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ABSTRACT   65 

 66 

Hair-like trichomes cover the aerial organs of many plant species and act as a barrier between a plant 67 

and its environment. They function in defense against biotic and abiotic stresses, while also serving as 68 

sites for synthesis and storage of secondary metabolites. Previously, the transcription factor PtaMYB186 69 

was identified as a positive regulator of trichome initiation during early stages of leaf development in 70 

Populus tremula x P. alba (IRNA 717-1B4). However, trichome regulation in poplar remains largely 71 

unexplored, as does the functional redundancy of duplicated poplar genes. Here, we employed 72 

CRISPR/Cas9 to target a consensus region of PtaMYB186 and its close paralogs for knockout. 73 

Regeneration of glabrous mutants suggested their essential roles in poplar trichome development. No 74 

apparent differences in growth and leaf transpiration rates between the mutants and the controls were 75 

observed, but trichomeless poplars showed increased insect pest susceptibility. RNA-seq analysis 76 

revealed widespread down-regulation of circadian- and light-responsive genes in the mutants. When 77 

exposed to a high light regime, trichomeless mutants accumulated significantly higher levels of 78 

photoprotective anthocyanins. Cuticular wax and whole leaf analyses showed a complete absence of 79 

triterpenes in the mutants, suggesting biosynthesis and storage of triterpenes in poplar occurs in the 80 

non-glandular trichomes. This work also demonstrates that a single gRNA with SNP-aware design is 81 

sufficient for multiplex targeting of paralogous genes in outcrossing and/or hybrid species with 82 

unexpected copy number variations.  83 

 84 
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INTRODUCTION  97 

 98 

Trichomes are modified epidermal cells giving a hair-like appearance to the aerial surfaces of shoot 99 

organs throughout the Plantae kingdom. The abundance and morphological diversity of trichomes 100 

reflect their multifunctionality, including protection against feeding insects, excessive transpiration, and 101 

UV radiation (Schuepp, 1993; Bickford, 2016). Trichomes can be subclassified as unicellular or 102 

multicellular, branched or unbranched, and glandular or non-glandular (Payne, 1978). Glandular 103 

trichomes are known for their ability to synthesize, store and secrete large quantities of specialized 104 

metabolites, especially terpenoids, some with insecticidal or pharmaceutical properties (Schuurink and 105 

Tissier, 2020). Non-glandular trichomes, on the other hand, are present in a wide range of plant taxa, 106 

including Arabidopsis and Populus spp., and are known to synthesize and store predominantly phenolics 107 

but do not possess secretory abilities (Karabourniotis et al., 2020).  108 

 109 

Trichome initiation and development are under strict spatiotemporal regulation (Larkin et al., 2003; 110 

Hülskamp, 2004). Despite trichome diversity, the main molecular and hormonal pathways governing 111 

their development appear conserved in angiosperms (Fambrini and Pugliesi, 2019). For instance, 112 

exogenous jasmonic acid (JA), cytokinin and gibberellin (GA) applications promote trichome initiation of 113 

both unicellular (e.g., A. thaliana) and multicellular (e.g., Medicago truncatula and P. trichocarpa) types 114 

(Maes and Goossens, 2010). The phytohormonal actions are mediated in part through the “MBW” 115 

transcription activation complex, consisting of interacting R2R3-MYB and bHLH (basic helix-loop-helix) 116 

transcription factors on a WD40 repeat protein scaffold (Maes et al., 2008; Zhao et al., 2008). The MBW 117 

complex modulates not only trichome development but also several other traits, including root hair 118 

patterning and anthocyanin biosynthesis (Wang and Chen, 2014; Fambrini and Pugliesi, 2019). In 119 

Arabidopsis, the single-copy WD40 protein TTG1 (TRANSPARENT TESTA GLABRA1) is involved in all 120 

MBW-mediated processes (Walker et al., 1999), whereas three bHLHs participate in a partially 121 

redundant manner (Zhang et al., 2003). MYB, on the other hand, is the most discriminating component 122 

of the complex, with structurally distinct R2R3-MYB and R3-MYB members competing for bHLH binding 123 

to promote or inhibit trichome development, respectively (Wang and Chen, 2014). Even among R2R3-124 

MYBs, functional specialization is evident such that constitutive expression of anthocyanin-associated 125 

MYBs cannot phenotypically rescue the Arabidopsis glabrous1 (gl1) mutant and vice versa (Zhang and 126 

Hülskamp, 2019).  127 

 128 
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Previously, activation-tagging has identified PtaMYB186 as a positive regulator of trichome development 129 

in Populus tremula x P. alba INRA 717-1B4, hereon referred to as 717 (Plett et al., 2010). PtaMYB186 is 130 

orthologous to Arabidopsis AtMYB106 whose loss-of-function mutations result in mutants (noeck or 131 

nok) with glassy and highly branched trichomes (Folkers et al., 1997). Initially proposed to function in 132 

negative regulation of epidermal outgrowth and trichome branching (Jakoby et al., 2008; Gilding and 133 

Marks, 2010), AtMYB106 and its paralogous AtMYB16 were later found to also regulate cuticle 134 

development and wax crystal accumulation in Arabidopsis (Oshima et al., 2013). The Antirrhinum majus 135 

ortholog AmMIXTA controls epidermal conical cell formation in petals and promotes multicellular 136 

trichome development when overexpressed in tobacco (Nicotiana tabacum) (Glover et al., 1998). A 137 

similar role was reported for the cotton (Gossypium hirsutum L.) ortholog GhMYB25 which regulates 138 

specialized epidermal cell outgrowth of trichome and cotton fibers (Machado et al., 2009). These results 139 

underscore both pleiotropic and specialized functions of MYBs in diverse epidermal cell developmental 140 

programs both within and across species. 141 

 142 

In the case of poplar, PtaMYB186 corresponds to gene model Potri.008G089200 in the P. trichocarpa v3 143 

genome. It belongs to clade 15 of the R2R3-MYB protein family tree (Wilkins et al., 2009), which also 144 

includes AtMYB106 and AtMYB26, but is distinct from the other trichome-related MYBs (AtGL1 and 145 

AtMYB23) in clade 45. Clade 15 is expanded in poplar and contains three additional members, MYB138, 146 

MYB38 and MYB83, with as yet unclear functions (Plett et al., 2010). The current research employed 147 

CRISPR/Cas9 to knock out (KO) PtaMYB186 and its close paralogs, PtaMYB138 and PtaMYB38 in poplar 148 

717. Analysis of the resulting glabrous mutants substantiates their essential involvement in poplar 149 

trichome development. Plant growth, physiology, transcriptome and metabolite data were synthesized 150 

to infer trichome functions in poplar. We also discuss technical findings associated with CRISPR editing 151 

of duplicated genes. 152 

 153 

 154 

 155 

 156 

 157 

 158 

 159 
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RESULTS  161 

 162 

Multiplex CRISPR/Cas9 editing of trichome-regulating MYBs 163 

The four P. trichocarpa MYB genes in clade 15 are derived from multiple duplication events, including an 164 

ancient (gamma) whole genome duplication (MYB186 and MYB83), a Salicoid duplication (MYB186 and 165 

MYB38), and a tandem duplication (MYB186 and MYB138) (Figure 1). MYB186, MYB138 and MYB38 166 

share higher levels (88-96%) of amino acid sequence similarity than with MYB83 (55-57%). To ascertain 167 

these MYB involvement in trichome development, we mined RNA-seq data from different stages of 717 168 

leaf development. Transcript levels of MYB186, MYB138 and MYB38 were highest in newly emerged 169 

leaves (Leaf Plastochron Index LPI-1) when trichome initiation occurs (Plett et al., 2010), but quickly 170 

declined thereafter in expanding (LPI-5) and mature (LPI-15) leaves (Figure 1). In contrast, MYB83 171 

transcripts were detected throughout leaf maturation (Figure 1), weakening support for its potential 172 

involvement in trichome development. 173 

 174 

We designed a single gRNA to target a conserved region in exon two of MYB186, MYB138 and MYB38 175 

