treated with either 567 

PBS or CCL3 and infected with PA103) were assessed for fibroblast, myofibroblast, elastin and 568 

cartilage healing markers by vimentin, α-SMA, Masson’s Trichrome, and elastin staining 569 

respectively. (e) Representative regions from underneath the wounds extending in the dermis are 570 

shown at 400X magnification. (Red scale bar=200µm. For the corresponding full wound images 571 

at 40X magnification, see Fig. S8). (f) The corresponding data are plotted as the Mean ± SEM. 572 

(N=4 mice/group, >9 random fields/wound/mouse; ***p<0.001. Statistical analyses between 573 

groups were conducted by One-way ANOVA with additional post hoc testing, and pair-wise 574 

comparisons between groups were performed or by unpaired Student’s t-test). 575 
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 577 

 578 

 579 

Fig. S1. Diabetic wound is vulnerable to increased infection with Pseudomonas aeruginosa. 580 

Normal and diabetic wounds were infected with 10
3 

of P. aeruginosa (PA103). Bacterial burden 581 

in wounds was determined by serial dilution and plating at indicated times after infection and is 582 

shown as the Mean ± SEM. (N=8; 4 mice/group, 2 wounds/mouse; (*) Represents significance 583 

with p<0.01. Statistical analyses between groups were conducted by One-way ANOVA with 584 

additional post hoc testing, and pair-wise comparisons between groups were performed or by 585 

unpaired Student’s t-test). 586 
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 590 

 591 

Fig. S2. Gating strategy for flow cytometric analysis. Spleen (a) and skin tissues (b) were 592 

harvested from C57B mice. For the gating strategy, Live singlet lymphocytes were identified by 593 

gating on forward scatter (FSC)-area (A) versus (vs) side scatter (SSC)-A, then LIVE/DEAD 594 

staining vs SSC-A, FSC-A vs FSC-height (H), SSC-A vs SSC-H, FSC-width (W) vs SSC-W, and 595 

CD45 vs SSC-A. T cells, B cells, and NK cells were excluded using antibodies against CD3, 596 

CD19, and NK1.1, respectively, all on one channel as a dump gate. Neutrophils were then 597 

identified using CD11b vs Ly6G staining, with neutrophils being CD11b high and Ly6G high. 598 

Macrophages were identified as CD11b positive and Ly6G low/negative, followed by F4/80 599 

positive staining.  600 

 601 
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 606 

 607 

 608 

Fig. S3. Chemotactic response is impaired in diabetic neutrophils through FPR1 primary 609 

receptor. (a-b) Neutrophils (PMNs) were purified from murine (C57B bone marrow) and human 610 

peripheral blood, as discussed in Materials and Methods. Representative images of mouse and 611 

human purified neutrophils are shown at indicated magnification. Magnified representative 612 

regions are shown inserts within each image. (Red scale bars are 200μm). (c) Representative 613 

flow histograms of purified mouse neutrophils showing that these neutrophils are over 97% pure, 614 

live, and naïve, as assessed by indicated markers. (d) Chemotaxis of purified mouse PMNs 615 

towards varying concentrations of fMLP after 1h exposure to normal glucose (90 mg/dl) or high 616 

glucose in diabetic range (300 mg/dl). Data are plotted as the Mean ± SEM. (N=4 mice/group; ns 617 

= not significant; *p<0.05, **p<0.01, ***p<0.001. Statistical analyses between groups were 618 
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conducted by One-way ANOVA with additional post hoc testing, and pair-wise comparisons 619 

between groups were performed or by unpaired Student’s t-test). 620 

 621 

 622 

 623 

 624 

Fig. S4. Exposure to high glucose does not affect CXCR2 auxiliary chemokine receptor. (a-625 

b) Mouse neutrophils were exposed to glucose at indicated concentrations for 1h and evaluated 626 

for their surface expression of CXCR2 by flow cytometry. A representative histogram is shown 627 

in (a) and the corresponding data are plotted as the Mean ± SEM is shown in (b). (N=4). (c) 628 

Murine neutrophils were examined for their chemotactic response toward CXCL1 (5ng/ml) and 629 

after 1h exposure to normal glucose (90 mg/dl) and high glucose in diabetic range (200-500 630 

mg/dl). Data were plotted as Mean ± SEM. (N=6; ns = not significant).  631 
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 634 

 635 

Fig. S5. Supplementary data associated with Fig. 4. db/db mice were injected by i.p with anti-636 

Ly6G or IgG isoform. 24h after injection, their peripheral bloods were examined for their 637 

neutrophil contents by flowcytometry. Representative histograms of neutrophil depletion are 638 

shown in (a) and the corresponding data plotted as the Mean ± SEM is shown in (b).  (N=4; 639 

**p<0.01. Student’s t-test). 640 
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 647 

 648 
 649 

 650 

Fig. S6. Full wound images associated with Fig. 5c.  db/db animals were wounded and treated 651 

with either CCL3 or PBS prior to infection with PA103 (10
3
 CFU). 24h after treatment and 652 

infection, wound tissues were harvested and stained with neutrophil marker Ly6G. 653 

Representative low magnification (40X) images of full wounds are shown. Inserted rectangles 654 

show the cropped regions represented in Fig 5c. (Black scale bar = 500µm).  655 
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 659 

 660 

 661 

Fig. S7. Full wound images associated with Fig. 6e.  db/db animals were wounded and treated 662 

with either CCL3 or PBS prior to infection with PA103 (10
3
 CFU). 10 days after treatment and 663 

infection (Day 10), wound tissues were harvested and assessed for fibroblast, myofibroblast, 664 

elastin and cartilage healing markers by vimentin, α-SMA, Masson’s Trichrome and elastin 665 

staining respectively. Representative 40X magnification images of the full wounds are shown, 666 

and the high magnification images and the tabulated data are presented in Fig. 6e-f. (Black scale 667 

bar = 500µm. Inserted rectangles show the cropped regions represented in Fig. 6e). 668 
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