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Abstract 22 

Community weighted means (CWMs) are widely used to study the relationship between 23 

community-level functional traits and environment variation. When relationships between 24 

CWM traits and environmental variables are directly assessed using linear regression or 25 

ANOVA and tested by standard parametric tests, results are prone to inflated Type I error 26 

rates, thus producing overly optimistic results. Previous research has found that this problem 27 

can be solved by permutation tests (i.e. the max test). A recent extension of this CWM 28 

approach, that allows the inclusion of intraspecific trait variation (ITV) by partitioning 29 

information in fixed, site-specific and intraspecific CWMs, has proven popular. However, 30 

this raises the question whether the same kind of Type I error rate inflation also exists for 31 

site-specific CWM or intraspecific CWM-environment relationships. Using simulated 32 

community datasets and a real-world dataset from a subtropical montane cloud forest in 33 

Taiwan, we show that site-specific CWM-environment relationships also suffer from Type I 34 

error rate inflation, and that the severity of this inflation is negatively related to the relative 35 

ITV magnitude. In contrast, for intraspecific CWM-environment relationships, standard 36 

parametric tests have the correct Type I error rate, while being somewhat conservative, with 37 

reduced statistical power. We introduce an ITV-extended version of the max test for the ITV-38 

extended CWM approach, which can solve the inflation problem for site-specific CWM-39 

environment relationships, and which, without considering ITV, becomes equivalent to the 40 

“original” max test used for the CWM approach. On both simulated and real-world data, we 41 

show that this new ITV-extended max test works well across the full possible magnitude of 42 

ITV. We also provide guidelines and R codes of max test solutions for each CWM type and 43 

situation. Finally, we suggest recommendations on how to handle the results of previously 44 

published studies using the CWM approach without controlling for Type I error rate inflation.  45 
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Introduction 46 

According to community assembly theory, which species will occur in a local community 47 

partly depends on the result of environmental filtering by the prevailing local abiotic 48 

conditions (Keddy 1992, Zobel et al. 1998). More recently, this environmental filtering is 49 

believed to act directly upon species’ functional response traits (Lavorel & Garnier 2002). 50 

These traits consist of measurable properties of an individual organism that directly influence 51 

its fitness under the prevailing environmental conditions (Violle et al. 2007). The realization 52 

of this link between functional traits and the environment has opened up avenues to uncover 53 

the mechanisms behind community assembly, and to predict community responses to 54 

environmental change. This has resulted in an ever-increasing number of studies exploring 55 

functional trait-environment relationships (e.g. Miller et al. 2019).  56 

At the community level, trait-environment relationships are regularly assessed 57 

through the calculation of community weighted mean trait values (CWMs) (Garnier et al. 58 

2004, Diaz et al. 2007). The resulting CWMs are then usually directly related to different 59 

environmental variables using correlation, regression, ANOVA or other general(ized) linear 60 

mixed model techniques. We call this the CWM approach in this study. A number of 61 

alternative methods are also available for assessing trait-environment relationships however, 62 

including the fourth corner (Legendre et al. 1997, Dray & Legendre 2008, Peres-Neto et al. 63 

2017), species’ niche centroids (SNC; Peres-Neto et al. 2017, ter Braak et al. 2018) and 64 

multilevel models (Brown et al. 2014, Jamil et al. 2013, Warton et al. 2015, Miller et al. 65 

2019). 66 

Traditionally, the CWM approach used fixed species-level trait values (a given 67 

species has the same trait value in all occupied sites), and thus ignored intraspecific trait 68 

variation (ITV), i.e. variation in trait values among individuals of the same species. This was 69 

justified by the assumption that, in most datasets, the amount of ITV is negligible compared 70 
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to the amount of interspecific trait variation, i.e. variation among species (McGill et al. 2006). 71 

However, this assumption has recently been challenged by several studies that found that 72 

both within- and among-community ITV is often substantial, at least for plants (Albert et al. 73 

2010, Messier et al. 2010, Siefert et al. 2015, Westerband et al. 2021). For other taxa, the 74 

extent of ITV remains less well understood, however (e.g. Gaudard et al. 2019 for ants, Behm 75 

and Kiers 2014 for arbuscular mycorrhizal fungi, or Dawson and Jönsson 2020 for 76 

basidiomycetes). Consequently, researchers are now actively advocating the inclusion of ITV 77 

in most community ecological trait research, including in trait-environment relationship tests 78 

(Albert et al. 2011).  79 

Specifically for CWM trait-environment relationships, studies have clearly illustrated 80 

that results can be biased when using fixed species-level trait values instead of incorporating 81 

ITV (Albert et al. 2012, Borgy et al. 2017). This has resulted in an increasing number of 82 

studies where authors calculate CWMs using site- or habitat-specific trait values, measured 83 

separately for each species in each site or habitat, respectively. Lepš et al. (2011) introduced 84 

an extension of the CWM approach that allows the partitioning of the relative contribution of 85 

ITV and interspecific trait variation to community-level trait-environment relationships. This 86 

approach is based on the realization that CWMs calculated from fixed species-level trait 87 

values (“fixed” CWM, excluding ITV) can vary among communities only if their species 88 

composition differs (species turnover). On the contrary, differences in CWMs calculated 89 

from site-specific trait values (“site-specific” CWM) can be caused by both species turnover 90 

and ITV. The difference between the site-specific CWMs and fixed CWMs then only 91 

encompasses the effect of ITV (“intraspecific variability effect” CWM, or “intraspecific” 92 

CWM in short). These fixed, site-specific and intraspecific CWMs are subsequently related to 93 

environmental variables using either regression or ANOVA and their explained variation is 94 
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partitioned between species turnover and ITV. This method has proven popular, and to date, 95 

we have identified over 60 published case-studies using it. 96 

Several studies recently found that the standard parametric tests in the CWM 97 

approach using fixed trait values are prone to Type I error inflation, resulting in the situation 98 

that even CWMs calculated from randomly generated species-level trait values often show 99 

significant correlations to environmental variables (Peres-Neto et al. 2017, ter Braak et al. 100 