(Figure 2A) based on the P. trichocarpa v3.0 reference genome and cross-checked using the 717 variant 176 

database (Xue et al., 2015; Zhou et al., 2015) to assure the gRNA target sites were SNP-free in 717. Two 177 

CRISPR/Cas9 constructs were generated (see Methods); the first erroneously omitted a guanine 178 

between the gRNA and the scaffold sequences (referred to as ΔG, Figure 2B), which was corrected in the 179 

second construct (Figure 2A). Both constructs were used for 717 transformation in order to learn 180 

whether ΔG would affect CRISPR/Cas9 editing. In total, 28 independent events generated from the ΔG 181 

construct were all phenotypically indistinguishable from the wild type (WT) and Cas9-only controls 182 

(Figure 2C-J). In contrast, 37 independent events generated from the correct KO construct were glabrous 183 

(Figure 2N-R), and one single event (KO-27) had a greatly reduced number of trichomes (Figure 2K-M). 184 

SEM imaging revealed no trichome initiation or development on the abaxial leaf surface of the glabrous 185 

mutants (Figure 2Q). Epidermal cell morphology of young leaves from tissue cultured plants did not 186 

differ between control and mutant genotypes on either their abaxial (Figure 2F, N) or adaxial surfaces 187 

(Figure 2J, R). These results are consistent with roles for MYB186 (Plett et al., 2010) and its paralogs 188 

MYB138 and MYB38 in trichome initiation and development.  189 

 190 

Mutation spectrum of duplicated 717 MYB alleles  191 
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A random selection of 30 glabrous KO events, 28 ΔG events, two Cas9-only events and four WT plants 192 

were subject to amplicon deep-sequencing using consensus primers for MYB186, MYB138 and MYB38. 193 

Initial analysis by AGEseq (Xue and Tsai, 2015) showed numerous chimeric edits (mix of edited and 194 

unedited sequences at a given site) not observed in other CRISPR/Cas9-edited 717 transgenics in our 195 

experience (Zhou et al., 2015; Bewg et al., 2018). De novo assembly of amplicon reads from control 196 

samples revealed seven distinct sequences, more than the expected six alleles of the three target genes. 197 

Blast search against the preliminary 717 genome assemblies by the Joint Genome Institute uncovered an 198 

unexpected copy number variation in 717 relative to the P. trichocarpa reference genome. The region 199 

containing paralogous MYB186 and MYB138 on Chromosome (Chr) 8 is found as a tandem duplicate in 200 

one of the 717 subgenomes (Figure 3A). This results in three alleles each for MYB186 and MYB138 (two 201 

on the main subgenome [Chr8m] and one on the alternative subgenome [Chr8a]) and two alleles for 202 

MYB38 on Chr10 (Chr10m and Chr10a, Figure 3A). Two of the eight alleles were identical in the amplicon 203 

region, explaining the seven distinct sequences we recovered from de novo assembly. Based on the 717 204 

assemblies, we redesigned primers to ensure the amplicons span allele-specific SNP(s) to aid mutation 205 

pattern determination of the eight alleles.  206 

 207 

Amplicon-sequencing showed no editing in the 28 ΔG events, except one (ΔG-24) with a 9 bp deletion at 208 

one of the eight target sites (Dataset S1). This translates into a mutation rate of 0.45% (one out of 224 209 

potential target sites), which suggests a negative effect of the ΔG on CRISPR/Cas9 function (hereafter, 210 

the ΔG plants were treated as transformation controls). In contrast, we confirmed successful editing 211 

across the eight alleles in all glabrous mutants except KO-27 (Figure 3B, Dataset S1). This event showed 212 

six edited and two intact (unedited) alleles, consistent with trichome detection in this line (Figure 2K-M). 213 

In aggregate, small insertions and deletions (indels) were the predominant edits at all sites (Figure 3B-C), 214 

with frameshift deletions of 1 bp (-1), 2 bp (-2) and 4 bp (-4) accounting for over three quarters of the 215 

indel mutations (Figure 3C). In-frame deletions (-3 or -6) accounted for 10% of indels and were detected 216 

in 14 events, including KO-27 (Figure 3B-C). These in-frame mutations are unlikely functional because 217 

the gRNA target site is located within the third α-helix of the R2 domain critical for MYB-DNA interaction 218 

(Wang et al., 2020), and because 13 of the events with in-frame mutations are glabrous. We therefore 219 

conclude that all small indels we detected are null mutations.  220 

 221 

The vast majority (80%) of the mutants also harbored potentially large deletions as evidenced by the 222 

dearth of mapped amplicon reads at the target sites, referred to as no-amplification (NA) alleles (Figure 223 
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3B-C). The NA frequencies differed by chromosome position and were positively correlated with copy 224 

number, being highest at the Chr8m site (four tandem copies), followed by the Chr8a site (two tandem 225 

copies) and least at the single-copy Chr10 sites (Figure 3A-B). The NA alleles on Chr8 often spanned 226 

consecutive copies, suggesting large dropouts between two gRNA cleavage sites. To support this idea, 227 

we examined a subset of mutant lines using allele-specific primers for PCR amplification of the target 228 

genes (Figure S1). As expected, NA alleles yielded no PCR products, whereas alleles previously detected 229 

by amplicon sequencing produced observable PCR products (Figure S1). We next used consensus 230 

primers for PCR amplification of all six Chr8 (MYB186 and MYB138) alleles, approximately 850 – 950 bp, 231 

from three control plants and four KO lines each with 4-5 NA alleles on Chr8. These KO lines had reduced 232 

PCR band intensity when compared with controls (Figure 3D). Sanger sequencing of the PCR products 233 

resulted in clean chromatograms with clear nucleotide peaks throughout the sequenced length for KO-5 234 

and KO-69 (Figure 3E), two mutant lines with only one detectable Chr8 allele (Figure 3B). In contrast, the 235 

chromatograms for KO-63, KO-70 (both containing two detectable Chr8 alleles) and WT samples were 236 

noisy as would be expected for mixed template (Figure 3E). The Sanger sequencing data of KO-5 and KO-237 

69 not only confirmed the indel pattern (-2 in both cases) detected by amplicon sequencing, but also 238 

supported the occurrence of gene fusion between two gRNA cleavage sites, based on SNP patterns 239 

upstream and downstream of the gRNA target (Figure 3B, E). KO-5 harbors a fusion junction between 240 

MYB186m1 and MYB138m1 with a ~29 Kb genomic dropout, whereas KO-69 contains a fusion of 241 

MYB138m1 and MYB138m2 with a ~62 Kb genomic dropout (Figure 3E, Figure S2). Together, our 242 

findings show that a single gRNA is highly effective for multiplex KO of tandem duplicates via either 243 

small indels or large deletions.  244 

 245 

Growth, leaf transpiration and insect response of glabrous mutants 246 

The trichome mutation did not impact growth rate as plant height and stem diameter were comparable 247 

to the controls over a seven-week period under glasshouse conditions (Figure 4A-B). Stem and leaf dry 248 

biomass also did not differ significantly between controls and mutants (Figure 4C-D). As trichomes can 249 

influence transpiration by acting as a barrier between the leaf and its environment (reviewed in 250 

Karabourniotis et al., 2020), we monitored transpiration-driven water uptake via petiole feeding and 251 

also leaf water loss during benchtop drying. Transpiration rates were measured using mature leaves 252 

(LPI-10 to LPI-15) of growth chamber plants either matched by size (whole leaf), or trimmed with a 253 

stencil 24 hours in advance to control for leaf area. No differences were seen in water uptake over six 254 

hours for whole leaves (p=0.48) or trimmed leaves (p=0.38) (Figure 4E). We also detected no differences 255 
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in rate of water loss between glasshouse-grown mutants and controls for LPI-6 (p=0.68) or LPI-20 256 

(p=0.16) over a three-hour drying period, though higher variation was observed in younger leaves 257 

overall (Figure 4F). The trichomeless mutants were more susceptible to thrip damage than controls, 258 

consistent with a role of trichomes in defense against insect pests (Figure S3).  259 

 260 

Altered expression of genes involved in development and hormonal responses in trichomeless leaves 261 

