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1. Abstract 

Whole genome shotgun sequencing is a powerful to study microbial community is a given 

environment. Metagenomic binning offers a genome centric approach to study microbiomes.  

There are several tools available to process metagenomic data from raw reads to the 

interpretation there is still lack of standard approach that can be used to process the metagenomic 

data step by step. In this study CuBi-MeAn (Customizable Binning and Metagenomic Analysis) 

create a customizable and flexible processing pipeline, to process the metagenomic data and 

generate results for further interpretation.  

This study aims to perform metagenomic binning to enhance taxonomical classification, 

functional potentials, and interactions among microbial populations in environmental systems. 

This customized pipeline which is comprised of a series of genomic/metagenomic tools designed 

to recover better quality results and reliable interpretation of the system dynamics for the given 

systems. For this reason, a metagenomic data processing pipeline is developed to evaluate 

metagenomic data from three environmental engineering projects. 

The use of our pipeline was demonstrated and compared on three different datasets that were 

of different sizes, from different sequencing platforms, and generated from three different 

environmental sources. By designing and developing a flexible and customized pipeline, this 

study has showed how to process large metagenomic data sets with limited resources. This result 

not only would help to uncover new information from environmental samples, but also, could be 

applicable to any other metagenomic studies across various disciplines.   
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2. Introduction 

Advances in molecular biology techniques such as next generation sequencing (NGS), PCR,  

molecular cloning, DNA Microarrays and protein mass spectrometry have improved our 

knowledge of microbiomes (Jovel, Patterson et al. 2016, Mendes, Braga et al. 2017, Quince, 

Walker et al. 2017, Heyer, Schallert et al. 2019, Sun, Liao et al. 2020). Among them, NGS is 

becoming one the most popular techniques used to generate targeted amplicon sequencing, 

shotgun metagenomics, and meta-transcriptomics data to study microbial communities. NGS 

technologies depend on sequencing technologies capable of generating millions (and sometimes 

billions) of small fragments of short (e.g. Illumina and SOLiD) or long (e.g. PacBio and Oxford 

Nanopore) DNA sequences (Mardis 2008, Quail, Kozarewa et al. 2008, Rhoads and Au 2015, 

Jain, Olsen et al. 2016). These NGS technologies can be used to produce sequencing libraries 

which contain substantial information about the entire microbial population living in an 

environment. Depending on the research question, scientists may choose between two type of 

popular approaches for generating libraries from DNA isolated from samples: amplicon 

sequencing and metagenomic sequencing. Amplicon sequencing analysis is aimed at exploring 

microbial community composition based on targeted sequencing of PCR amplicons of certain 

conserved region (16S rRNA, ITS or 18S) of the genomes that could be used as unique marker 

for phylogenic classification of the organisms present in a sample. Since this method relies on 

existing databases for classifications, they are inherently biased towards known organisms 

(Walsh, Crispie et al. 2018). In addition, taxonomical classification based on only marker genes 

fails to address the functional variation within closely related genomes (Hiergeist, Gläsner et al. 

2015, Tremblay, Singh et al. 2015, Gohl, Vangay et al. 2016). Isolated DNA from a mixed 

microbial community can also be used for metagenomic shotgun sequencing, which has become 

increasingly utilized to characterize both taxonomy and function of microbial communities 

(Woloszynek, Zhao et al. 2018). Through metagenomic shotgun sequencing, it is possible to 

generate sequence libraries containing the genetic information from hundreds or even millions of 

cells in sample, in order to understand their taxonomical classification, potential functional 

capabilities, and physiological traits. Metatranscriptomic is another approach reliant on NGS 

technologies commonly used how genes are regulated in response toward environmental factors 

and stimuli (Ranjard, Poly et al. 2000). The rest of this chapter only focuses on developing a 

pipeline for processing the metagenomic data and producing outputs that could be used in 
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downstream analysis and interpretations such as taxonomical classification, interactions and 

potential functions of the microbial communities exist in a microbiome. For more information on 

targeted amplicon sequencing and meta-transcriptomics, please see Rausch et al. (2019) article 

and Hodkinson and Grice (2015) and Bashiardes et al. (2016) reviews. 

Recovering information from several fragments of DNA sequences generated by NGS 

facilities (also known as “reads”) is not an easy task (Tyson, Chapman et al. 2004). Currently, 

there are two approaches for processing metagenomic libraries: gene-centric and genome-centric 

approaches. Gene-centric approaches (Venter, Remington et al. 2004, Tringe, Von Mering et al. 

2005) involve the recovery and investigation of the entire microbiome as a “supra-organism” 

regardless of their individual function (Juengst and Huss 2009, Juengst 2009). In gene-centric 

approaches, individual genes are regarded as selfish units and are the central keys in carrying out 

the functions while genomes are nothing more than the vessel for the genes (Dawkins 2016). 

Here, the genes are the fundamental framework of molecular biology for decoding the blueprint 

of the life and evolution (Venter, Adams et al. 2001, Tishkoff and Verrelli 2003, Schloss and 

Handelsman 2004, Guénet 2005). Gene-centric approaches rely heavily on existing databases 

and often overlook novel genes (Jaenicke, Ander et al. 2011, Wong, Zhang et al. 2013). In gene 

centric approach certain functions are attributed to a gene or a gene cluster. These genes are 

going to be used as a reference for annotation of the unknown genes. Therefore, any variation of 

these genes may increase the errors of annotations. In addition, another problem is confusion of 

homologous genes that have very similar genes may have different functions. For example, 

ammonia monooxygenases is very similar to methane monooxygenases. This could cause 

perplexity to annotation and interpretation of annotation. In addition, especially for short read 

sequencing libraries, this approach fails to address questions related to the function of individual 

genes without considering that metabolic and functional traits could be dependent on multiple 

genes and how they are regulated. For example, in metagenomic investigation approaches, a 

certain pathway is complete in gene-centric approaches, however, in this approach it remains 

unspecified if all of the genes belong to one organism or belong different organisms. For proper 

function of the some pathways intermediates/metabolites may need to be transported out and into 

the cell (Strambio-De-Castillia, Niepel et al. 2010, Villegas and Zaphiropoulos 2015). This 

would be also true about the co-expression or co-regulation of the genes. Cells respond to 

environmental changes by reprogramming expression of specific genes throughout the genome. 
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The transcription rate of a particular gene is determined by the interaction of diverse regulatory 

proteins—transcriptional activators and repressors—with specific DNA sequences in the gene's 

promoter. How a collection of regulatory proteins accomplishes the task of regulating a set of 

genes can be described as a regulatory network (Wyrick and Young 2002). These networks 

might be present in a dataset, but the arrangement or transporters control the proper function of 

these genes. Therefore, in this approach metabolic interactions of genes is difficult to prove 

(Heng 2009, Vanwonterghem, Jensen et al. 2016).  