2018, Zelený 2018). Peres-Neto et al. (2017) have shown that the correlation of CWMs and 101 

environmental variables is in fact numerically tightly related to the fourth corner method 102 

(introduced by Legendre et al. 1997), and that the same solution as used for controlling the 103 

Type I error rate in the fourth corner (Dray et al. 2008, ter Braak et al. 2012), can be used to 104 

control the inflated Type I error rate in the CWM approach. This solution is based on a 105 

combination of two permutation tests, one permuting the sample attribute (i.e. the 106 

environmental variable) and the other permuting the species attribute (i.e. the trait), into the 107 

“max test”, by taking the higher (more conservative) P-value of the two permutations 108 

(Cormont et al. 2011, ter Braak et al. 2012).  109 

However, it is unclear if this Type I error inflation persists when introducing ITV in 110 

the CWM approach following the method of Lepš et al. (2011). Up to date, none of the 111 

papers using this method have tested, or tried to correct, for this potential Type I error 112 

inflation. Note however, that Candeias and Fraterrigo (2020) and Sandel and Low (2019) 113 

partly acknowledge, and try to address, related Type-I error inflation issues in their studies. 114 

Part of the type I error problem for fixed CWMs arises because the CWMs of different sites 115 

in a dataset are not independent, since sites usually share a least some species, and the trait 116 

values of these shared species are identical. This lack of independence between fixed CWMs 117 

reduces the effective degrees of freedom in the analysis of their relationship with 118 

environmental variables. We expect that for site-specific CWMs this problem will be relaxed, 119 
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because the inclusion of ITV allows species to have different trait values in different sites, 120 

thus reducing the dependence among sites. However, although ITV can be substantial, at least 121 

for plants, it is often smaller than interspecific trait variation (cf. Messier et al. 2010, Siefert 122 

et al. 2015, Westerband et al. 2021). We consequently expect that the use of site-specific trait 123 

values will not completely remove the dependency issue, but that the severity of inflation will 124 

depend on the magnitude of ITV. Moreover, the currently available max test solution cannot 125 

be applied, because the vector-based trait permutation for fixed CWMs cannot readily be 126 

extended to the site-by-species matrix for site-specific CWMs. For intraspecific CWMs, we 127 

do not have enough clues to forecast whether they are or they are not affected by inflated 128 

Type I error rate.  129 

In this study, we explore 1) whether the CWM approach suffers from inflated Type I 130 

error rates when including ITV, by calculating site-specific and intraspecific CWMs, 2) 131 

whether this potential inflation depends on the magnitude of ITV, and 3) whether our newly 132 

proposed modification of the max test can overcome this potential inflation problem. To 133 

explore these questions, we quantified Type-I error rates for 1) simulated community data 134 

with varying levels of intra- and interspecific trait variation, and 2)  a real-world dataset 135 

consisting of four functional leaf traits measured along a wind gradient for cloud forest 136 

vegetation in northern Taiwan. 137 

Methods 138 

Community weighted mean approach and extension for intraspecific trait variation 139 

When individual trait-environment relationships are analysed at the community level, three 140 

objects are usually involved: a species composition matrix, an environmental variable (vector) 141 

and a species trait (vector). Species composition is represented by a n-by-S matrix L = [lij], 142 

where n is the number of sites (rows), S is the number of species (columns) and lij is the 143 
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contribution of species j to site i (where contribution can be expressed as abundance, biomass, 144 

cover or another quantitative measure, or as presence-absence). The environmental variable is 145 

represented by a n-elements-long vector e = [ei], where ei is the value of the environmental 146 

variable for site i. The trait is represented by a S-elements-long vector t = [tj], where tj is the 147 

trait value of species j. Naming conventions follow Peres-Neto et al. (2017), with a few 148 

exceptions (explicitly mentioned further in the text) and several extensions. 149 

The CWM approach first translates the species-level vector t to a site-level vector c = 150 

[cj], by calculating the average trait value for a site across all present species, weighted by 151 

each species contribution, as expressed in the matrix L. The community weighted mean for 152 

site i is calculated as 153 

�� � � ���
�

���

�� 

where pij is the relative contribution of species j in site i, and tj is fixed trait value of species j 154 

(Garnier et al. 2004, Díaz et al. 2007). Relative contribution pij is calculated by dividing lij by 155 

the sum of species contributions in site i for which trait values are available, i.e. as pij = 156 

���/ � ���
�

���

. Species with missing trait values should not be included in the calculation of 157 

pij, so as the sum of relative species contributions in site i is always equal to one (Zelený 158 

2018). Next, vector c is directly related to the environmental vector e by correlation, 159 

regression, ANOVA or another method, and the significance of this relationship is often 160 

tested. 161 

Extension of CWM approach to allow the inclusion of ITV is done by distinguishing 162 

site-specific and fixed trait values (Lepš et al. 2011). Site-specific trait values for species j in 163 

site i thus become a n-by-S matrix T = [tij], where tij represents the mean trait value calculated 164 

from individuals of species j collected within site i (the value is missing if the species does 165 

not occur at the site or none of its individuals have been measured). The fixed trait values are 166 
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denoted as a n-elements-long vector �	 = [�	�
, where �	� is calculated as the mean of all site-167 

specific trait values (tij) of species j across all n sites in the dataset where that species occurs.  168 

Using the site-specific (T) and fixed (�	) trait values, Lepš et al. (2011) calculated site-169 

specific CWMs, which include ITV as 170 

���� � � ���
�

���

���  

resulting in a n-elements-long vector cSS = �����
, while fixed CWMs, which do not consider 171 