We next investigated transcriptomic changes in trichomeless leaves, focusing on expanded leaves (LPI-6) 262 

post trichome initiation. We confirmed, as anticipated based on their developmental profiles (Fig. 1), 263 

that MYB186, MYB138 and MYB38 were no longer expressed in LPI-6 of WT and ΔG controls (Table S1). 264 

The ancient duplicate MYB83 was well expressed in LPI-6 and unaffected in the glabrous mutants (Table 265 

S1), excluding its involvement in trichome development.  266 

 267 

Differential expression (DE) analysis identified 319 significantly up-regulated and 469 down-regulated 268 

genes (p ≤ 0.01, fold change ≥ 1.5, RPKM ≥ 3) in trichomeless LPI-6 when compared with controls 269 

(Dataset S2). Among those up-regulated were genes encoding orthologs of other trichome regulators, 270 

such as kinesin-interacting calcium-binding protein (KIC) and zinc finger protein GLABROUS 271 

INFLORESCENCE STEMS (GIS) (Figure 5A). GIS acts upstream of the MBW complex (Gan et al., 2006), 272 

whereas KIC regulates post-initiation microtubule-associated trichome morphogenesis (Oppenheimer et 273 

al., 1997; Reddy et al., 2004). In addition, genes encoding putative negative regulators of trichome 274 

branching were significantly down-regulated in the trichomeless mutants (Figure 5A), including 275 

ubiquitin-protein ligase3 (UPL3; Downes et al., 2003), calpain-type cysteine protease (DEFECTIVE 276 

KERNEL1 or DK1; Galletti et al., 2015) and guanine nucleotide exchange factor (SPIKE1; Qiu et al., 2002). 277 

Misregulation of these genes may reflect multiple compensatory responses to compromised trichome 278 

development in the mutants.  279 

 280 

DE genes that were up-regulated in the glabrous leaves showed a significant enrichment of Gene 281 

Ontology (GO) terms associated with various hormonal responses (Figure 5B). Specifically, genes 282 

involved in GA biosynthesis and perception (Mauriat and Moritz, 2009), as well as JA biosynthesis, 283 

turnover and signaling (Widemann et al., 2013) were significantly up-regulated (Figure 5A). These 284 

findings are consistent with synergistic involvement of GA and JA in promoting trichome formation (Qi 285 

et al., 2011), and with compensatory responses of glabrous mutants to trichome inhibition. In contrast, 286 

we observed an overrepresentation of “shoot system morphogenesis” among DE genes down-regulated 287 
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in the mutants (Figure 5B). For example, genes encoding orthologs of Arabidopsis TOPLESS-RELATED3 288 

(TPR3), a corepressor implicated in several developmental programs (Long et al., 2006; Tao et al., 2013), 289 

and its potential interacting partner (SUPPRESSOR OF MORE AXILLARY GROWTH2-LIKE or SMXL) 290 

(Soundappan et al., 2015) were significantly down-regulated in the mutants (Figure 5A). Also down-291 

regulated were orthologs of known developmental regulators involved in seedling morphogenesis 292 

(RADIALIS-LIKE SANT/MYB3, RSM3) (Hamaguchi et al., 2008) and leaf development, such as 293 

ROTUNDIFOLIA-LIKE14 (RTFL14) (Narita et al., 2004; Wen et al., 2004) and TCP2-1 (TEOSINTE 294 

BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR) (Cheng et al., 2021) (Figure 5A). These data add 295 

to a growing body of evidence that trichome development shares transcriptional and hormonal 296 

regulation with other developmental processes (Matías-Hernández et al., 2016). 297 

 298 

Circadian and light-regulated gene expression in trichomeless mutants 299 

We observed an overrepresentation of GO terms associated with chloroplast organization, 300 

photosynthesis, circadian rhythm, phototropism, and various light responses within the down-regulated 301 

DE genes, and responses to osmotic stress and wounding, water transport and metal ion transport 302 

within the up-regulated DE genes (Figure 5B). Many of the overrepresented GO terms are consistent 303 

with the roles of trichomes as a barrier to wounding, transpiration and light absorbance. We detected 304 

significantly decreased transcript levels of orthologs involved in circadian clock regulation, including 305 

GIGANTEA (GI,  Park et al., 1999), JUMONJI DOMAIN (JMJD5, Jones et al., 2010), TIME FOR COFFEE (TIC,  306 

Hall et al., 2003) and PSUEDO-RESPONSE REGULATOR5 (PRR5,  Matsushika et al., 2000) (Figure 5C). 307 

Diurnal expression of these genes has been previously reported in poplar leaves (Filichkin et al., 2011). 308 

Many of these proteins are known to integrate light signaling and circadian rhythm to affect 309 

photomorphogenesis (Ni, 2005). Indeed, genes encoding blue light receptors phototropins (PHOT1 and 310 

PHOT2, Briggs et al., 2001) were down-regulated in the mutants (Figure 5C), as were components of 311 

blue light-dependent circadian cycles, namely GI and flavin-binding kelch repeat F box protein (FKF, 312 

Imaizumi et al., 2003) (Figure 5C). Widespread downregulation was also observed for orthologs involved 313 

in photosystem I (PSI) and PSII, chlorophyll biosynthesis and chloroplast import apparatus (Dataset S2), 314 

suggesting numerous chloroplast processes were impacted in the absence of trichomes.  315 

 316 

Consistent with altered light responses, we frequently observed red coloration of young glabrous leaves 317 

when plants neared supplemental lights. To further explore this, plants were grown under high-light 318 

conditions, and as expected, mutant leaves developed an intense red color (Figure 6) indicative of 319 
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anthocyanins, a photoprotective flavonoid (Smillie and Hetherington, 1999). The glabrous mutants 320 

produced significantly higher levels of anthocyanins in LPI-3 and marginally so in LPI-5, but not in LPI-15 321 

farther down and likely shielded by upper leaves (Figure 6C). The results suggest elevated anthocyanin 322 

biosynthesis as a photoprotective mechanism in the glabrous mutants. 323 

 324 

Absence of triterpenes in trichomeless leaves 325 

Trichomes as epidermal outgrowths are covered with waxy cuticles like other epidermis cells (Hegebarth 326 

et al., 2016). We thus investigated whether leaf surface wax load and composition differed between 327 

control and trichomeless plants. Total wax load of mature leaves did not change significantly between 328 

genotypes (Figure 7A). Alkanes were the most abundant class of leaf cuticular waxes detected in 717 329 

and differed little between control and trichomeless plants (Figure 7B). In contrast, levels of triterpenes, 330 

fatty alcohols and β-sitosterol were significantly reduced in the mutants (Figure 7B-D). Specifically, the 331 

wax of mutant leaves was devoid of any triterpenes, including α-amyrin, β-amyrin, β-amyrone and 332 

lupenone (Figure 7E). Two primary alcohols, 1-octacosanol (C28) and 1-hexacosanol (C26), were 333 

depleted in the mutants by >50% (Figure 7C), and β-sitosterol, by 42% (Figure 7D). To further investigate 334 

the absence of triterpenes in the mutant wax, whole leaf tissues were also profiled for compounds that 335 

were significantly reduced in cuticular wax. Again, triterpenes were not detected in the leaves of 336 

trichomeless mutants (Figure 7E), whereas 1-octacosanol, 1-hexacosanol and β-sitosterol were detected 337 

at levels comparable with controls (Figure 7C, D). The lack of triterpenes in the trichomeless leaves thus 338 

suggests triterpene biosynthesis occurs within the non-glandular trichomes of 717.  339 

 340 

We then examined the whole-leaf RNA-seq data for molecular evidence in support of altered wax 341 

composition in the mutants (Figure 7F). Orthologs of known triterpene biosynthetic genes (Thimmappa 342 

et al., 2014) were found to be poorly expressed in the leaves we sampled for both controls and mutants. 343 

This may reflect a dilution effect of trichome-specific transcripts in the whole-leaf transcriptome or 344 

suggest triterpene biosynthesis has already ceased in LPI-6. The trichomeless leaves exhibited significant 345 

down-regulation of PtaSTE1.1 (Potri.004G097500), encoding a Δ7-sterol-C5-desaturase orthologous to 346 

