Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

A curved manifold orients rotational dynamics in motor cortex

David A. Sabatini, View ORCID ProfileMatthew T. Kaufman
doi: https://doi.org/10.1101/2021.09.09.459647
David A. Sabatini
1Department of Organismal Biology and Anatomy
2Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew T. Kaufman
1Department of Organismal Biology and Anatomy
2Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Matthew T. Kaufman
  • For correspondence: mattkaufman@uchicago.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Summary

Controlling arm movements requires complex, time-varying patterns of muscle activity 1,2. Accordingly, the responses of neurons in motor cortex are complex, time-varying, and heterogeneous during reaching 2–4. When examined at the population level, patterns of neural activity evolve over time according to dynamical rules 5,6. During reaching, these rules have been argued to be “rotational” 7 or variants thereof 8,9, containing coordinated oscillations in the spike rates of individual neurons. While these models capture key aspects of the neural responses, they fail to capture others – accounting for only 20-50% of the neural response variance. Here, we consider a broader class of dynamical models. We find that motor cortex dynamics take an unexpected form: there were 3-4 rotations at fixed frequencies in M1 and PMd explaining more than 90% of neural responses, but these rotations occurred in different portions of state space when movements differ. These rotations appear to reflect a curved manifold of fixed points in state space, around which dynamics are locally rotational. These fixed-frequency rotations obeyed a simple relationship with movement: the orientation of rotations in motor cortex activity were related almost linearly to the movement the animal made, allowing linear decoding of reach kinematic time-courses on single trials. This model constitutes a fundamentally novel way to consider pattern generation: like placing a record player in a large bowl, the frequency of activity is fixed, but the location of motor cortex activity on a curved manifold sets the orientation of locally-rotational dynamics. This system simplifies motor control, helps reconcile conflicting frameworks for interpreting motor cortex, and enables greatly improved neural decoding.

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

  • Competing interests: The authors declare no competing interests.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted September 11, 2021.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A curved manifold orients rotational dynamics in motor cortex
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A curved manifold orients rotational dynamics in motor cortex
David A. Sabatini, Matthew T. Kaufman
bioRxiv 2021.09.09.459647; doi: https://doi.org/10.1101/2021.09.09.459647
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
A curved manifold orients rotational dynamics in motor cortex
David A. Sabatini, Matthew T. Kaufman
bioRxiv 2021.09.09.459647; doi: https://doi.org/10.1101/2021.09.09.459647

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (3603)
  • Biochemistry (7570)
  • Bioengineering (5526)
  • Bioinformatics (20798)
  • Biophysics (10329)
  • Cancer Biology (7985)
  • Cell Biology (11640)
  • Clinical Trials (138)
  • Developmental Biology (6606)
  • Ecology (10205)
  • Epidemiology (2065)
  • Evolutionary Biology (13620)
  • Genetics (9542)
  • Genomics (12847)
  • Immunology (7921)
  • Microbiology (19543)
  • Molecular Biology (7660)
  • Neuroscience (42113)
  • Paleontology (308)
  • Pathology (1258)
  • Pharmacology and Toxicology (2202)
  • Physiology (3267)
  • Plant Biology (7042)
  • Scientific Communication and Education (1294)
  • Synthetic Biology (1951)
  • Systems Biology (5426)
  • Zoology (1117)