ITV, were calculated as 172 

��� � � ���
�

���

�	� 

resulting in a n-elements-long vector cF = [���
, that is essentially ci as calculated in the 173 

absence of ITV measurements (if we assume that �	j = tj). Finally, the intraspecific variability 174 

effect (called intraspecific CWM here) is defined as the difference between the site-specific 175 

CWM and the fixed CWM and calculated as ���	
 �  ���� 
 ���, stored in a n-elements-long 176 

vector cITV = [���	

. Using the above formulas, calculation of cITV can be rewritten to  177 

���	
 �  � ���
�

���
���� 
 �	�� � � ���Δ���

�

���

 178 

where Δ��� � ��� 
 �	� are site-specific trait values centred by species, represented by a n-by-S 179 

intraspecific trait matrix ΔT = [Δ���]. Thus, unlike cSS, which quantifies the absolute CWM 180 

trait values observed at different sites, cITV only quantifies the contribution of ITV to site-181 

specific CWMs. 182 

Lepš et al. (2011) pointed out that changes in site-specific CWMs (cSS) are caused 183 

either by species composition turnover (quantified by cF), changes in species-level trait values, 184 

i.e. ITV (quantified by cITV), or by both. They proposed a method to partition the effect of 185 

these two sources, in which cSS, cF and cITV are separately related to the vector e using a 186 
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general linear model approach. The sum of squares (SS) are then extracted from each model, 187 

where SSspecific represents the total among-site trait variation explained by the environmental 188 

variable (cSS ~ e), while SSfixed and SSintra represent the contribution of species turnover (cF ~ 189 

e) and ITV (cITV ~ e), respectively. If the effects of species turnover and ITV vary 190 

independently, SSspecific = SSfixed + SSintra. Usually, however, the effects of species turnover 191 

and ITV covary, either positively (i.e. when cF and cITV both have either a positive or a 192 

negative response to the environmental variable) or negatively (i.e. when cF and cITV respond 193 

oppositely to the environmental variable). Lepš et al. (2011) therefore suggested to add a 194 

covariation component, calculated as SScov = SSspecific – SSfixed – SSintra. This approach has 195 

been implemented in the R package cati (Taudiere & Violle 2015).  196 

Type I error inflation for trait-environment relationships in the CWM approach 197 

Previous studies have shown that using the CWM approach without considering ITV (thus 198 

using the fixed CWM vector cF) to assess the link between environment and traits often 199 

results in Type I error inflation. This is explained by the fact that a true link between traits 200 

and environment (t↔e) can only occur if both the link between environment and species 201 

composition, and the link between traits and species composition are present (e↔L and t↔L, 202 

respectively). Type I error inflation then occurs when the environment, but not traits, are 203 

related to the species composition (i.e. e↔L and t↮L, Peres-Neto et al. 2017). The solution 204 

to this inflation problem was adopted for the CWM approach by Peres-Neto et al. (2017) 205 

from an analogous solution applied in the fourth-corner approach (Legendre et al. 1997; Dray 206 

& Legendre 2008). It consists of calculating two permutation tests, one permuting the rows in 207 

L to test the e↔L link, and one permuting the columns in L, to test the t↔L link. Both tests 208 

are then combined together into the “max test” by only taking the largest P-value (least 209 

significant result) as the test of the t↔e link (Cormont et al. 2011, ter Braak et al. 2012). An 210 
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equivalent result is achieved by replacing the row-based permutation of the L matrix by 211 

permuting vector e and relating it to vector cF (calculated from not-permuted trait values t), 212 

and replacing the column-based permutation test of L by permuted trait values t, and relating 213 

the newly resulting vector PcF (where P stands for permuted) to the not-permuted vector e (Fig. 214 

1; Zelený 2018). For convenience, we still refer to these permutation schemes as row- and 215 

column-based permutations, respectively.  216 

Simulated community data with ITV 217 

To assess whether the CWM approach extended for ITV inclusion has a correct Type I error 218 

rate, we simulated community data that included intra- and interspecific trait variation that 219 

was directly structured by a hypothetical environmental gradient. More specifically, we 220 

evaluated the potential type I error inflation for the linear regressions between vectors cF, cSS 221 

or cITV, on the one hand and vector e, on the other hand.  222 

To generate simulated compositional data structured by an environmental variable (e) 223 

we used the COMPAS model proposed by Minchin (1987) and extended by Fridley et al. 224 

(2007). The extended model allows the creation of a simulated community by generating S 225 

unimodal species response curves along a vector e of fixed length, where each species 226 

response curve (represented by a Beta function, Minchin 1987) quantifies the probability with 227 

which a random individual found at a given gradient location is assigned to that given species. 228 

The species composition of individual sites is then generated by randomly selecting n 229 

locations along the environmental gradient, and assigning a predefined number of individuals 230 

to different species at each site, according to the species (response-curve-defined) occurrence 231 

probability at that site. In our simulation, we set the number of species S = 50, number of 232 

sites n = 25, and 100 individuals sampled in each site. The width of each species response 233 

curve (one of the parameters of the Beta function) is generated as a random number from a 234 
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uniform distribution between 0 and the total length of the environmental gradient. This length 235 

was set at 5000 units, but sites were only allowed to be sampled between 500 and 4500 units 236 

to avoid gradient edges with a lower density of species response curves. The simulation 237 

model returns two objects: a vector e (positions of sites along the gradient), and a n-by-S 238 

composition matrix L (with numbers in cells representing the counts of individuals of a given 239 

species in a given site). This simulation was performed 50 times with the same number of 240 

species and sites, resulting in 50 independent sets of e and L. 241 

For each simulation, we generated a matrix of simulated site-specific trait values T, in 242 

which both interspecific and intraspecific trait variation was completely, positively linked to 243 

vector e. The n-by-S matrix T was generated by replacing each non-zero value of lij in a site i 244 