Arabidopsis AtSTE1 involved in sterol biosynthesis (Gachotte et al., 1995), and of PtaFAR3.1 347 

(Potri.004G185000), encoding a fatty acyl-CoA reductase orthologous to Arabidopsis AtFAR3 (also called 348 

ECERIFERUM4 or CER4) involved in the synthesis of primary alcohols for cuticular wax formation 349 

(Rowland et al., 2006). However, transcript levels of their respective genome duplicates, PtaSTE1.2 350 

(Potri.017G116600) and PtaFAR3.2 (Potri.009G145000), remained unchanged (Figure 7F). Such 351 
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discrepancies were also observed among genome duplicates of several other fatty acid biosynthetic 352 

genes (Figure 7F). In Arabidopsis rosette leaves, wax biosynthesis and composition have been shown to 353 

differ between trichomes and pavement cells (Hegebarth et al., 2016); for example, AtFAR3 expression 354 

is restricted to trichomes (Rowland et al., 2006). The specific down-regulation of PtaSTE1.1 and 355 

PtaFAR3.1 in glabrous leaves may therefore hint at their preferential involvement in trichome wax 356 

biosynthesis.  357 

 358 

 359 

DISCUSSION 360 

The role of trichomes in pest deterrence, transpiration and light absorbance and reflectance is well 361 

documented (Bickford, 2016; Karabourniotis et al., 2020). Previously, elevated expression of PtaMYB186 362 

in 717 was shown to increase trichome density, resulting in increased growth, leaf transpiration, 363 

stomata conductance, gas exchange and resistance to feeding insects (Plett et al., 2010). In the present 364 

study, CRISPR/Cas9-KO of PtaMYB186 and its paralogs PtaMYB138 and PtaMYB38 resulted in the 365 

complete absence of trichomes on stem, leaf and petiole surfaces. An increased pest susceptibility in the 366 

glabrous poplar was observed. However, no significant differences in growth or transpiration were 367 

detected under the experimental conditions. Further research under field conditions may be required to 368 

fully explore the relationship between water use, growth and trichome coverage in poplar.  369 

 370 

Transcriptome profiling results support an intricate role of trichomes in photoresponses, as glabrous 371 

leaves showed widespread down-regulation of genes involved in circadian rhythms, photoreception, and 372 

photomorphogenesis. The trichomeless mutants also exhibited increased sensitivity to light, and 373 

hyperaccumulated anthocyanins in the upper leaves under high light regimes. The results are in 374 

agreement with trichomes and anthocyanins both acting as light screens (Liakopoulos et al., 2006), and 375 

point to increased anthocyanin accrual as a compensatory photoprotective response in the glabrous 376 

mutants. As anthocyanin biosynthesis is also regulated by the MBW complex (Ramsay and Glover, 2005), 377 

accumulation of anthocyanins in the KO mutants rules out the involvement of MYB186, MYB138 and 378 

MYB38 in poplar anthocyanin biosynthesis. 379 

 380 

The glabrous mutants provide strong support for an essential role of PtaMYB186/138/38 in trichome 381 

development of 717. Loss of trichomes did not significantly affect the total epidermal wax load, but led 382 

to a complete absence of triterpenes both in cuticular wax and whole leaves of the mutants. The results 383 
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do not support a role for these MYBs in cuticle development in poplar as has been reported for their 384 

Arabidopsis orthologs AtMYB106 and AtMYB16 (Oshima et al., 2013), and hint at functional divergence 385 

of clade 15 MYBs between these two species. Although we cannot rule out a direct involvement of 386 

MYB186/138/38 in triterpene biosynthesis (i.e., lack of triterpenes as a direct KO effect), MYBs that have 387 

been implicated in triterpene regulation belong to phylogenetically distinct clades (Wilkins et al., 2009; 388 

Falginella et al., 2021). The absence of triterpenes in trichomeless leaves led us to suggest trichomes as 389 

sites of triterpene biosynthesis and storage in poplar. While glandular trichomes are well known for 390 

their roles in biosynthesis and storage of terpenes (Lange and Turner, 2013; Lange and Srividya, 2019), 391 

there is only limited reporting of terpenes in non-glandular trichomes in Artemisia annua (Wang et al., 392 

2009; Soetaert et al., 2013) and Lamiaceae and Verbenaceae species (dos Santos Tozin et al., 2016). 393 

Detection of triterpenes in poplar with non-glandular trichomes thus adds to the growing body of 394 

evidence for this conserved function.  395 

 396 

This study demonstrates that a single gRNA targeting conserved genomic sites is highly effective for 397 

multiplex editing, despite the unexpected genomic complexity in hybrid 717. The population of 30 398 

independent KO lines experienced an average of 5.4 cleavages per line based on indel alleles, which is 399 

likely an underestimate because many NA alleles also resulted from cleavages as shown for KO-5 and 400 

KO-69 (Figure 3). The work highlights the importance of ensuring SNP-free targets for gRNA design when 401 

working within a highly heterozygous genome (Zhou et al., 2015). Additionally, the negligible editing by 402 

the ΔG construct provides insight into scaffold structure and stability. The ΔG configuration can lead to 403 

two hypothetical outcomes: either the guanine is omitted from the scaffold and the gRNA remains intact 404 

and capable of base pairing to the target sites for Cas9 cleavage, or the guanine is sequestered for 405 

secondary structure folding of the scaffold, resulting in a 3′-truncated gRNA no longer PAM-adjacent at 406 

the target sites (Figure 2B). The lack of mutations in ΔG transformants supports the latter scenario and is 407 

consistent with transcription and folding of gRNA molecules preceding their base-pairing with genomic 408 

targets. Moreover, the low trichome density of KO-27 suggests that MYB38 plays a redundant but minor 409 

role in leaf/stem trichome initiation. Follow-up research, including use of CRISPR to address the allele 410 

dose-response, is needed to dissect the functional redundancy of clade 15 MYB members more fully. 411 

Finally, the unedited (WT) MYB38 alleles in KO-27 appear stable during vegetative propagation as this 412 

event has maintained a low trichome density for over two years in both tissue culture and greenhouse 413 

environments. This contributes to previously reported stability of CRISPR editing outcomes in clonally 414 

propagated poplar (Bewg et al., 2018). 415 
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 416 

 417 

MATERIALS AND METHODS  418 

 419 

Generation of KO mutants 420 

The G and KO constructs in p201N-Cas9 (Jacobs et al., 2015) were prepared by Gibson assembly. PCR 421 

was used to amplify the p201N-Cas9 binary vector following SwaI (New England BioLabs) digestion, and 422 

the Medicago truncatula MtU6.6 promoter and scaffold fragments from HindIII and EcoRI (New England 423 

BioLabs) digested pUC-gRNA shuttle vector (Jacobs et al., 2015), with Q5 High-Fidelity DNA Polymerase 424 

(New England BioLabs) and primers (Sigma) listed in Table S2. The p201N-Cas9 (Addgene 59175) and 425 

pUC-gRNA (Addgene 47024) plasmids were both gifts from Wayne Parrott. Two pairs of oligos (Sigma) 426 

corresponding to the consensus gRNA target site in exon two of MYB186 (Potri.008G089200), MYB138 427 

(Potri.008G089700) and MYB38 (Potri.010G165700) were assembled with p201N-Cas9. The NEBuilder 428 

HiFi DNA Assembly Cloning Kit (New England Biolobs) was used to assemble p201N-Cas9, MtU6.6 429 

promoter and scaffold fragments with a pair of oligos containing the gRNA target sequence (Table S2). 430 

Following transformation into DH5α E. coli (Zymo Research Mix & Go! Competent Cells), PCR-positive 431 

colonies were used for plasmid purification before Sanger sequencing (Eurofins) confirmation. Plasmids 432 

were then heat-shocked into Agrobacterium tumefaciens strain C58/GV3101 (pMP90) (Koncz and Schell, 433 

1986) and confirmed by colony PCR. 434 

 435 

Populus tremula x alba (IRNA 717-1B4) transformation and regeneration was performed as outlined in 436 

Meilan and Ma (2006), except 0.05 mg/L 6-benzylaminopurine was used in shoot elongation media, and 437 