These shortcomings in gene centric approaches in metagenomic studies led to the 

development of the genome-centric concept which has revealed the functional properties of 

individual genomes, leading to a more detailed comprehension of the microbial interactions 

occurring in the microbiome (Kougias, Campanaro et al. 2018). While, gene-centric approaches 

focus on to the function of individual genes and correlating it to the biochemical activities of the 

system, genome-centric approaches decipher the complexity of the genome by considering the 

genes functions and interplay within a genome. Genome-centric approaches create an additional 

dimension to functional analysis of metagenomic data by correlating the interaction of the 

products of the different genes existing in a genome and environmental factors (Raghoebarsing, 

Pol et al. 2006, Wrighton, Castelle et al. 2014, Brown, Hug et al. 2015, Castelle, Wrighton et al. 

2015).  

The genome-centric concept is based on the premise that a microbial community is 

composed of taxonomically and functionally related bacterial populations that can interact. Each 

bacterial population is comprised of a ‘core-genome’, consisting of genes that are always present 

and carry out major functions and a ‘pan-genome’ which contains genes that are variably present  

(Tettelin, Masignani et al. 2005). The pan-genome is a holistic snapshot of the collective 

genomes from closely related organisms and thus includes specific and specialized functions and 

adaptations of divergent taxonomical units belonging to the diversity among species or strains 

that compose the pan-genome. This provides valuable genetic data for understanding the 

evolutionary processes which affect the structure and dynamics of related bacterial populations 

in relation to the environmental factors (Holmes, Gillings et al. 2003, Whitaker and Banfield 

2006).  Furthermore, integrating functional and taxonomical results by using genome-centric 

methods and coupling them to the existing databases enables us to have a deeper and more 

comprehensive insight into dynamics of a biological system.  
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While gene-centric analysis is heavily dependent on assembling fragmented DNA reads, 

genome centric analysis of metagenomic data depends on the clustering of reads into bins. 

“Binning” is a method for clustering reads based on certain characteristics which is used as an 

alternative to full metagenome assembly which is the basically assembly of the reads to a supra-

organism for downstream analysis (Teeling, Waldmann et al. 2004, Woyke, Teeling et al. 2006, 

Albertsen, Hugenholtz et al. 2013, Cotillard, Kennedy et al. 2013, Le Chatelier, Nielsen et al. 

2013, Alneberg, Bjarnason et al. 2014). Development of new algorithms improved the 

metagenomic tools used in processing metagenomic data including binning tools 

(Anantharaman, Brown et al. 2016, Parks, Rinke et al. 2017, Almeida, Mitchell et al. 2019, 

Pasolli, Asnicar et al. 2019). There are different metagenomic binning tools available for 

processing metagenomic data. These metagenomic binning tools use K-mer frequency, codon 

content, and read coverages read coverages across multiple data sets for clustering the short read 

into the bins  (Alneberg, Bjarnason et al. 2014, Kang, Froula et al. 2015, Wu, Simmons et al. 

2015, Graham, Heidelberg et al. 2017, Lu, Chen et al. 2017). However, due to different 

algorithms used in these tools, generated bins could be different for the same data bases. 

Therefore, refining tools is developed intended to improve the quality of the quality of the bins 

(Sieber, Probst et al. 2018). These improved quality bins can be used in taxonomical 

classifications to approximate the position of bins into the phylogenetic tree and the potential 

metabolic pathways that these bins could carry out.  

There are many methods to go from raw reads to bins but there are no methods that make 

use of these bins to making use of bins to gain information about the function of different 

populations identified in a microbial community and how they may, interact. Therefore, the 

purpose of the pipeline described here is to go from processing of the metagenomic data from 

starting point to take the sequencing data and generate data that are ready for downstream 

analysis and interpretations. Although, there are many powerful tools available to process 

metagenomic data from raw reads to the interpretation there is still no standard approach that can 

be used to process of a standard approach that user could be used to process the metagenomic 

data step by step. Existing cloud services have some limitation such as the size of the data bases 

high dependency on internet and lack of flexibility of the options. Uritskiy et al. (2018) 

developed a pipeline to process metagenomic data in this pipeline which is called MetaWrap. 

MetaWrap is an automated pipeline which comprised of several metagenomic tools that process 
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raw reads from metagenomic samples, cluster them into the metagenomic bins then generate 

outputs for final interpretation such as taxonomical classification and functional annotations.  

This pipeline includes several tools that all required to be installed and run to generate the results 

however, user would be able to customize individual tools, but the overall processing steps are 

almost fixed and need to be run. 

Another metagenomic data processing and interpretation pipeline created by Clarke et al. 

(2019) named Sunbeam. This pipeline includes series of metagenomic tools for quality control, 

decontamination assembly, taxonomical classification and functional annotations. Unlike 

MetaWrap, Sunbeam uses pre-processed metagenomic reads for taxonomical classification rather 

than clustering the bins into “genome”. This tool used mapped reads for functional annotation. 

The advantage of this pipeline is due to the parallel configuration of tools which make the steps 

independent and the pipeline highly flexible and customizable. In this pipeline taxonomical 

classification and annotation are directly from the pre-processed reads and independent of each 

other. Therefore, the user will not be able to investigate assigned functions and taxonomy at the 

same time to correlate interaction of the genes within a genome which is the basic of genome 

centric approach.  

The aim of this work is to create a more customizable and flexible processing pipeline to 

process the metagenomic data and generate results for further interpretation. This pipeline which 

is called CuBi-MeAn (Customizable Binning and Metagenomic Analysis) generates taxonomical 

classification and functional annotations that could be used for genome-centric as well as gene-

centric investigation of the given microbiome. CuBi-MeAn is comprised of a series of 

metagenomic tools that could be customized by user. The flexibility of this pipeline allows the 

users to add new tools to each step (ex. different assembly or binning tools can be added). Since, 

the tools in CuBi-MeAn are independently installed the user would be able to install and use 

them on separate system such as shared clouds or local systems. This flexibility would be an 

advantageous when users handling large size metagenomic datasets which need to deal with 

some system limitations (RAM, storage, etc.). In the following section we reviewed the details, 

different steps and the tools used in CuBi-MeAn; Then, we discussed about the performance of 

this pipeline on processing three different metagenomic datasets.  
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3. Methodology 

CuBi-MeAn is comprised of a series of metagenomic tools that are able to use metagenomic 

raw reads as input and generate bins for functional annotation and taxonomical classifications. 