of matrix L by the value ei (zero values of lij became missing values in T). In T = [tij], 245 

different species occurring in the same site will have the same tij value, and the same species 246 

occurring in different sites can have different tij values. Finally, we rescaled all values in T 247 

into the range between 0 and 1, and added a small value (generated as a random number from 248 

a uniform distribution between -0.1 and 0.1) as a random noise to each tij. 249 

We included an extra step that allowed modifying the magnitude of ITV in the 250 

simulated matrix T. For this, we first calculated the vector of fixed trait values �	 as the means 251 

of individual columns of matrix T, and calculated the matrix �� � �Δ���
 � ���� 
 �	�
. Then 252 

we introduced coefficient m to control the magnitude of simulated ITV in a matrix of site-253 

specific trait values �� � �����
  � ��Δ��� � �	�
. For each simulated vector e and matrix L we 254 

generated a set of site-specific trait matrices Tm for m ranging from 0 to 5 with 0.5 intervals. 255 

If m = 0 (no ITV) all values of ��� in column j are identical, and equal to �	�; this matrix was 256 

reduced into the vector �	 and used as fixed trait values. Increasing m increases the magnitude 257 

of ITV (for m = 1, the values in ���  are identical to those calculated from L and e, as 258 

described earlier). Additionally, we also constructed a simulated Tm matrix in which the trait 259 
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values were random values drawn from a standard normal distribution, N (0, 1); no random 260 

noise was added to tij value in this scenario. The latter scenario (with notation m = ∞ used in 261 

the following text) represents a situation in which the site-specific trait value of a given 262 

species is a random sample from the full pool of potential trait values across all species, 263 

unconstrained by any species-specific ITV range. Thus, in total we have one vector of fixed 264 

trait values �	 and 11 site-specific trait matrices Tm for each simulation. 265 

Dependence of the Type I error rate on the magnitude of ITV 266 

To assess the Type I error rates of the linear regressions of cF, cSS or cITV to vector e, tested by 267 

parametric F-tests using our simulated community data, we first cancelled the link between 268 

the traits and the species composition by permuting the trait matrices for each separate 269 

simulation (Fig. S1). For the fixed trait values, we permuted values within vector �	 to get P�	 = 270 

[P���] (Fig. S1). For the intraspecific trait values, we calculated the intraspecific trait matrix 271 

ΔTm for each Tm and permuted the values within each column (species) of ΔTm to get P
ΔTm 272 

= [P
Δtij]. Note that these column permutations are only performed across cells where the 273 

species is present. Finally, vector P�	  and matrix P
ΔTm were combined into a matrix of 274 

permuted site-specific trait values PTm = [Ptij] = P
Δtij + P���. Subsequently, P�	, and all PTm  and 275 

P
ΔTm matrices were combined with the L matrix to calculate one PcSS, 11 PcF and 11 PcITV 276 

vectors, respectively. Each of these 23 CWM vectors was then regressed against vector e and 277 

significance levels assessed by parametric F-tests. We repeated all trait matrix permutations 278 

1000 times, and for each of the 23 trait- environment regressions we counted the number of 279 

significant correlations (p < 0.05) (Nobs). Since the null hypothesis that the trait is not 280 

correlated to the environmental variable is true, because we broke the link between the trait 281 

and the species composition by permuting trait values, the expected number of significant 282 

correlations (i.e. the Type I error rate) is α (0.05) × 1000 = 50 (Nexp). The Type I error rate 283 
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inflation was then quantified using the inflation index I(α) = Nobs/Nexp (Lennon 2000); an 284 

index value of 1 indicates no inflation. 285 

Finally, the mean ± SD inflation index across the 50 simulations was plotted against 286 

the magnitude of ITV in the simulated data (cf. parameter m), separately for PcSS, and PcITV. 287 

To allow comparison with real datasets, we transformed parameter m to “relative ITV index”, 288 

calculated as the mean variance of ITV (i.e. variance of individual species’ site-specific trait 289 

values across all sites, averaged across species) divided by the variance of interspecific trait 290 

variation across all species included in the analysis (calculated from the fixed trait values). 291 

This ratio is equivalent to the TPC/PR T-statistic introduced by Violle et al. (2012). 292 

Introducing a max solution for the ITV-extended CWM approach 293 

The previously described row- and column-based permutation tests used for controlling Type 294 

I error inflation in the CWM approach (Peres-Neto et al. 2017, ter Braak et al. 2018) cannot 295 

be directly used for the ITV-extended CWM approach (Lepš et al. 2011). While the row-296 

based permutation test can still be performed by permuting vector e (Fig. 2a), it is not clear 297 

how the column-based permutation test should permute trait values in the trait matrix T, 298 

opposed to vector �	 used in the absence of ITV. Both the species composition matrix (L) and 299 

the site-specific trait matrix (T) usually contain some sites i where species j is absent (pij = 0) 300 

and thus the site-specific trait value is not available (tij = NA). Permuting columns in T 301 

(analogously to permuting elements in t) would mismatch values in these two matrices, 302 

causing some species with non-zero abundances in L being newly paired with missing site-303 

specific trait values in T and vice versa. To avoid this problem, we propose a new max test 304 

version containing a column-based permutation test that combines separate interspecific (on 305 

vector �	) and intraspecific (on matrix ΔT) trait permutations. For vector �	 the fixed trait 306 

values are directly permuted to obtain P�	. The permutation of values in ΔT, however, is done 307 
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separately for each column (ignoring cells with missing values) to get P
ΔT. The permuted 308 

mean trait values in vector P�	 and permuted site-specific trait matrix P
ΔT are then combined 309 

together into a new matrix of permuted site-specific trait values PT. This new matrix is then 310 

used to calculate PcSS, which is then related to the non-permuted vector e (Fig. 2b). The final 311 

max test then combines the row-based permutation test (using Pe) and the new column-based 312 

permutation test (using PcSS) by only taking the largest P-value (least significant result), 313 

similarly as the previously described max test for the CWM approach without extension for 314 