200 mg/L L-glutamine was added to all media, with 3 g/L gellan gum (PhytoTechnology Lab) as a gelling 438 

agent. Following a 2-day agrobacterial cocultivation, leaf discs were washed in sterile water followed by 439 

washing in 200 mg/L cefotaxime and 300 mg/L timentin with shaking for 1.5 hr. Transformants were 440 

selected on media supplemented with 100 mg/L kanamycin, 200 mg/L cefotaxime and 300 mg/L 441 

timentin for callus induction and shoot regeneration and with kanamycin and timentin for shoot 442 

elongation and rooting. All cultures were grown and maintained at 22°C under a 16-hr light/8-hr dark 443 

photoperiod with Growlite® FPV24 LED (Barron Lighting Group) at ~150 µmol/m2/s.  444 

 445 

Amplicon sequencing determination of mutation spectrums  446 
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Newly emerged leaves were excised from individual events in tissue culture for genomic DNA extraction 447 

(Dellaporta et al., 1983). The DNA pellet was resuspended in water with RNase A (10 µg/mL) for 448 

amplicon library preparation using GoTaq G2 Green Master Mix (Promega) and primers (Table S2) 449 

spanning the gRNA target site (between 264 bp to 280 bp). Samples were then barcoded with Illumina 450 

amplicon indexing primers and pooled for Illumina MiSeq nano PE150 sequencing performed at the 451 

University of Georgia’s Georgia Genomics and Bioinformatics Core. Demultiplexed sequence reads were 452 

analyzed by the AGEseq (Analysis of Genome Editing by Sequencing) program (Xue and Tsai, 2015), with 453 

mismatch allowance set at 1%, followed by manual curation.  454 

 455 

Because initial amplicon data analysis revealed lower editing efficiencies (<90%) than we typically 456 

observed in 717 (Zhou et al., 2015; Bewg et al., 2018) at several target sites, we performed de novo 457 

assembly of WT amplicon reads using Geneious, and recovered seven distinct alleles. We then searched 458 

the JGI draft 717 genome assembly v1.0 with the P. trichocarpa Nisqually-1 v3.0 (Phytozome v12) 459 

MYB186, MYB138 and MYB38 gene models and extracted the surrounding 50-150 Kb regions from Chr8 460 

and Chr10 for manual annotation against the P. trichocarpa Nisqually-1 reference (Figure 3A). The 461 

matching MYB gene sequences were extracted for error correction using 717 resequencing data (Xue et 462 

al., 2015). Curated sequences were used for new (amplicon and allele-/gene-specific) primer design and 463 

as references in amplicon data analysis. In the case of WT and transgenic controls with no editing, 464 

erroneous read assignments—and hence indel calls—still remained because the amplicon region 465 

between some alleles differs only in the number of intronic dinucleotide (GT) repeats (Dataset S1). 466 

Misassigned reads led to erroneous indel calls of -2, +2 or their multiples outside of the gRNA target site. 467 

For this reason, WT and control samples were processed by ustacks from Stacks 2.3 (Catchen et al., 468 

2011). Parameters were adjusted to avoid collapsing reads with SNPs and/or Indels from paralogous 469 

alleles into the same tag group and gapped alignments were disabled. Tags from the output were then 470 

used for allele assignment. 471 

 472 

Phenotypic and transpiration measurements  473 

Tissue culture plants were transferred into soil (Moisture Control Potting Mix, Scotts Miracle-Grow) in 4” 474 

pots and maintained in a walk-in growth room. A subset of plants, 8-10 weeks of age, were transferred 475 

to a glasshouse in the Whitehall Forest at the University of Georgia in early summer. Plants were 476 

repotted into 1-gal pots and acclimated for two weeks prior to commencing growth measurements. No 477 

supplemental lighting was used, and glasshouse temperature was maintained at ~5°C below daytime 478 
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ambient temperature by evaporative cooling. Biocontrol (Evergreen Growers Supply) was applied 479 

monthly. Plant height and stem diameter measurements were monitored over a 7-week period. Plants 480 

were then destructively harvested for stem (30 cm above soil level) and leaf biomass following drying at 481 

room temperature in open paper bags for five weeks. To determine rate of water loss during leaf drying, 482 

leaf plastochron index LPI-6 and LPI-20 (including petiole) from glasshouse plants were placed on wet 483 

paper towel in the dark for 1.5 hr to fully hydrate before being blotted dry with paper towel and allowed 484 

to dry abaxial side up at room temperature. Leaf weights were recorded every 20 min. Leaf water 485 

uptake via transpiration was performed using whole leaves of growth chamber plants between LPI-10 486 

and LPI-15 matched by size. Leaves were placed on wet paper towel for 1.5 hr in the dark to fully 487 

hydrate, and the end of the petiole was trimmed underwater to minimize embolism before placing the 488 

leaves, petiole first, into a 15 mL centrifuge tube filled with water. Leaves were then incubated under 489 

growth lights (250-300 µM/m2/s) and weights were recorded hourly for six hours. An empty tube with 490 

water was weighed as evaporation control. A second experiment was performed using trimmed leaves 491 

from growth chamber plants using the same methods as above, except leaves were trimmed following a 492 

stencil the day before experiment to control for leaf area. All repeated measures ANOVA analyses were 493 

performed with JMP Pro Version 15.0.0 (SAS), with p values determined after application of the 494 

Greenhouse-Geisser epsilon correction. For pest susceptibility monitoring, newly transplanted and 495 

acclimated plants were grown in a walk-in growth chamber without regular biocontrol applications. 496 

Thrip damage to new growth was then photographed.  497 

 498 

RNA-seq analysis 499 

LPI-6 from 10-week-old soil-grown growth chamber plants (three WT, three G and five KO lines) were 500 

harvested for RNA extraction using Direct-zol RNA MiniPrep kit (Zymo Research) with Plant RNA 501 

Purification Reagent (Invitrogen). For developmental profiling, LPI-1, LPI-5 and LPI-15 were collected 502 

from three greenhouse-grown WT plants (~5 ft in height) for RNA extraction as above. RNA-seq library 503 

preparation and Illumina NextSeq 500 sequencing was performed at the Georgia Genomics and 504 

Bioinformatics Core. We obtained 9.3-15.2 million (M) SE-75 reads per sample for the KO leaf 505 

transcriptome experiment, and 10.8-13.3 PE75 reads per sample for the leaf developmental series. After 506 

pre-processing to remove adapter and rRNA sequences, reads were mapped to the 717 SNP-substituted 507 

genome sPta717 v2 (Xue et al., 2015) using STAR v2.5.3a (Dobin and Gingeras, 2015). Transcript 508 

abundance was estimated by featureCounts v1.5.2 (Liao et al., 2014) for differential expression analysis 509 

by DESeq2 v1.22 (Love et al., 2014) with multiple testing corrections by SLIM (Wang et al., 2011). 510 
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Differentially expressed genes selected based on RPKM (reads per kb transcript per million mapped 511 

reads) 3, P 0.01 and fold-change (FC) 1.5 were subjected to Gene Ontology (GO) enrichment analysis 512 

using topGO v2.38 (Alexa and Rahnenfuhrer, 2010) with Fisher’s exact test and the negative log10-513 

transformed P values were used for heatmap visualization. Gene expression ratios between KO and 514 

control (WT and G) samples are visualized as heatmaps using BAR HeatMapper Plus Tool 515 

(http://bar.utoronto.ca/ntools/cgi-bin/ntools_heatmapper_plus.cgi). Whole-genome duplication 516 

inference was determined based on Ks (synonymous substitution rate) distribution and collinearity 517 

analysis using the P. trichocarpa Nisqually-1 v3.0 reference genome (Phytozome v12) (Tuskan et al., 518 

2006) and the wgd tool suite (Zwaenepoel and Van de Peer, 2018).  519 

 520 

Determination of leaf and cuticle wax compositions 521 

One-inch leaf punches were taken from mature leaves of similar size (between LPI-10 and LPI-15) of soil-522 

grown plants in a growth chamber and washed in 4 mL of methylene chloride for 30 sec. The washes 523 

were dried under a continuous N2 stream before resuspension in 400 µL chloroform. A 200µL aliquot 524 

was subsequently dried under vacuum and the residues shipped to the Oak Ridge National Laboratory 525 

for analysis. Sorbitol (1 mg/mL) was added to the residues as an internal standard and re-dried under N2. 526 