The overall workflow is summarized in Figure 2.1. The modules used in this pipeline may 

require different dependencies that could be installed and run separately. The Anaconda 

installation package and module instruction is also available for most of the modules. Detailed 

instruction and functions are covered in the following sections. 

1.1. Data preparation 

Quality Filtering: To improve the quality of the raw data, Sickle tool is used to remove low 

quality end of the reads (Joshi and Fass 2011). Users can customize the options of Sickle tool 

based on sequencing technology and input and output (https://github.com/najoshi/sickle). 

Input preparation: For assembly tools (merge paired-end reads, convert fastq to fasta, etc). 

Several tools are available for this purpose such as  FASTXToolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/commandline.html) or IDBA package tools 

(https://github.com/loneknightpy/idba).  

  

Figure 2. 1:CuBi-MeAn overall workflow. 
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1.1.1. Data processing 

Assembly: Assembly of the entire metagenomic libraries is the first step for the 

metagenomic binning. De-novo metagenomic assembly tools which does not require reference 

genomes are used for assembly of the raw reads into the contigs.  

Here, IDBA de-novo assembly tool was used to assemble the whole metagenomic data 

(Peng, Leung et al. 2010). In this step, the whole metagenomic libraries are assembled using 

appropriate metagenomic tools to create a “Supra-genome”. This “supra-genome” which 

represent the entire metagenomes use as “reference” for the next binning clustering step. 

Initially,  MetaVelvet (Namiki, Hachiya et al. 2012), IDBA (Peng, Leung et al. 2010) and Celera 

Assembler (Myers, Sutton et al. 2000, Venter, Adams et al. 2001) were tested for their 

performance which has been evaluated by certain parameters such as contigs size, N50, etc. To 

evaluate the quality of assembled metagenomes “summarizeAssembly.py” tool from PBSuite 

package was used (https://github.com/dbrowneup/PBSuite). 

Then, selected assembly tools were compared for their computational resources’ 

requirements. Among them IDBA outperformed the others used for metagenomic assembly in 

this pipeline. The user may customize IDBA parameters to optimize the assembly 

(https://github.com/loneknightpy/idba).  

Binning: In this study, the metagenomic binning approach was utilized to investigate the 

subject metagenomic data sets. The two different main approaches for binning of metagenomic 

data are supervised and unsupervised binning. In supervised binning, in reference genomes are 

used for clustering of the metagenomic reads. Supervised binning is suitable when there are 

specific targeted species in the data set. In this method the reference genomes are aligned to the 

query and binning is based on the GC content and k-mers frequency (Mohammed, Ghosh et al. 

2011, Mande, Mohammed et al. 2012). However, the accuracy of the supervised methods is 

questionable, especially for environmental samples that have higher diversity (Sedlar, Kupkova 

et al. 2017). In addition, supervised method could be biased towards the reference genomes and 

leave out new species (Cole, Brosch et al. 1998).  

Another binning approach is called unsupervised binning in which the reference genome is 

not required for read clustering. Instead, unsupervised binning relies on sequence composition, 

abundance of genome fragments or a hybrid method. Nucleotide composition methods are based 
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upon a theory that oligonucleotide, dinucleotide or G+C content showed species-specific pattern 

within the DNA of the same genomes (Sandberg, Winberg et al. 2001, Pride, Meinersmann et al. 

2003, Wu and Ye 2011). This notion became the main pillar for design of the algorithm of tools 

such as TETRA (Teeling, Waldmann et al. 2004), MetaCluster (Woyke, Teeling et al. 2006), and 

MetaCluster, (Yang, Peng et al. 2010). However, there are still some disputes on accuracy of the 

sequence composition method due to sequence variation within a single genome, which makes it 

challenging to accurately classify very short reads (Yang, Peng et al. 2010, Wu and Ye 2011). It 

has been suggested that the abundance of certain genes (aka marker genes) are constant across 

the same genomes (Wang, Leung et al. 2012, Albertsen, Hugenholtz et al. 2013, Nielsen, 

Almeida et al. 2014). In the other word, for a given sample the abundance of a gene in a specific 

genome will be the same as other genomes of the same species. Therefore, coverage-based 

binning was introduced as an alternative for composition-based binning in unsupervised binning 

(Albertsen, Hugenholtz et al. 2013, Cotillard, Kennedy et al. 2013, Le Chatelier, Nielsen et al. 

2013, Alneberg, Bjarnason et al. 2014). These two principals were later integrated to create 

hybrid binning tools such as BinSanity (Graham, Heidelberg et al. 2017), MaxBin2 (Wu, 

Simmons et al. 2015) , MetaBAT (Kang, Froula et al. 2015), COCACOLA(Lu, Chen et al. 2017) 

and CONCOCT (Alneberg, Bjarnason et al. 2014) that outperformed any of those individual 

tools. Therefore, unsupervised hybrid binning tools are ideal option for metagenomic analysis of 

samples with higher diversity such as environmental samples.  

In this study, metagenomic assembled contigs from the assembly step were used as the 

reference for binning tools. CuBi-MeAn utilize the following five hybrid binning tools: 

BinSanity (Graham, Heidelberg et al. 2017), MaxBin2 (Wu, Simmons et al. 2015) , MetaBAT 

(Kang, Froula et al. 2015), COCACOLA (Lu, Chen et al. 2017) and CONCOCT (Alneberg, 

Bjarnason et al. 2014). As these tools are able to be run in parallel within this pipeline in this 

pipeline, the user capable of add new binning tools or opt out any aforementioned binning tools. 

More information regarding these binning tools can be find in their refence and webpages. 

Bins refinement: The results of binning tools can be used for downstream analysis. 