ITV (Cormont et al. 2011, ter Braak et al. 2012). 315 

We explored whether this newly proposed max test for ITV-extended CWM approach 316 

can correctly control for Type I error rate inflation for our 50 simulations, across different 317 

magnitudes of ITV. For this, we used the same 50 simulated datasets we used to quantify 318 

inflation of Type I error rate. For fixed CWM (m = 0), we replaced this newly modified 319 

column-based test by a test permuting only the mean trait values in �	 (Fig. 1b). We repeated 320 

1000 times each test for each combination of dataset and ITV magnitude, and plotted the 321 

average and standard deviation of the inflation index across the 50 simulations for each test 322 

against the ratio of intra- and interspecific trait variation, as described earlier. 323 

Real world dataset: leaf traits of woody species in the cloud forest of Taiwan 324 

To illustrate the effect of ITV on community-level trait-environment relationships in a real-325 

world dataset, we used data from the one-hectare vegetation plot in the cloud zone of 326 

northern Taiwan (24°42′25″ N, 121° 26′29″ E, 1758-1782 m a.s.l.), hereafter termed the 327 

Lalashan Forest Dynamics Plot. The plot is located on a wide mountain ridge, with several 328 

dry gullies and a windward slope in the eastern part of the plot. The vegetation is defined as 329 

Chamaecyparis montane mixed cloud forest (Li et al. 2013), with coniferous cypress 330 

Chamacyparis obtusa var. formosana dominating the canopy, and several evergreen broad-331 
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leaf tree species dominating the subcanopy (e.g., Neolitsea accuminatissima, Quercus 332 

sessilifolia, Rhododendron formosanum, Trochodendron aralioides). Within the 100 m × 100 333 

m Lalashan Forest Dynamics Plot, established following ForestGeo protocol (Condit 1988), 334 

we surveyed woody species in 25 systematically distributed 10 m × 10 m subplots. We 335 

recorded diameter at breast height (DBH) and species identity of all woody individuals with a 336 

DBH ≥ 1 cm, and used relative number of individuals and relative basal area (derived from 337 

DBH) to calculate the importance value index (IVI) per subplot for each species (Curtis 338 

1959). IVI values were then organized in the subplot × species L matrix. In total, we 339 

surveyed 1110 individuals of 49 species (including 48 broad-leaved and one coniferous 340 

species). 341 

For 1–3 individuals of each broad-leaved species within each subplot, we collected 342 

three mature leaves for trait measurements. For each leaf, we measured leaf area (LA, mm2), 343 

specific leaf area (SLA, mm2/mg), leaf dry matter content (LDMC, mg/g) and leaf thickness 344 

(Lth, mm), following the protocols of Pérez-Harguindeguy et al. (2013). Leaf-level trait 345 

values were first averaged per individual and subsequently per species in each subplot, to 346 

obtain a species × site-specific trait values T matrix. Since the distribution of site-specific 347 

trait values of LA and SLA was strongly right-skewed, we log10-transformed them before 348 

further analysis. We measured leaf traits for 665 individuals of all 48 broad-leaf species. 349 

For each subplot, we also calculated a set of topographical parameters, including 350 

mean elevation (m), convexity (m) and windwardness. Mean elevation of the subplot and 351 

convexity were calculated from the elevation of corner piles, following Valencia et al. (2004). 352 

Windwardness is a combination of aspect and slope, expressed as ‘easterness’ × slope, where 353 

‘easterness’ is the aspect folded along the east-west axis, rescaled into +90° for the E and -354 

90° for the W direction. Windwardness is expected to be related to the effect of the chronic 355 

north-eastern (winter) monsoon winds. We additionally calculated a hypothetical 356 
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‘environmental’ factor that was directly calculated from the L matrix. This variable, the 357 

subplot scores on the first ordination axis of a correspondence analysis calculated on the L 358 

matrix (hereafter named CA1), presents the strongest possible predictor of subplot-level 359 

species composition, since it is directly derived from it. 360 

We used data from this case study for two subsequent analyses. In the first one, we 361 

evaluated the relationship between Type I error inflation and the magnitude of ITV, for the 362 

four measured leaf traits and the two environmental factors, windwardness and CA1. We 363 

calculated Type I error rates for the relationships (linear regression, F-test) between the four 364 

site-specific and intraspecific CWMs, on the one hand, and windwardness and CA1, on the 365 

other hand (we did not consider the fixed CWMs in this analysis). Species for which no trait 366 

measurements were performed were removed from L matrix. The two CWM vectors, cSS and 367 

cITV, were calculated as defined earlier. To break the relationship between traits and 368 

environment in this data, we permuted site-specific and intraspecific trait data and performed 369 

10,000 independent permutations to quantify the inflation index, as described earlier. For 370 

each trait, we also calculated the relative ITV index and plotted the inflation index for each 371 

tested community-level trait–environment relationship against the relative ITV index. For 372 

site-specific CWMs, we additionally assessed if applying our newly introduced ITV-extended 373 

max test (with 999 permutations) could remove Type I error inflation. 374 

 In the second analysis, we used the variation partitioning method introduced by Lepš 375 

et al. (2011) and modified by Fajardo & Siefert (2018) for linear regression, to explore the 376 

specific community-level trait-environment relationships in our dataset and to quantify the 377 

effects of ITV, species turnover and their interaction on these relationships. We used all four 378 

measured leaf traits and the three measured topographical variables (but not CA1). For each 379 

trait and topographical variable combination, we calculated three linear regression models 380 

and tested them using the appropriate method: (i) cF ~ e, tested by the “original” max test, (ii) 381 
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cSS ~ e, tested by the newly introduced ITV-extended max test, and (iii) cITV ~ e, tested by the 382 

standard parametric F-test. For (i) and (ii), we also included standard parametric F-tests to 383 

allow comparison of the results with the correct test method (max test). We decided not to 384 

correct for multiple testing issue in this analysis, as we mainly compare differences between 385 