For whole leaf analysis, liquid nitrogen-ground and freeze-dried powders from LPI-5 (25 mg) of control 527 

and KO plants were extracted by 80% ethanol to which sorbitol (1 mg/mL) was added and dried under 528 

N2. The samples were derivatized prior to analysis on an Agilent Technologies 7890A GC coupled to a 529 

5975C inert XL MS fitted with an Rtx-5MS capillary column with a 5m Integra-Guard column (Restek) as 530 

described in Holwerda et al. (2014). Compound identification was based on mass spectral fragmentation 531 

patterns against the NIST08 database and an in-house library built with authentic standards.  532 

 533 

Determination of relative anthocyanin content after light-stress  534 

Plants were grown under 16-hr high-light provided by a King Plus 1500W LED full spectrum grow light 535 

(KingLED) for four weeks in a growth chamber before leaves (petiole and midvein removed) were 536 

harvested and snap frozen in liquid nitrogen. At the time of harvest, plants were experiencing a light 537 

intensity gradient of 2300 to 800 µM/m2/s at LPI-1, depending on the plant height, and of 1-18 µM/m2/s 538 

at LPI-20. Relative anthocyanin content was determined in LPI-3, 5 and 15 following the methods of Neff 539 

and Chory (1998) with the following modifications. Briefly, 40 mg of liquid nitrogen-ground and freeze-540 

dried powder were extracted in 800 µL methanol acidified with 1% HCl overnight at 4°C in dark. 541 

Supernatant was extracted with 200 µL dH2O/500 µL chloroform three times before 400 µL was mixed 542 
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with 400 µL of 60% acidified methanol for spectrophotometry at A530 and A657. Relative abundance of 543 

anthocyanin was expressed as A530 corrected for scattering at A657. Two-tailed Student’s t-test was 544 

determined using JMP Pro Version 15.0.0 (SAS).  545 

 546 

Tissue Imaging and SEM analysis 547 

Images of poplar were taken with either a Google Pixel 3a running Android v11, or a Leica M165 FC 548 

dissection microscope attached to a Leica DFC500 camera running Leica Application Suite software 549 

v3.8.0. Scanning electron microscopic (SEM) observations were obtained using Hitachi 3400 NII (Hitachi 550 

High Technologies America) microscope following optimized protocols at the Center for Ultrastructural 551 

Research at the Fort Valley State University. LPI-1 from growth chamber plants or young leaves of tissue 552 

culture plants were processed for primary fixation at 25°C in 2 % glutaraldehyde (Electron Microscopy 553 

Sciences, EMS) prepared with Sorensen’s Phosphate buffer, pH 7.2 (EMS) for one hour and then washed 554 

three times for 15 min each with the same buffer before secondary fixation in 1% osmium tetroxide 555 

(EMS) prepared in Sorensen’s Phosphate buffer, pH 7.2 for 1 hour at 25°C. After three washes with dH2O 556 

for 15 min each, fixed tissues were dehydrated with ethanol series passing through 25%, 50%, 75%, and 557 

95% for 15 min each, followed by three changes of 100% ethanol for 15 min each. Critical point drying of 558 

fixed samples was conducted using a critical point dryer (Leica) and then samples were placed on Hitachi 559 

M4 aluminum specimen mounts (Ted Pella) using double sided carbon adhesive tabs (EMS) for coating. 560 

Gold coating of 50 Å thickness was done for 60 sec using sputter coater (Denton Desk V) under a vacuum 561 

pressure of 0.05 torr. Image acquisition in various magnification was done at accelerating voltage of 5 562 

KV. 563 

 564 

ACCESSION NUMBERS 565 

The RNA-seq data has been deposited to the National Center for Biotechnology Information’s Sequence 566 

Read Archive under accession Nos. PRJNA752367 and PRJNA753499. 567 
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 577 

SUPPORTING INFORMATION 578 

Table S1. Transcript levels of trichome-regulating MBW genes based on RNA-seq. 579 

Table S2. Primers used in this study. 580 

Figure S1. PCR confirmation of NA alleles using allele-specific primers.  581 

Figure S2. Sequence alignment of wild type and fusion MYB alleles from KO-5 and KO-69. 582 

Figure S3. Susceptibility of trichomeless mutants to thrip damage. 583 

Dataset S1. CRISPR/Cas9 mutation patterns of the eight target MYB alleles in ∆G and KO lines. 584 

Dataset S2. Differentially expressed genes detected in trichomeless leaves. 585 

 586 

 587 

FIGURE LEGENDS 588 

 589 

Figure 1. Expression of clade 15 MYB transcription factors during Populus leaf maturation. 590 

A simplified phylogenetic tree is shown with duplication history noted on the left. Data are meanSD of 591 

n=3. LPI, leaf plastochron index; FPKM, fragments per kilobase of transcript per million mapped reads; 592 

MYB186, Potri.008G089200; MYB138, Potri.008G089700; MYB38, Potri.010G165700; and MYB83, 593 

Potri.017G086300. 594 

 595 

Figure 2. CRISPR/Cas9 KO of trichome-regulating MYBs.  596 

A, Schematic illustrations of the MYB gene structure, gRNA target site, and base pairing between the 597 

genomic target (black) and the gRNA spacer (red)-scaffold (blue) molecule. Black line denotes the 598 

protospacer adjacent motif (PAM). B, Zoomed-in view of the ΔG vector configuration at the gRNA 599 

spacer-scaffold junction with a guanine omission. C-R, Representative shoot tip (C, G, K, O) and LPI-1 600 

abaxial (D, H, L, P) phenotypes and SEM images (E, F, I, J, M, N, Q, R) of soil-grown WT (D, E), Cas9 vector 601 

control (C), ΔG control (G-I), KO-27 (K-M), and null mutant (O-Q) plants, and leaf abaxial (F, N) or adaxial 602 

(J, R) images of tissue cultured ΔG (F, J) and null mutant (N, R) plants. Scale bar = 3 mm (D, H, L, P), 500 603 

m (E, I, M), 1 mm (Q), or 25 m (F, J, N, R). 604 

 605 
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Figure 3. Mutation analysis of trichomeless mutants.  606 

A, Schematic illustration of MYB186 and MYB138 on Chr8 subgenomes (main and alternative, or Chr8m 607 

and Chr8a, respectively) and MYB38 on Chr10m and Chr10a of the 717 genome. Neighboring genes are 608 

color coded for synteny and the putative duplication block containing MYB186 and MYB138 on Chr8 is 609 

marked by red brackets. Black triangles denote the eight gRNA target sites. B, Mutation spectrum 610 

determined by amplicon sequencing. The eight alleles are arranged by genomic position for each plant 611 

line and color-coded for the editing outcomes: green, unedited (intact); orange, indel; and grey, no 612 

amplification (NA). C, Pie chart summary of the overall (left) and indel (right) editing patterns. D, PCR 613 

amplification of the six MYB alleles on Chr8 from two WT, one ΔG and four KO lines. The four KO lines 614 

were selected to represent one (KO-5 and KO-69) or two (KO-63 and KO-70) remaining Chr08 alleles. 615 

UBC (ubiquitin-conjugating enzyme) was included as loading control. M, molecular weight marker; ntc, 616 

no-template control. E, Sanger sequencing of PCR products from D. Sequence alignment of the six alleles 617 

flanking the gRNA target site (red) is shown on top and chromatograms of the same region are shown 618 

below. Grey shaded regions are introns and PAM is underlined and boxed in blue for correspondence 619 

with the sequence traces below. Black triangles denote the Cas9 cleavage site and black dashed box 620 

corresponds to the 2-bp deletion (-2) detected in KO-5 and KO-69. The two fusion alleles as determined 621 

by SNPs are marked below the KO-5 and KO-69 traces (see Supplemental Figure S2 for the full sequence 622 

alignment). 623 

 624 

Figure 4. Phenotypic characterization of trichomeless KO mutants. 625 

A-B, Height (A) and diameter (B) growth monitored over seven weeks. C-D, Stem (C) and leaf (D) 626 

biomass at harvest. Only LPI31-LPI40 were used for leaf biomass. E, Transpiration-driven water uptake of 627 

size-matched whole leaves or leaves trimmed with stencil to control for surface area. F, Water loss 628 

during drying of leaves LPI-6 and LPI-20. Data are mean  SD of n=5-7 controls (WT and transgenic 629 

controls) or KO mutants grown in a greenhouse (A-D, F) or in a growth chamber (E). P values were 630 

determined using repeated measures ANOVA (A-B, E-F) or 2-tailed t-test (C-D). 631 