However, since many of these binning tools use different parameters and approaches (i.e. 

different algorithms) for processing metagenomic data; This results low quality and incomplete 

bins and better performance for different data sets using the same binning tool. Therefore, 

finding an appropriate tool for each data set would be another challenge for obtaining high 
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quality bins. DASTool (Sieber, Probst et al. 2018) offers a solution for improving the quality of 

the bins. DASTool is a dereplication, aggregation and scoring automated tool that integrates 

several binning tool’s outputs and creates an optimized and non-redundant bin. To validate the 

performance of DASTool algorithm, DASTool was tested for simulated metagenomic data sets, 

environmental samples and metagenomic data with different complexity level. For simulated 

metagenomic data sets, the developers of DASTool used three different metagenomic data set 

created including low complexity sample (40 genomes), medium complexity (132 genomes), and 

high complexity (596 genomes). For environmental samples, metagenomic data from a high-

CO2 cold-water geyser was used. To evaluate DASTool algorithm for different complexity 

metagenomic data sets, metagenomic shotgun sequencing data used from human microbiome, 

natural oil steeps and soil. These three groups of data sets were clustered using five different 

unsupervised binning tools (four hybrid tool ABAWACA 1.07 

(https://github.com/CK7/abawaca), CONCOCT (Alneberg, Bjarnason et al. 2014), MaxBin 2 

(Wu, Simmons et al. 2015), MetaBAT (Kang, Froula et al. 2015); and one nucleotide 

composition tool tetranucleotide ESOMs (Dick, Andersson et al. 2009)). Then, DASTool used to 

optimize the result of these individual binning tools. In all cases DASTool outperformed the 

result of individual binning tools by improving the quality of bins (low contamination and high 

completeness). Thus, in our pipeline (CuBi-MeAn) we used DASTool to enhance the quality of 

the bins generated with our selected binning tools. User may refer to DASTool webpage for 

more information (https://github.com/cmks/DAS_Tool). 

1.1.2. Downstream Data Assessment and Analysis 

Quality Assessments: For quality assessment of the bins, CheckM software (Parks, Imelfort 

et al. 2015) was used to evaluate the bins generated by binning tools and DASTool. Quality of 

bins generated from metagenomic data are a major factor impacting the performance of the 

binning tools. In metagenomic assembled genomes, unlike the single isolate genome assembly, 

the genomes are recovered from a diverse group of microorganisms, therefore there is always the 

potential to introduce DNA fragments into the metagenomic assembled bins that are not actually 

belongs to. Identification and quantification of the universal single copy genes (USCG) present 

in the bins are one of the most common approaches to evaluate the quality of the MAGs. The 
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quality of the MAGs is commonly assessed by calculating contamination and completeness. 

Completeness is the number of unique USCGs present within the bin. Conversely, contamination 

is the number of USCGs present in multiple copies, as only one copy should be present of each 

USCG per genome. Among available quality assessment tools, CheckM is a popular one which 

comprised of a set of tools for assessing the quality of genomes recovered metagenomic bins, 

metagenomes, new isolates genomes etc. It provides robust estimates of genome completeness 

and contamination by using sets of single copy and ubiquitous genes within a phylogenetic 

lineage. For more information user can review CheckM tool page 

(https://github.com/Ecogenomics/CheckM/wiki).  

Taxonomical Classifications: Taxonomic classification of the bins was performed by using 

CheckM , PhyloPhlAn (Segata, Börnigen et al. 2013) and CAT/BAT (von Meijenfeldt, 

Arkhipova et al. 2019) .  

For taxonomical classifications CheckM relies on single copy marker genes that are specific 

to a genome’s lineage within a reference genome tree. CheckM uses 104 linage specific marker 

data sets taxonomical classification. 

PhyloPhlAn uses the most conserved 400 proteins for extracting the phylogenetic signal. 

The marker gene identification step aims at first selecting the most relevant and the highest 

number of phylogenetic markers for the input sequences and then identifying them in the input 

sequences. The selection of the markers depends on the type of phylogeny considered and ranges 

from the 400 universal proteins to a variable number of core genes and species-specific genes. 

CAT/BAT used the DIAMOND protein database (Buchfink, Xie et al. 2015) and Last 

Common Ancestors (LCA) for taxonomic classification. CAT/BAT algorithm involves gene 

calling, mapping of predicted open reading frames (ORFs) against the protein database, and 

voting-based classification of the entire contigs in the assembled genomes based on classification 

of the individual ORF(von Meijenfeldt, Arkhipova et al. 2019). . 

To quantify the microbial community profile, bins mapped against the original metagenomic 

data to find out the alignment rate of contigs in the bins in the entire metagenomic data. In this 

study Bowtite2 software package (Langmead and Salzberg 2012) used for mapping the bins.  

Functional Annotation: For functional annotation CuBi-MeAn used available online 

platforms KBase (Arkin, Cottingham et al. 2018) and RAST (Aziz, Bartels et al. 2008).  These 

platforms which equipped with several annotation tools that users can choose, utilize and 
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compare the results. Both of these platforms are equipped with SEED (Overbeek, Olson et al. 

2014) which can provide a powerful tool for annotation. One of the advantages of SEED is that it 

updates constantly and has been linked to several other sources such as Swiss-Prot (Apweiler, 

Martin et al. 2010) , GenBank (Benson, Cavanaugh et al. 2012) , KEGG (Kanehisa, Goto et al. 

2012) which offers user more options in dispose to annotate the bins in the same platform. Both 

of these platforms are equipped with other popular tools such as BLAST. In addition, KBase are 

also includes tools that are for metagenomic sequence analysis such as CheckM and assembly 

tools such as IDBA. 

4. Results and Discussions  

CuBi-MeAn was developed and applied to carry out a three-pronged approach to the 

analysis of metagenomic data from three different environmental engineering projects (TNT 

contaminated soil, EBPR reactor and algae-bacteria bioreactor). These three-pronged approaches 

are as follow:  

Approach 1: To understand the dynamics of microbial community structure; Approach 2: To 

understand microbial function in the given environment; Approach 3: To explain how 

environmental factors affect the microbial communities. In this section, the performance of 

CuBi-MeAn in processing three different metagenomic datasets was evaluated. The information 

regarding the data types and other metrics are summarized in Table 2.1. The performance of 

CuBi-MeAn pipeline for abovementioned data sets will be discussed in this section.  

The metagenomic data are generated from different origins. The first data sets, TNT was 

generated by collecting soil samples contaminated with an old TNT manufacturing site. The soil 

contains high concentrations of nitroaromatic compounds such as TNT, DNTs etc. The site was 

under aeration treatments by providing periodic tilling for 6 years. The second data set are EBPR 

data collected from aqueous sample.  In this study bench-scale enhanced biological phosphorous 

removal (EBPR) reactors was designed and operated to study the organic phosphorous uptake 

from synthetic wastewater by certain microorganisms. The metagenomic samples in this study 

are from the EBPR reactor after 23 days of aerobic-anaerobic cycles. Finally, Algae data which 

also sequenced from aqueous samples are collected from an algae-bacteria bioreactor designed to 

enhance nitrogen removal from wastewater. As mentioned, and shown in Table 2.1, these 
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metagenomic samples have different properties therefore we expect to have different 

performance from the pipeline which is used in this study. 