P-values calculated by standard parametric test and max permutation tests for individual trait-386 

environment combinations. For each regression, we then calculated the sum of squares, 387 

where SSfixed represents the effect of species turnover, SSspecific the total trait variation, and 388 

SSITV the effect of ITV, respectively. We subsequently partitioned those variations by the 389 

formula SSspecific = SSfixed + SSITV + covariation. All sum of square values were then rescaled 390 

to percentage scale, where SSspecific was set to 100%. 391 

All calculations with the simulated and real world datasets were performed in R 4.0.4. 392 

(R Core Team 2021). The R code and the real world data set are provided at 393 

https://doi.org/10.5281/zenodo.5497773. The simulated datasets were generated using the 394 

simcom package (Zelený, version 0.1.0, https://github.com/zdealveindy/simcom), max 395 

permutation tests for the fixed CWM-environment relationships were performed with the 396 

weimea package (Zelený, version 0.1.18, https://github.com/zdealveindy/weimea), 397 

correspondence analysis with the vegan package (Oksanen et al., version 2.5-7) and the 398 

partitioning of among-plot trait variation with functions modified from the cati package 399 

(Taudiere & Violle, 2015, version 0.99.3). 400 

Results 401 

Simulated community data 402 

The relationships between site-specific CWMs and environment, tested using standard 403 

parametric tests, have an inflated Type I error rate, where the inflation is negatively related to 404 

the magnitude of ITV (Fig. 3a). Type I error inflation is highest at the smallest relative ITV 405 
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index, approaching the inflation for fixed CWM. The inflation seems to be almost absent if 406 

the relative ITV index is higher than 3, and there is no obvious inflation ITV is unconstrained 407 

(m = ∞). The relationship between intraspecific CWMs and environment, tested using 408 

standard parametric tests, does not have an inflated Type I error rate (Fig. 3b), and 409 

consequently shows no relationship with the relative ITV index. This test actually seems 410 

rather conservative, with all inflation index values below one. 411 

Our newly introduced ITV-extended max test successfully controls for Type I error 412 

rate inflation of site-specific CWMs for all magnitudes of ITV (Fig. 3c). For fixed CWMs 413 

(ITV = 0), this test reverts to the “original” max test, which also controls for Type I error rate 414 

inflation (Fig. 3c). The relationship of intraspecific CWMs and environment was not inflated 415 

when tested by standard parametric F-tests, so no permutation-based correction was 416 

necessary. 417 

Leaf traits of woody species in the cloud forest 418 

Regression of site-specific CWMs against the two environmental variables (the measured 419 

windwardness and generated CA1) showed an inflated Type I error rate for all four measured 420 

traits (Fig. 4a). The inflation index values were, overall, higher for regressions against CA1 421 

compared to windwardness. While the inflation index showed a somewhat decreasing trend 422 

with increasing relative ITV for CA1, no relationship was observed for windwardness. All 423 

regressions of intraspecific CWMs against CA1 and windwardness had an inflation index 424 

close to 1, with no apparent trend along the increasing relative ITV index (Fig. 4b). The 425 

newly introduced ITV-extended max test also successfully addressed the type I error inflation 426 

in this dataset (inflation index close to or lower than 1).  427 

From the CWM-environment relationships in our dataset which were significant (P < 428 

0.05) when tested by F-test, several became insignificant following max test correction (Tab. 429 
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1). For site-specific CWMs, Lth was positively and SLA negatively related to windwardness 430 

(Fig. 5b and c, respectively) based on both the parametric and max tests (Table 1). For fixed 431 

CWMs, LA was positively related to elevation and SLA negatively related to convexity when 432 

tested with parametric tests, but based on the max test, both relationships are only marginally 433 

significant (P < 0.1) (Table 1). Finally, for the intraspecific CWMs (tested only by parametric 434 

test), we found a negative relationship with windwardness for both LA and SLA (Fig. 5a&c) 435 

and a positive relationship between Lth and windwardness (Fig. 5b). None of the three 436 

CWMs for LDMC were significantly related to any measured environmental variable. 437 

Variance partitioning of the trait – environment relationship into the effect of species 438 

turnover, ITV and their covariation showed that there is a considerable positive covariation 439 

fraction for the SLA and Lth relationships with windwardness (Fig. S2). 440 

Discussion 441 

We illustrate with both simulated and real community data that testing community-level trait- 442 

environment relationships suffer from inflated Type I error rate when CWMs include 443 

(among-site) ITV in a similar way as when CWMs are calculated from fixed species-level 444 

trait values. We also showed that the extent of this inflation decreases with increasing 445 

amounts of ITV; for very low ITV magnitudes it approaches the inflation of trait – 446 

environment relationships using fixed CWMs, while for high ITV magnitudes it is almost 447 

non-existent (Fig. 3a). At the range of ITV magnitude observed in our real world dataset 448 

(0.35-0.60), inflation remains strong. The newly introduced max test extended for ITV 449 

proved to control Type I error rate for the full range of simulated ITV magnitude, and we 450 

suggest to use it whenever exploring site-specific CWM -environment relationships. Indeed, 451 

our simulation dataset suggests that levels of ITV need to be more than 3 times the amount of 452 
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interspecific trait variation before inflation becomes neglectable, so the test is likely to be 453 

needed in most real data studies.  454 

 Our real world dataset is rather small concerning both the number of species (48) and 455 

sites (25), and is also quite homogeneous in terms of environmental conditions (due to the 456 

small spatial extent). Consequently, we would expect the magnitude of ITV in our study (0.3-457 