 632 

Figure 5. Transcriptional responses of trichomeless leaves.  633 

A, Expression response heatmaps of genes involved in trichome development, biosynthesis and signaling 634 

of GA and JA signaling and morphogenesis. B, Gene Ontology (GO) enrichment analysis of genes 635 

differentially up- or down-regulated in trichomeless leaves related to the control. Representative GO 636 

terms are visualized by the negative log10-transformed P values, with the color scales shown at the 637 
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bottom. Boldfaced values indicate P<0.05). C, Expression heatmaps of genes involved in regulation of 638 

circadian rhythm and light responses. Expression responses in A and C are shown in log2-transformed 639 

fold-change (FC, mutant/control) and visualized according to the color scales at the bottom. Average 640 

basal expression levels from control samples are shown in RPKM (reads per kilobase of transcript per 641 

million mapped reads) and visualized according to the color scales at the bottom. 642 

 643 

Figure 6. Anthocyanin accumulation under high light conditions.  644 

A-B, Representative examples of LPI-1 to LPI-5 from a Cas9 vector control plant (A) or a trichomeless 645 

mutant (B). C, Anthocyanin contents of LPI-3, LPI-5 and LPI-15. Data are meanSE of n=6 control or n=10 646 

KO plants. P values were determined using 2-tailed t-test. 647 

 648 

Figure 7. Cuticular wax composition of trichomeless and control leaves.  649 

A, Total wax load. B, Major classes of cuticular wax. C, Fatty alcohols (C26, 1-hexacosanol; C28, 1-650 

octacosanol) in wax (left) or whole leaves (right). D, β-sitosterol detected in wax (left) or whole leaves 651 

(right). E, Triterpenes detected in wax (top) or whole leaves (bottom). Ergosterone, 14,24-dimethyl-652 

ergosta-8,25-dien-3-one; cycloartanone, 24-methylene cycloartan-3-one; lanosterone, lanosta-8,24-653 

dien-3-one. Data are meanSD of n=5. All concentration estimates were based on sorbitol equivalent. 654 

Statistical significance was determined by 2-tailed t-test (* P<0.05, ** P<0.01, *** P<0.001). nd, not 655 

detected. F, Expression response heatmaps of genes involved in fatty acid and wax biosynthesis. Data 656 

presentation is the same as in Figure 5. 657 

 658 

 659 
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Figure 1. Expression of clade 15 MYB transcription factors during 
Populus leaf maturation. A simplified phylogenetic tree is shown 
with duplication history noted on the left.  Data are mean ± SD of 
n=3. LPI, leaf plastochron index; FPKM, fragments per kilobase of 
transcript per million mapped reads; MYB186, Potri.008G089200; 
MYB138, Potri.008G089700; MYB38, Potri.010G165700; and 
MYB83, Potri.017G086300.
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WT ΔG-24 KO-27 KO-5

Figure 2. CRISPR/Cas9 KO of trichome-regulating MYBs. A, Schematic illustrations of the MYB gene 
structure, gRNA target site, and base pairing between the genomic target (black) and the 
gRNAspacer (red)-scaffold (blue) molecule. Black line denotes the protospacer adjacent motif 
(PAM). B, Zoomed-in view of the ΔG vector configuration at the gRNA spacer-scaffold junction 
with a guanine omission. C-R, Representative shoot tip (C, G, K, O) and LPI-1 abaxial (D, H, L, P) 
phenotypes and SEM images (E, F, I, J, M, N, Q, R) of soil-grown WT (D, E), Cas9 vector control (C), 
ΔG control (G-I), KO-27 (K-M), and mutant (O-Q) plants, and leaf abaxial (F, N) or adaxial (J, R) 
images of tissue cultured ΔG (F, J) and mutant (N, R) plants. Scale bar = 3 mm (D, H, L, P), 500 µm 
(E, I, M), 1 mm (Q), or 25 µm (F, J, N, R). 
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A B

C

D

E

Main Chr8 Alt. Chr8 Chr10
186m1 138m1 186m2 138m2 186a 138a 38m 38a

Control
ΔG

KO-2 +1 -2 -1 -2 -1
KO-4 -1 -4 -2 -1 -2 +1
KO-5 -2 -4 -1
KO-7 -1 -2 -1 -4 -1 -3

KO-10 -1 -1 -3 -4
KO-12 -1 -1 -10 -3 -7 -2
KO-18 +1 -2 -1 -2
KO-19 -1 -4 -2 -4 -1 -2 -4 -2
KO-22 -2 -1 -2 -4
KO-24 -1 -3 -3 -1 -2
KO-25 -4 -2 -4 -1 -4 -2 -1 -4
KO-26 -3 -3 -4 +1 -2
KO-27 -2 +1 -2 -1 -2 -3
KO-28 -4 -2 -1 -4 +1 -2 +1 -1
KO-29 +1 -2 -2 -2 -1 -2
KO-30 -2 -6 -4 -4 -1
KO-33 -2 -4 -1 -3 -2 -1
KO-39 -2 -1 -2 -1 -1 -1
KO-40 -5 -3 +1 +1 -1 -4
KO-44 -1 +1 -1 -1
KO-46 -2 -2 -2 -1 -2 -2 -2 -3
KO-48 -4 -2 -1 -1 -2
KO-54 -1 -1 -2 -3 +1 -4
KO-56 -1 -5 +1 -1 +1
KO-61 -4 -3 -3 -2
KO-62 -4 -4 -4 -1 -2 +1 -2 -2
KO-63 -4 -2 -4
KO-67 -5 -4 -1 -4 -2 -4
KO-69 -2 -5 -3
KO-70 -4 -3 -4 -4

Intact (unedited) indel NA (no amplification)

Figure 3. Mutation analysis of trichomeless mutants. A, Schematic illustration of MYB186 and MYB138 on Chr8 subgenomes (main 
and alternative, or Chr8m and Chr8a, respectively) and MYB38 on Chr10m and Chr10a of the 717 genome. Neighboring genes are 
color coded for synteny and the putative duplication block containing MYB186 and MYB138 on Chr8 is marked by red brackets. 
Black triangles denote the eight gRNA target sites. B, Mutation spectrum determined by amplicon sequencing. The eight alleles are 
arranged by genomic position for each plant line and color-coded for the editing outcomes: green, unedited (intact); orange, indel; 
and grey, no amplification (NA). C, Pie chart summary of the overall (left) and indel (right) editing patterns. D, PCR amplification of 
the six MYB alleles on Chr8 from two WT, one ΔG and four KO lines. The four KO lines were selected to represent one (KO-5 and KO-
69) or two (KO-63 and KO-70) remaining Chr08 alleles. UBC (ubiquitin-conjugating enzyme) was included as loading control. M, 
molecular weight marker; ntc, no-template control. E, Sanger sequencing of PCR products from D. Sequence alignment of the six 
alleles flanking the gRNA target site (red) is shown on top and chromatograms of the same region are shown below. Grey shaded
regions are introns and PAM is underlined and boxed in blue for correspondence with the sequence traces below. Black triangles 
denote the Cas9 cleavage site and black dashed box corresponds to the 2-bp deletion (-2) detected in KO-5 and KO-69. The two 
fusion alleles as determined by SNPs are marked below the KO-5 and KO-69 traces (see Supplemental Figure S2 for the full 
sequence alignment). 
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Figure 4. Phenotypic characterization of trichomeless KO mutants. 
A-B, Height (A) and diameter (B) growth monitored over seven 
weeks. C-D, Stem (C) and leaf (D) biomass at harvest. Only LPI31-
LPI40 were used for leaf biomass. E, Transpiration-driven water 
uptake of size-matched whole leaves or leaves trimmed with 
stencil to control for surface area. F, Water loss during drying of 
leaves LPI-6 and LPI-20. Data are mean ± SD of n=5-7 controls (WT 
and transgenic controls) or KO mutants grown in a greenhouse (A-
D, F) or in a growth chamber (E). P values were determined using 
repeated measures ANOVA (A-B, E-F) or 2-tailed t-test (C-D). 
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GO term Down Up
GO:0009658 chloroplast organization 6.2 0.0
GO:0015979 photosynthesis 5.3 0.0
GO:0007623 circadian rhythm 4.8 3.9
GO:0010016 shoot system morphogenesis 3.6 0.0
GO:0010218 response to far red light 3.5 0.0
GO:0009638 phototropism 3.0 0.0
GO:0009637 response to blue light 3.0 0.4
GO:0009737 response to abscisic acid 3.0 3.3
GO:0009644 response to high light intensity 2.1 0.1
GO:0009966 regulation of signal transduction 0.1 10.1
GO:0006970 response to osmotic stress 1.3 5.5
GO:0009723 response to ethylene 0.3 4.8
GO:0006833 water transport 0.2 4.3
GO:0009611 response to wounding 0.7 3.7
GO:0009753 response to jasmonic acid 0.5 2.3
GO:0030001 metal ion transport 0.0 2.2
GO:0009739 response to gibberellin 0.7 2.2