 

 

Table 2. 1: Information and certain metrics of metagenomic libraries tested by CuBi-MeAn 

pipeline. 

Project 
Libraries 

(Paired-end reads) 
Sequencing technology 

Data size 

(Gb) 

Sequence size 

(bp) 
Total sequence # 

TNT 3 Illumina HiSeq 2000 45 150 132,265,960 

EBPR 3 Illumina MiSeq 120 150 394,803,374 

Algae 3 Illumina HiSeq 2500 42 250 77,756,644 

1.1.3. Assembly:  

In this study three de-novo assembly tools Velvet, IDBA and Celera assembly were tested 

initially to evaluate the performance and computational requirements of these tools; Then, one 

assembly tool selected for downstream analysis. Assembly of the metagenomic data is one of the 

most computational resource intensive steps which requires high storage and RAM. This is a 

major constraint which needs to be considered for developing pipelines or simply processing 

metagenomic data sets. Therefore, in our study, four different subsample raw reads extracted 

from TNT data sets were tested to compare the performance of selected assemblers. These three 

reads were generated by mapping raw reads to selected reference genomes. The results of this 

test are summarized in Table 2.2.  
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Table 2. 2: Assembly evaluations of IDBA, Velvet and Celera assembly tested for four different 

raw read samples. 

Data Sample ID # of Contigs N50 Max Contig Min Contig Total bp 

IDBA 

sample1 3,782 1,824 9,352 1,000 6,721,477 
 

sample2 2,177 3,032 24,765 1,000 5,563,540 
 

sample3 3,012 1,861 18,593 1,000 5,527,230 
 

sample4 3,841 2,382 17,245 1,000 8,364,206 
 

Velvet 

sample1 2,957 1,833 11,106 1,000 5,338,552 
 

sample2 1,936 2,891 17,506 1,000 4,777,826 
 

sample3 2,048 1,826 9,984 1,000 3,687,144 
 

sample4 2,966 2,439 11,386 1,000 6,496,657 
 

 Celera 

sample1 2,075 1,629 7,513 1,000 3,406,703 
 

sample2 1,554 2,625 17,844 1,001 3,622,613 
 

sample3 1,721 1,773 9,096 1,000 3,004,597 
 

sample4 2,387 1,990 8,185 1,000 4,533,518 
 

 

Among these assemblers, IDBA had the better performance overall, with Velvet performing 

better than Celera. Also, Celera assembler was not specifically designed to handle metagenomic 

samples, while the two others had options to process metagenomic data. Therefore, for the next 

test in this study, we only compared the assemblies generated by IDBA and Velvet for the 

unfiltered EBPR and TNT datasets.  

For both IDBA and Velvet, large “kmer” files are generated, which tabulates the number of 

occurrences for each fixed-length word of length k in a DNA data set. Generating the kmer file is 

an extremely time-consuming task and it usually produces an intermediate file that requires a 

large amount of storage to run properly. In our tests, TNT generated a ~170 Gb and EBPR 

generated a ~310 Gb kmer file. The next steps after generating kmer hash tables is contigs 

generation—the most RAM extensive task. For IDBA assembly, it used up almost 220Gb and 

240Gb of RAM while it never went through for Velvet to complete the assembly. This has been 

also confirmed previously that IDBA is one of the least memory intensive assembly tools among 

other popular assembly tools (Abbas, Malluhi et al. 2014, van der Walt, van Goethem et al. 

2017). Since, our disposable RAM for this project was 256 Gb, due to memory limitation IDBA 

was our option for metagenomic assembly. The running time for IDBA to be completed and 
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generate final contigs file was almost 36 hours for TNT and 42 hours for EBPR data.  It could

have been possible to choose Velvet or other assembler such as MetaSPAdes (Nurk, Meleshko et

al. 2017) or MEGAHIT (Li, Liu et al. 2015). if we had better computing/memory resources in

dispose.   

1.1.4. Raw data quality filtering 

Quality filtering of the raw reads removes low quality reads that generate at the sequence

reading step by sequencing facilities as non-determinized sequences or “N” (Figure 2.2).  The

low-quality reads with deteriorating quality reads are more observed towards the 3'-end, but they

can be observed towards the 5'-end as well. These, incorrectly called bases negatively impacts

assembles, mapping, and downstream bioinformatics analysis (Young, Abaan et al. 2010). The

assembled metagenomes from the assembly step are used as reference for clustering of

metagenomic for binning. Shorter contigs size could cause inaccurate ambiguous binning due to

low-complexity repetitive sequence (Chaisson and Pevzner 2008). Thus, in this study the quality

filtering of the raw reads was tested on the assembly performance.  

 

For this study initially no quality filtering of the raw metagenomic libraries was performed,

which resulted in shorter and less completed contigs. Then, the metagenomic libraries were

filtered to remove the low-quality sequences. In order to demonstrate the benefits of quality

filtering the raw reads, we compared the summary statistics of the generated contigs of filtered

and unfiltered reads when assembled by IDBA. 

Figure 2. 2: Fastq file raw reads from TNT soil sample generated by Illumina HiSeq 2000. The red a

show non determined DNA nucleotides as “N”. 
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The results for TNT data are shown Table 2.3. Quality filtering of the raw reads by Sickle 

tool improved the quality of the assembled metagenome by increasing the average length (e.g., 

N50, N90 and N95) of contigs generated by assembly tool (Table 2.3). 

 

 

Table 2. 3: Assembly evaluation for unfiltered assembled metagenomic reads (left) vs. filtered 

assembled metagenomic reads by Sickle tool (right) for TNT (a), EBPR (b) and Algae (c) 

metagenomic data. 

a.     

Assembly contigs unfiltered reads  Assembly contigs filtered reads 

#Seqs   37,302,779  #Seqs   4,109,944 

Min     100  Min     100 

1st Qu. 118  1st Qu. 193 

Median  152  Median  240 

Mean    201  Mean    364 

3rd Qu. 230  3rd Qu. 338 

Max     7,679  Max     128,391 

Total   4,009,743,629  Total   1,497,876,890 

n50     192  n50     386 

n90     116  n90     188 

n95     109  n95     173 

     

b.     