0.6, or 30-60%, respectively) to be less extensive than for more species-rich communities 458 

across strong environmental gradients at large spatial scales. Surprisingly, other studies have 459 

nonetheless found lower ITV magnitudes, both at local (15-33%, Jung et al. 2010) and global 460 

scales for plant communities (32%, Siefert et al. 2015). It therefore seems unlikely that the 461 

extent of ITV in a real datasets would be sufficiently high (>300%) to overcome type I error 462 

inflation for site-specific CWM-environment relationships, without the use of a max test 463 

correction, at least for plant communities. A detailed review of community-level studies 464 

including ITV might be useful, however, to quantify the range of ITV magnitudes for 465 

different taxa, environmental strengths and spatial scales. Also note that the comparison of 466 

ITV magnitude with other studies is slightly hampered by the use of several alternative 467 

measures for ITV magnitude (cf. Lepš et al. 2006, Albert et al. 2010, de Bello et al. 2011, 468 

Siefert et al. 2015). We nonetheless expect ITV magnitude values to differ only slightly 469 

among these different methods.  470 

The use of trait values measured on the level of individual sites (“site-specific ITV”), 471 

as in this study, is just one example of how ITV can be incorporated in CWM-based trait – 472 

environment relationships. ITV covers any type of intraspecific trait variation, from variation 473 

among leaves of a single tree to variation among individuals of a species occurring on 474 

different continents. Specifically for CWM-based trait – environment relationships, the 475 

amount of included ITV can gradually range from the inclusion of only ‘habitat- specific’ or 476 

‘region-specific’ ITV, where sites of one habitat or region are characterized by fixed species-477 
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level trait values (e.g. Lepš et al. 2011, Helsen et al. 2018), to the inclusion of fine-scale 478 

intra-site ITV (trait variation among individuals in a site) (e.g. Carlucci et al. 2015). The 479 

severity of type I error inflation is expected to decrease along this gradient, since the more 480 

detailed ITV information is included, the more likely ITV magnitude will be considerable. 481 

Our study nonetheless suggests that Type I error corrections will remain necessary for any 482 

study where the magnitude of ITV is lower than 3. 483 

The actual level of Type I error inflation in real world datasets is also influenced by 484 

several other parameters, next to the amount of ITV. As shown using a similar simulation 485 

model as used in our study, inflation increases with decreasing beta diversity of the species 486 

compositional data, increasing number of community samples used in the analysis and 487 

increasing strength of the link between the environmental variable and the species 488 

composition data (Zelený 2018). The strength of the e–L link in particular likely explains 489 

why the inflation is high for site-specific CWM related to CA1 (which is intrinsically 490 

strongly linked to the L matrix) and low when related to the real measured environmental 491 

variable, windwardness (with has a much weaker link to matrix L). The newly introduced 492 

ITV-extended max test nonetheless solved the inflated Type I error rate problem in both the 493 

simulated and real data. 494 

 Surprisingly, the relationships between the intraspecific CWMs and environment 495 

showed no Type I error inflation when tested with standard parametric tests. Even more, this 496 

test appears to be conservative, with inflation rates being consistently lower than 1, in both 497 

simulated data and real world data. We hypothesise that the lack of power is caused by the 498 

way intraspecific CWMs are calculated: the matrix of site-specific trait values is converted 499 

into the matrix of intraspecific trait values by centering the species’ traits, resulting in 500 

intraspecific trait values and CWM’s which tend to have values close to zero, and thus very 501 

low variance. In the case of our less noisy simulated dataset, this behaviour is quite 502 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.09.459685doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.09.459685
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

pronounced, resulting in low inflation index values (<0.4), while for the noisier real world 503 

data this behaviour is less pronounced, with inflation index values only slightly below 1. 504 

Detailed analyses should be performed in the future to uncover whether this is the real reason 505 

for the apparent conservatism of the test. 506 

 Our study demonstrates the problem of Type I error inflation for site-specific 507 

CWMs – environment relationships assessed specifically using linear regression. We assume, 508 

however, that the same problem applies to other methods that can be used to assess trait-509 

environment relationships with the CWM approach, including correlation (parametric or non-510 

parametric), weighted regression (ter Braak et al. 2017) or ANOVA. Although not 511 

specifically assessed in this study, we assume that our new ITV-extended max test can solve 512 

this inflation in all of these methods, since they belong (or are closely related) to the same 513 

statistical family of general linear models. As shown by ter Braak et al. (2017) for fixed 514 

CWMs, the “original” max test is also applicable to this whole range of methods. It 515 

nonetheless remains useful to formally evaluate the sensitivity of these different methods to 516 

the Type I error rate inflation and their respective power. 517 

 In our analysis of trait-environment relationship on real cloud forest data, we 518 

deliberately ignored the Type I error inflation problem associated with multiple testing, 519 

which arises when conclusions are based on results of several (non-independent) tests carried 520 

out on the same dataset. Note that this issue is independent of the Type I error rate inflation 521 

explored in this study. When the CWM approach is used to identify multiple trait-522 

environment relationships, an additional correction of significance levels for this multiple 523 

testing issue is necessary to avoid inflated family-wise Type I error rates (see Wright 1992). 524 

We suggest to base this correction on the number of trait-environment pairs, not on the 525 

overall number of tests performed; i.e. no matter whether the study focuses on only a single 526 

CWM type (e.g. the site-specific one) or all three CWMs, each P-value should be adjusted by 527 
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the value calculated as the number of traits × the number of environmental variables. The 528 

correction for multiple testing will also require a higher number of permutations for each 529 

individual test, as to allow the adjusted P-values to reach values lower than the selected 530 

significance threshold (e.g. α = 0.05).  531 

Practical considerations 532 

For researchers using the CWM approach extended for ITV, we suggest the following 533 

workflow. From the three CWMs calculated within this extension, namely fixed, site-specific 534 

and intraspecific CWM, only the first two are prone to Type I error inflation. For fixed 535 