A

Figure 5. Transcriptional responses of trichomeless leaves. A, Expression response heatmaps of 
genes involved in trichome development, biosynthesis and signaling of GA and JA signaling and 
morphogenesis. B, Gene Ontology (GO) enrichment analysis of genes differentially up- or down-
regulated in trichomeless leaves related to the control. Representative GO terms are visualized by 
the negative log10-transformed P values, with the color scales shown at the bottom. Boldfaced 
values indicate P<0.05). C, Expression heatmaps of genes involved in regulation of circadian 
rhythm and light responses. Expression responses in A and C are shown in log2-transformed fold-
change (FC, mutant/control) and visualized according to the color scales at the bottom. Average 
basal expression levels from control samples are shown in RPKM (reads per kilobase of transcript 
per million mapped reads) and visualized according to the color scales at the bottom. 

mutants (n=5) compared with controls (n=6). 
Gene abbreviations: BT1: BTB AND TAZ DOMAIN protein1; CIP7: COP1-INTERACTING PROTEIN 7; 
EBF1: EIN3-BINDING F BOX PROTEIN 1; FKF1: FLAVIN-BINDING KELCH REPEAT F BOX 1; GIS: 
GLABROUS INFLORESCENCE STEMS; HSFB2B: HEAT SHOCK TRANSCRIPTION FACTOR B2B; JMJD5: 
JUMONJI DOMAIN CONTAINING 5; LNK1: NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED 1; 
PAS/LOV: Per-ARNT-Sim/Light-Oxygen-Voltage; PCA: Protein complex assembly; PRR5: PSEUDO-
RESPONSE REGULATOR 5; RBGA6: RNA-BINDING GLYCINE-RICH PROTEIN A6; SMXL: SUPPRESSOR 
OF MORE AXILLARY GROWTH2-LIKE; TZP: TANDEM ZINC KNUCKLE PROTEIN; UBP12: UBIQUITIN-
SPECIFIC PROTEASE 12; UPL3: UBIQUITIN-PROTEIN LIGASE 3.

5in

3.4in

Gene model log2FC RPKM Description
Trichome development
Potri.006G195100 1.2 17 Zinc finger protein (GIS)
Potri.014G101700 1.0 4 Calcium-binding protein (KIC)
Potri.015G022000 0.8 3 MYB (Trichomeless TCL3)
Potri.001G103600 0.7 3 bHLH (GL3)
Potri.009G134300 -0.6 15 Ubiquitin-protein ligase
Potri.011G024000 -0.6 12 Guanyl-nucleotide exchange factor
Potri.003G221100 -0.7 7 Calpain-type cysteine protease
GA signaling and biosynthesis
Potri.014G135900 1.5 2 GA receptor GID1.3
Potri.005G184200 1.1 2 GA20 oxidase GA20ox4
Potri.010G060800 1.0 6 F-box protein GID2
Potri.010G129200 0.7 4 AP2/B3 transcription repressor
Potri.014G022100 0.7 52 F-box protein GID2
Potri.005G040600 0.6 15 GA receptor GID1.1
JA signaling and biosynthesis
Potri.003G193200 1.3 8 Hydroxy-JA sulfotransferase
Potri.002G082400 1.2 8 JA-amino acid hydrolase
Potri.004G102500 1.1 97 Allene oxide cyclase
Potri.001G062500 1.0 4 JA-associated ZIM protein
Potri.014G095500 0.9 18 JA-amino acid synthetase
Potri.008G133400 0.7 53 JA-associated ZIM protein
Potri.014G038700 0.7 12 Allene oxide synthase
Potri.003G045200 0.6 10 JA-amino acid hydrolase
Morphogenesis
Potri.007G023800 -1.4 48 RADIALIS-like
Potri.010G188200 -1.0 8 SMAXL
Potri.008G069100 -0.8 7 SMAXL
Potri.005G021700 -1.0 15 TOPLESS-related
Potri.014G138900 -0.8 65 ROTUNDIFOLIA-like
Potri.011G083100 -0.7 20 TEOSINTE-like TCP2-1
Potri.017G094400 -0.6 10 Receptor-like protein kinase

Gene model log2FC RPKM Description
Circadian and light regulation
Potri.012G005900 -1.9 45 Pseudo-response regulator 5
Potri.015G002300 -0.8 14 Pseudo-response regulator 5
Potri.005G196700 -1.4 21 GIGANTEA 
Potri.002G052300 -1.3 27 Time for coffee
Potri.008G151200 -1.0 16 Time for coffee 
Potri.010G089700 -0.8 16 Time for coffee 
Potri.014G095300 -1.2 11 Suppressor of PHYA-105
Potri.011G119500 -0.6 9 Suppressor of PHYA-105
Potri.017G146800 -1.0 38 REVEILLE 
Potri.006G173600 -1.0 51 CONSTANS-like 
Potri.010G105700 -0.9 19 Flavin kelch-repeat F-box
Potri.001G016200 -0.9 30 Jumonji domain protein
Potri.004G209700 -0.7 13 Phototropin 2
Potri.001G342000 -0.7 19 Phototropin 1
Potri.006G198300 -0.7 11 Ubiquitin C-terminal hydrolase
Potri.016G064100 -0.7 10 Ubiquitin C-terminal hydrolase

B

C
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1 >6
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Figure 6. Anthocyanin accumulation under high light 
conditions. A-B,  Representative examples of LPI-1 to LPI-5 
from a Cas9 vector control plant (A) or a trichomeless mutant 
(B).  C, Anthocyanin contents of LPI-3, LPI-5 and LPI-15. Data 
are mean±SD of n=6 control or n=10 KO plants. P values were 
determined using 2-tailed t-test.
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A           B C

D E

F

Figure 7. Cuticular wax composition of trichomeless and control 
leaves. A, Total wax load. B, Major classes of cuticle wax. C, Fatty 
alcohols (C26, 1-hexacosanol; C28, 1-octacosanol) detected in wax 
(left) or whole leaves (right). D, β-sitosterol detected in wax (left) 
or whole leaves (right). E, Triterpenes detected in wax (top) or 
whole leaves (bottom). Ergosterone, 14,24-dimethyl-ergosta-8,25-
dien-3-one; cycloartanone, 24-methylene cycloartan-3-one; 
lanosterone, lanosta-8,24-dien-3-one. Data are mean±SD of n=5. 
All concentration estimates were based on sorbitol equivalent. 
Statistical significance was determined by 2-tailed t-test (* P<0.05, 
** P<0.01, *** P<0.001). nd, not detected. F, Expression response 
heatmaps of genes involved in fatty acid and wax biosynthesis. 
Data presentation is the same as in Figure 5.
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