Assembly contigs unfiltered reads  Assembly contigs filtered reads 

#Seqs   25,474,556  #Seqs       2,640,554 

Min     100  Min               100  

1st Qu. 116  1st Qu.           204  

Median  174  Median            280  

Mean    228  Mean              579  

3rd Qu. 350  3rd Qu.           527  

Max     17,872  Max           294,096  

Total   2,040,146,547  Total   1,530,582,685 

n50     239  n50               923  

n90     173  n90               223  
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1.1.5. Binning and bin refinement  

As discussed in the first chapter we adopted a genome-centric approaches to study the 

systems used in this study; Thus, we processed our metagenomic data sets using binning 

approaches. Binning of metagenomic reads approximates the functions and taxonomy of the 

assigned genomes, while bypasses the challenges of full genome assembly. (Ribeca and Valiente 

2011, Imelfort, Parks et al. 2014). Metagenomic assembled genomes (MAGs) or bins includes 

core genes of closely related taxa that has common genes and functions and at the same time 

pan-genes contains genes that are variably present in the bins (Tettelin, Masignani et al. 2005). 

Pan-genes have specific and specialized functions and adaptations of divergent taxonomical 

units. Therefore, binning could appropriately address challenges of genome centric approaches 

of diverse metagenomic samples.  

Here, five different binning tools were used to process our three subject metagenomic 

datasets. These tools used different approaches (i.e. different algorithms) for processing 

metagenomic data, which results in low quality and incomplete bins for some data sets and better 

performance for other data sets using the same tool. Thus, finding an appropriate tool for each 

data set would be another challenge for obtaining high quality bins. DASTool (Sieber, Probst et 

al. 2018) offers a solution for improving the quality of the bins.  

n95     158  n95               188  

     c.     

Assembly contigs unfiltered reads  Assembly contigs filtered reads 

#Seqs   33,155,430  #Seqs   3,607,782 

Min     100  Min     100 

1st Qu. 113  1st Qu. 141 

Median  142  Median  206 

Mean    159  Mean    399 

3rd Qu. 171  3rd Qu. 320 

Max     1,783  Max     149,090 

Total   4,784,033,344  Total   184,281,121 

n50     156  n50     600 

n90     117  n90     174 

n95     112  n95     123 
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The selected binning tools in this study were BinSanity, MaxBin2, MetaBAT, COCACOLA 

and CONCOCT which are all hybrid clustering methods that use both kmer frequency and 

samples’ co-abundance. Then, DASTool was used as a refinement tool to select best quality 

contigs among different binning tools outputs. 

In this study, the quality of the bins was evaluated by CheckM. As discussed, earlier 

CheckM is an automated tool that uses a broader range of marker genes for quality assessments 

and taxonomical classification. CheckM offers several options that generates results to evaluate 

MAGs. Completeness and contaminations are two factors that are extensively used to assess the 

quality of MAGs. Contamination is the “false positive”, while completeness is “true positive” 

from single copy marker genes in the given MAGs. In our study, we also used mostly these two 

parameters for quality assessment of our bins. The CheckM results indicate that the quality of the 

bins generated by DASTool outperformed individual binning methods (Figure 2.3). However, 

there are some variation in quality of the bins generated by DASTool among different data sets 

(Figure 2.4). The results suggested that the quality of the DASTool bins depended upon the 

quality of the bins generated by individual binning tools. This could be explained by the 

approaches and algorithms of applied by DASTool to generate the bins. It means that DASTool 

is not an assembly or clustering tool, instead it generates the new bins by evaluation and 

aggregation of the best contigs from bins generated by other binning tools.  

Also, data source, coverage, reads length and technology used affect the quality of the final 

results. Among our data sets “Algae data” generates the best quality bins with less 

contaminations and more completeness (Figures 2.3 and 2.4). This could be explained by the fact 

that raw Algae data has the longest reads among others (Table 2.1). Longer reads would generate 

longer contigs which can be aligned and mapped with less ambiguity (Chaisson and Pevzner 

2008). In addition, the origin of the sample (soil vs water, etc) could impact the quality of the 

bins. For example, TNT data is from the soil samples which inherently are very diverse, 

compared to aqueous samples, making clustering more difficult. Therefore, we have the least 

high and medium quality bins in TNT samples comparing to other data sets which are from water 

samples.  
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Figure 2. 3: Quality comparison of bins generated by MetaBAT, MaxBin2, COCACOLA, 

CONCOCT, BinSanity and DASTool. 
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1.1.6. Bin analyses 

Bins generated by DASTool were used for downstream analysis for data interpretation and 

addressing specific project research questions. CuBi-MeAn pipeline uses DASTool bins for: i. 

Taxonomical classification; ii. Functional annotation; And iii. Quantification of the microbial 

profile in the given system.  

Taxonomical Classification: Taxonomical classification of the bins was performed with 

three different tools. CheckM uses linage specific marker sets for classification of the bins; 

PhyloPhlAn uses the most conserved 400 proteins for extracting the phylogenetic signal; And, 

CAT/BAT uses DAMOND protein databases and Last Common Ancestors (LCA) for taxonomic 

classification.   

Different bins quality, different samples from different sources, and different classification 

approaches could be the reasons for different classifications among and within samples. Table 

2.4 compares CheckM, PhyloPhlAn and CAT/BAT taxonomical classifications of the TNT bins 

as an example. Since, there are different approaches and databases used for taxonomical 

classifications there are not any preference or advantages of these tools over others. CheckM tree 
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Figure 2. 4: Bin quality comparison of three metagenomic data sets 

TNT, EBPR and Algae generated by DASTool. 
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could be generated simply by adding a single script to CheckM data processing steps used in this 

pipeline for quality assessments of the bins. Instead, PhyloPhlAn needs more steps to generate 

phylogenetic trees. CAT/BAT also used a different approach as mentioned earlier and has a few 

simple steps which makes it an easier and faster tool compared to PhyloPhlAn. Overall, the users 

can use these classification tools or add new tools and choose the best of the results from the 

bins’ classification.  
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Table 2. 4: Taxonomical classifications of TNT bins by a. PhyloPhlAn, b. CheckM and c. 