CWMs, we suggest using the original max (permutation) test, as introduced by Peres-Neto et 536 

al. (2017), which is currently available in the weimea R package (Zelený, unpublished; 537 

https://github.com/zdealveindy/weimea). For site-specific CWMs, the max test extended for 538 

ITV as introduced in this study can be used, by applying the custom-made functions provided 539 

in the R code accompanying this manuscript (https://github.com/zdealveindy/ITV_CWM). 540 

For intraspecific CWMs, standard parametric tests do not suffer from Type I error rate 541 

inflation and no correction is needed. 542 

When using the results of previously published studies that applied the CWM 543 

approach extended for ITV without controlling for Type I error inflation, be aware that some 544 

of them may be overly optimistic. As previously shown for the CWM approach without 545 

extension for ITV, Type I error inflation in fixed CWM-environment relationships correlate 546 

positively with dataset size and strength of the link between species composition and 547 

environment, and negatively with the overall species beta diversity (Zelený 2018). We show 548 

that for assessing site-specific CWM-environment relationships using the CWM approach 549 

extended for ITV, inflation is additionally negatively dependent on the magnitude of ITV. 550 
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Tables 680 

Table 1. Leaf traits of woody species in the cloud forest: regression of site-specific (SS), fixed (F) and intraspecific (ITV) CWM on 681 

environmental variables, tested by parametric F-test (Ppar) and max permutation test (Pmax; ITV-extended max test was used for site-specific 682 

CWM, and “original” max test for fixed CWM). Significant results (P < 0.05) are in bold. 683 

 684 

Environmental 
variable 

CWM 
type 

LA     Lth     SLA     LDMC    

   r2 F Ppar Pmax   r2 F Ppar Pmax   r2 F Ppar Pmax   r2 F Ppar Pmax 

elevation SS 0.101 2.58 0.122 0.179  0.025 0.60 0.448 0.518  0.001 0.01 0.911 0.923  0.018 0.42 0.523 0.628 

 F 0.166 4.58 0.043 0.095  0.035 0.85 0.367 0.497  0.002 0.05 0.822 0.881  0.003 0.07 0.799 0.860 

 ITV 0.006 0.15 0.704   0.011 0.25 0.624   0.000 0.01 0.940   0.061 1.48 0.236  

convexity SS 0.031 0.73 0.403 0.442  0.073 1.82 0.190 0.218  0.066 1.63 0.215 0.252  0.008 0.18 0.678 0.691 

 SS 0.030 0.70 0.411 0.486  0.024 0.56 0.461 0.549  0.164 4.50 0.045 0.091  0.120 3.14 0.089 0.154 

 ITV 0.004 0.08 0.778   0.089 2.25 0.147   0.003 0.06 0.810   0.033 0.79 0.384  

windwardness SS 0.120 3.13 0.090 0.104  0.285 9.18 0.006 0.007  0.370 13.50 0.001 0.003  0.001 0.02 0.890 0.909 

 F 0.035 0.84 0.369 0.488  0.054 1.31 0.265 0.364  0.065 1.60 0.219 0.311  0.018 0.43 0.520 0.609 

 ITV 0.172 4.79 0.039   0.412 16.13 0.001   0.431 17.41 0.000   0.006 0.14 0.710  
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Figures 687 

Figure 1. The schema of (a) the row-based and (b) the column-based permutation test for 688 

fixed trait values CWM. Resulting P-values from both tests are combined into the max test. 689 

Grey cells represent values of non-zero species abundances (in species composition matrix L 690 

and P) or values of traits and environmental variables that are not missing. 691 

 692 

Figure 2. The schema of ITV-extended max test. (a) The row-based permutation test for site-693 

specific trait values. (b) Combined column-based permutation test, with separate permutation 694 

of fixed trait values and intraspecific trait values. Max test combines P-values from both tests 695 

by selecting the higher one. Grey cells represent values of non-zero species abundances (in 696 

species composition matrix L and P) or values of traits and environmental variables which 697 

are not missing. 698 

 699 

Figure 3. The effect of the magnitude of intraspecific trait variation (relative ITV index) on 700 

inflation index (mean + standard deviation) of the linear regression between (a, c) site-701 

specific CWM or (b) intraspecific CWM and the ‘environmental variable’ of the simulated 702 

data, tested by (a, b) standard parametric test and (c) “max” permutation test. Black square = 703 

fixed CWM (cf. site-specific CWM with no ITV). Relative ITV index equal to infinity (∞) 704 

represents situation when site-specific trait matrix with trait values randomly sampled from 705 

normal distribution was used. No inflation occurs if the inflation index is equal or lower to 1 706 

(indicated by dashed horizontal line). 707 

 708 

Figure 4. The effect of the magnitude of intraspecific trait variation (relative ITV index) on 709 

inflation index (mean + standard deviation) of the linear regression between (a, c) site-710 
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specific CWM or (b) intraspecific CWM and windwardness (gray italics) and CA1 (black) of 711 

the cloud forest data, tested by (a,b) standard parametric test and (c) “max” permutation test. 712 

No inflation occurs if the inflation index is equal or lower to 1 (indicated by dashed 713 

horizontal line). LA = leaf area, SLA = specific leaf area, LDMC = leaf dry matter content, 714 

Lth = leaf thickness. 715 

 716 

Figure 5. Regression between windwardness and the site-specific, fixed and intraspecific 717 

CWM of (a) leaf area, (b) leaf thickness, and (c) specific leaf area. All CWMs were z-718 

transformed. Regressions significant at P < 0.05 (max test in the case of site-specific and 719 

fixed CWM, parametric test in the case of intraspecific CWM) were visualized by a solid 720 

regression line, non- significant regressions by a dashed line. 721 
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Figure 1 723 
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