CAT/BAT 

 

a. PhyloPhlAn 

Bins ID 
            

Phylum Class Order Family Genus   

Binsaniny.8 protobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Phenylobacterium   

concoct.25 protobacteria Betaproteobacteria Burkholderiales Comamonadaceae Methylibium   

Maxbin.002 protobacteria Betaproteobacteria Burkholderiales Comamonadaceae Acidovorax   

Maxbin.007 protobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Porphyrobacter   

Maxbin.012 Chloroflexic  Alphaproteobacteria Sphingomonadales Sphingomonadaceae Porphyrobacter   

Maxbin.017 Protobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Novosphingobium   

Maxbin.019 protobacteria Betaproteobacteria Burkholderiales Comamonadaceae Rhodoferax   

Maxbin.025 chloroflexic  Deltaproteobacteria Bdellovibrionales Bdellovibrionaceae Bdellovibrio   

Maxbin.026 chloroflexic  NA NA NA NA   

Maxbin.039 Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Clavibacter   

Maxbin.044 protobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Nitrobacter   

Maxbin.046 protobacteria NA NA NA NA   

Maxbin.048 chloroflexic  NA Synechococcales Synechococcaceae Synechococcus   

Maxbin.057 Actinobacteria Actinobacteridae Actinomycetales Micrococcineae Glaciibacter   

Maxbin.060 protobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Phenylobacterium   

Maxbin.062 chloroflexic  Verrucomicrobiae Verrucomicrobiales Verrucomicrobia subdivision 3  Pedosphaera   

Maxbin.067 Protobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Caulobacter   

Maxbin.073 Protobacteria NA NA NA NA   

Maxbin.075 protobacteria NA NA NA NA   

Maxbin.079 bacterioales Flavobacteria Flavobacteriales Cytophagaceae Niastella   

Maxbin.080 bacterioales Sphingobacteria Sphingobacteriales Sphingobacteriaceae Mucilaginibacter   

Meta.bin.12 protobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Erythrobacter   

Meta.bin.13 protobacteria Alphaproteobacteria Rhizobiales Rhodobiaceae Parvibaculum   

Meta.bin.17 Protobacteria Alphaproteobacteria Rhizobiales Rhodobiaceae Parvibaculum   

Meta.bin.18 protobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Janthinobacterium   

Meta.bin.19 protobacteria Nitrospira Nitrospirales Nitrospiraceae Nitrospira   

Meta.bin.21 protobacteria Betaproteobacteria Burkholderiales Comamonadaceae Caldimonas   

Meta.bin.3 Protobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae Oceanibaculum   

Meta.bin.39 chloroflexic  Actinobacteridae Actinomycetales Micrococcineae Glaciibacter   

Meta.bin.45 Chloroflexic  Chthonomonadetes Chthonomonadales Chthonomonadaceae Chthonomonas   

Meta.bin.48 Protobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae NA   

Meta.bin.50 NA NA NA NA NA   

Meta.bin.53 NA NA NA NA NA   

Meta.bin.6 actinobacteria Actinomycetales Propionibacterineae Nocardioidaceae Nocardioides   

Meta.bin.8 bacterioales Sphingobacteria Sphingobacteriales Sphingobacteriaceae Pedobacter   

 

b. CheckM 

Bins ID 
    

Phylum Class Order Family Genus   

Binsaniny.8 protobacteria Alphaprotobacteria Caulobacteriales Caulobacteraceae Phenylobacterium 

concoct.25 protobacteria betaprotobacteria Burkholderiales comamonadaceae Methylibium 
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Maxbin.002 protobacteria betaprotobacteria burkholderiales comamonadaceae Acidovorax   

Maxbin.007 protobacteria alphaprotobacteria Sphingomonadales Erythrobacteraceae NA   

Maxbin.012 Chloroflexic  NA NA NA NA   

Maxbin.017 Protobacteria Alphaprotobacteria Rodospirales NA NA   

Maxbin.019 protobacteria betaprotobacteria NA NA NA   

Maxbin.025 chloroflexic  NA NA NA NA   

Maxbin.026 chloroflexic  NA NA NA NA   

Maxbin.039 Actinobacteria Actinobacteria Actibacteriales Microbacteriaceae Agreia   

Maxbin.044 protobacteria alphaprotobacteria rihizobiales Bradyrhizobiaceae nitrobacter   

Maxbin.046 protobacteria Gammaprotobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

Maxbin.048 chloroflexic  NA NA NA NA   

Maxbin.057 Actinobacteria ACtinobacteria actibacteriales Microbacteriaceae Agreia   

Maxbin.060 protobacteria Alphaprotobacteria Caulobacteriales Caulobacteraceae Phenylobacterium 

Maxbin.062 chloroflexic  NA NA NA NA   

Maxbin.067 Protobacteria Alphaprotobacteria Rodospirales NA NA   

Maxbin.073 Protobacteria Alphaprotobacteria Rodospirales NA NA   

Maxbin.075 protobacteria betaprotobacteria NA NA NA   

Maxbin.079 bacterioales Sphingobacteria Sphingobacteriales Chitinophagaceae Chitinophaga 

Maxbin.080 bacterioales sphingobacteria Sphingobacteriales Sphingobacteriaceae Mucilaginbacter 

Meta.bin.12 protobacteria alphaprotobacteria Sphingomonadales Erythrobacteraceae NA   

Meta.bin.13 protobacteria alphaprotobacteria rihizobiales Hyphomicrobacteriaceae   

Meta.bin.17 Protobacteria Alphaprotobacteria Rodospirales NA NA   

Meta.bin.18 protobacteria betaprotobacteria Burkholderiales Oxalobacteraceae Janthinobacterium 

Meta.bin.19 protobacteria betaprotobacteria nitrosomonadales nitrosomonaceae Nitrosopira   

Meta.bin.21 protobacteria betaprotobacteria Burkholderiales comamonadaceae Polaromonas 

Meta.bin.3 Protobacteria Alphaprotobacteria Rodospirales NA NA   

Meta.bin.39 chloroflexic  Thermomicrobia Sphaerobacteriales Sphaerobacteraceae Sphaerobacters 

Meta.bin.45 Chloroflexic  NA NA NA NA   

Meta.bin.48 Protobacteria Alphaprotobacteria Rodospirales NA NA   

Meta.bin.50 chloroflexic  NA NA NA NA   

Meta.bin.53  NA  NA  NA  NA  NA   

Meta.bin.6 actinobacteria actinobacteria actibacteriales Nocardioidaceae Nocardioides 

Meta.bin.8 bacterioales sphingobacteria Sphingobacteriales Sphingobacteriaceae Pedobacters   

 

c. CAT/BAT 

Bins ID 
            

Phylum Class Order Family Genus   

Binsaniny.8 Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Phenylobacterium 

concoct.25 Proteobacteria Betaproteobacteria Burkholderiales NA Methylibium 

Maxbin.002 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Acidovorax   

Maxbin.007 Proteobacteria Alphaproteobacteria Sphingomonadales Erythrobacteraceae Altererythrobacter 

Maxbin.012 Parcubacteria NA NA NA NA   

Maxbin.017 Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae not classified 

Maxbin.019 Proteobacteria Betaproteobacteria Burkholderiales not classified not classified 

Maxbin.025  NA NA NA NA NA   

Maxbin.026 Parcubacteria not classified not classified not classified not classified 

Maxbin.039 Actinobacteria Actinobacteria Micrococcales Microbacteriaceae not classified 

Maxbin.044 Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae not classified 

Maxbin.046 Proteobacteria Gammaproteobacteria not classified not classified not classified 

Maxbin.048 not classified not classified not classified not classified not classified 

Maxbin.057 Actinobacteria Actinobacteria Micrococcales Microbacteriaceae not classified 

Maxbin.060 Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae not classified 

Maxbin.062 Proteobacteria not classified not classified not classified not classified 

Maxbin.067 Proteobacteria Alphaproteobacteria not classified not classified not classified 

Maxbin.073 Proteobacteria Alphaproteobacteria Rhizobiales not classified not classified 

Maxbin.075 Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Achromobacter 
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Maxbin.079 Bacteroidetes Chitinophagia Chitinophagales* Chitinophagaceae not classified 

Maxbin.080 Bacteroidetes Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Mucilaginibacter 

Meta.bin.12 Proteobacteria Alphaproteobacteria Sphingomonadales Erythrobacteraceae not classified 

Meta.bin.13 Proteobacteria Alphaproteobacteria Rhizobiales Rhodobiaceae Parvibaculum 

Meta.bin.17 Proteobacteria Alphaproteobacteria not classified not classified not classified 

Meta.bin.18 Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae not classified 

Meta.bin.19 Proteobacteria Betaproteobacteria NA NA NA   

Meta.bin.21 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Polaromonas 

Meta.bin.3 Proteobacteria Alphaproteobacteria not classified not classified NA 

Meta.bin.39 not classified not classified not classified not classified not classified 

Meta.bin.45 not classified NA NA NA NA   

Meta.bin.48 Protobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae not classified 

Meta.bin.50  not classified not classified not classified not classified not classified 

Meta.bin.53  not classified not classified not classified not classified not classified 

Meta.bin.6 Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Nocardioides 

Meta.bin.8 Bacteroidetes Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Pedobacter   
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Quantification of the microbial profile: To find out the microbial community profile in 

addition to taxonomical classifications their abundance is also investigated in this study. The 

abundance of certain groups of microorganisms in a system could explain why those group are 

more successful in that system in the given period of time, how they interact with chemical and 

biological composition of the environment, etc. In this study contigs in the MAGs were mapped 

to the metagenomic raw reads to evaluate the alignment rate of the contigs in the bins. The 

overall microbial community composition profile could explain the dynamic of our systems. For 

example, Figure 2.5 shows microbial community profile of Algae reactors. The results show 

strong presence of the predatory microorganisms in the system which plays an important role in 

the dynamics and community composition of the reactors. 

 

Figure 2. 5: Microbial community profile in Algae reactor. 

Functional annotation:  For functional annotation of the bins generated by DASTool, 

CuBi-MeAn utilize two different online platforms Kbase and RAST. For three metagenomic 

datasets in this project SEED, GeneBank, UniProt, BLAST, etc. were used to identify the key 

genes in each system, construct metabolic pathways or identify and investigate other genes that 

their functions decode project specific research questions. Figure 2.6 demonstrates TNT 
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complete degradation pathway of using these annotation tools. In this study certain genes were 

not detected in SEED database; therefore, other alternative such as alignment of those genes 

against bins by NCBI BLAST tool, was used for investigation.  

 

 

 

Figure 2. 6: TNT degradation pathway constructed by using CuBi-MeAn In addition, online 

genome data bases such as GeneBank used as benchmark to compare. 

 

and investigate our constructed MAGs. For example, in Algae project there are certain bacterial 

guilds in the reactor were suggested to have some sorts of defense mechanism against the 

predation. We hypothesized that could be the reason why those groups of bacteria are more 

abundant in our reactors. Previous studies suggested that these defense mechanisms in the MAGs 

A

B
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were certain genes and some specific DNA structures known as clustered regularly interspaced 

short palindromic repeats (CRISPRs) elements which could be an indication of the defense 

mechanisms. However, these defense elements were not detected in SEED database using KBase 

and RAST platforms. Instead, the genes of the defense mechanism genes were obtained from the 

GeneBank database and BLAST tool used to test the gene presence in our bins. BLAST tools 

aligned these genes to our bins with high scores. For CRISPRs detection we also used another 

tool that was designed specifically for this purpose (Edgar 2007). The gene annotation of the bins 

helps to find out to investigate and understand the dynamics of the entire system for TNT, EBPR 

and Alga projects. These results will be discussed extensively in projects specific sections in the 

following sections. 

 

5. Conclusions  

In this study a customized pipeline was developed to process and analyze the metagenomic 

libraries. CuBi-MeAn pipeline was used for investigation of microbial community profile and 

functional annotations. This study was demonstrated how a genome centric approach could 

explain the functions of environmental systems and answer questions underlying the dynamics of 

the systems by using this pipeline. In this study, CuBi-MeAn pipeline clusters the metagenomic 

reads to approximate the genome of microorganisms exist in that system for downstream 

analysis. In addition, to the clustering of the metagenomic reads using this pipeline, this study 

showed how the selected tools in CuBi-MeAn pipeline, improved the quality of the raw data 

which enhanced the metagenomic assembly, generate bins, and downstream analysis. By 

designing and developing a flexible and customized pipeline, this study showed how to process 

large metagenomic data sets with limited resources.  

Our proof-of-concept can be applied to process similar metagenomic datasets from short 

read metagenomic sequences of environmental samples. The user of CuBi-MeAn would be able 

to update, customize, replace, or skip specific software or steps. Since this pipeline is comprised 

of several metagenomics tools, they could be performed sequentially on different platforms and 

machines based on their available resources.  
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Despite successful demonstration of CuBi-MeAn, still there is room for further development 

of this pipeline. Thereby, the authors plan to test the performance of CuBi-MeAn with a wide 

variety of datasets such as human microbiome and using different sequences technologies such 

as PacBio sequencer that generate long reads.  
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