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ABSTRACT6

Metagenomics binning has allowed us to study and characterize various genetic material of different species and gain insights
into microbial communities. While existing binning tools bin metagenomics de novo assemblies, they do not make use of the
assembly graphs that produce such assemblies. Here we propose MetaCoAG, a tool that utilizes assembly graphs with the
composition and coverage information to bin metagenomic contigs. MetaCoAG uses single-copy marker genes to estimate
the number of initial bins, assigns contigs into bins iteratively and adjusts the number of bins dynamically throughout the
binning process. Experimental results on simulated and real datasets demonstrate that MetaCoAG significantly outperforms
state-of-the-art binning tools, producing more high-quality bins than the second-best tool, with an average median F1-score
of 88.40%. To the best of our knowledge, MetaCoAG is the first stand-alone binning tool to make direct use of the assembly
graph information. MetaCoAG is available at https://github.com/Vini2/MetaCoAG.

7

The development of high-throughput sequencing technologies has paved the way for metagenomics studies to analyze microbial8

communities without the need for culturing, especially in large scale metagenomics studies such as the Human Microbiome9

Project1. These microbial communities consist of a large number of micro-organisms including bacteria. Samples obtained10

directly from the environment can be sequenced to obtain large amounts of sequencing reads. In order to characterize the11

composition of a sample and the functions of the microbes present, we perform metagenomics binning where we cluster12

sequences into bins that represent different taxonomic groups2.13

Next-generation sequencing (NGS) technologies such as Illumina allow us to sequence microbial communities and obtain14

highly accurate short sequences called reads. These reads can be binned3–9 prior to assembly, but results can be less reliable due15

to their short lengths10. Hence, a widely used pipeline for metagenomics analysis is to first assemble reads into longer sequences16

called contigs and then bin these assembled contigs into groups that belong to different taxonomic groups2. Current contig-17

binning approaches fall into two broad categories11: (1) reference-based binning approaches7, 12–14 which classify contigs into18

known taxonomic groups by comparing against a reference database and (2) reference-free binning approaches which cluster19

contigs into unlabeled bins based on genomic features of these contigs. Reference-free binning approaches2 have become20

more popular as they enable the identification of new species that are not available in the current databases. Reference-free21

contig-binning tools mainly make use of two features to perform binning: (1) composition, obtained as normalized frequencies22

of oligonucleotides of length k (referred to as k-mers) and (2) coverage, considered as the average number of reads that map to23

each base of the contig. These tools achieve improved performance in binning contigs by combining both the composition24

and the coverage information. However, it still remains challenging for these binning tools to accurately reconstruct microbial25

genomes of species with similar composition and coverage profiles.26

Another challenge in metagenomics binning is to estimate the number of species present in a given sample. Recent27

binning tools have made use of single-copy marker genes to estimate the number of species. These single-copy marker genes28

appear only once in a bacterial genome and are conserved in the majority of bacterial genomes15–17. Hence, the presence29

of single-copy marker genes can be used to estimate the genome completeness and level of purity of bins. In tools such30

as MaxBin/MaxBin217, 18, only one marker gene is utilized to estimate the number of initial bins which may lead to an31

underestimation of the number of species. Hence, it is worth investigating how to make use of multiple single-copy marker32

genes together to obtain a better estimate for the number of bins and to explore more features of contigs that can improve the33

binning result.34

Contigs are obtained by assembling reads into longer sequences, and there are many tools to perform assembly. Most35

existing metagenomic assemblers19–21 use assembly graphs as the key data structure (e.g., simplified de Bruijn graph22) to36

assemble reads into contigs. Previous studies indicated that contigs connected to each other in the assembly graph are more likely37

to belong to the same taxonomic group23, 24. Although popular metagenomic assemblers such as metaSPAdes21 output contigs38

along with their connection information in the assembly graph, most existing binning tools ignore the valuable connection39
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information between contigs. More recently, tools such as GraphBin24, GraphBin225, METAMVGL26 and STRONG27 have40

been developed to refine existing binning results and resolve strains using assembly graphs. These tools rely upon the bins41

produced by an existing binning tool and cannot dynamically adjust the number of bins. Although these tools achieve improved42

binning performance, they still require an initial binning result obtained from other existing binning tools and thus cannot be43

directly applied to bin contigs. Hence, there is a need for a stand-alone contig-binning tool that makes use of the connection44

information found in the assembly graph.45

In this paper, we introduce MetaCoAG, a reference-free stand-alone approach for binning metagenomic contigs. In addition46

to composition and abundance information, MetaCoAG also makes use of the connectivity information from assembly graphs47

to bin contigs. More specifically, MetaCoAG estimates the number of initial bins from frequency histogram plots of all single-48

copy marker genes, assigns contigs into bins iteratively and adjusts the number of bins dynamically through graph-matching49

algorithms, and bins the remaining contigs using a label propagation method based on the assembly graph. To the best of our50

knowledge, MetaCoAG is the first stand-alone contig-binning tool to make direct use of the assembly graph information. We51

benchmark MetaCoAG against state-of-the-art contig-binning tools using simulated and real datasets. The experimental results52

show that MetaCoAG significantly outperforms other contig-binning tools, e.g., improving the completeness of bins while53

maintaining high purity levels and producing more high-quality bins.54

Results55

Overview of MetaCoAG Workflow56

Figure 1 shows the overall workflow of MetaCoAG. A preprocessing step (step 0 in Fig. 1) is carried out to assemble the reads57

into contigs and obtain the assembly graph. Metagenomic assemblers first use graph models to connect overlapping reads or58

k-mers and infer contigs as non-branching paths. After graph simplification, the vertices represent contigs and edges represent59

connections between contigs in the assembly graph.60

Similar to previous approaches17, 18, 28, MetaCoAG uses 107 single-copy marker genes to distinguish contigs belonging61

to different species. MetaCoAG first identifies a list of contigs that contain each single-copy marker gene (step 1 in Fig. 1).62

MetaCoAG further counts the number of contigs containing each single-copy marker gene and estimates the initial number of63

bins (step 2 in Fig. 1). Then, MetaCoAG applies a graph-matching algorithm to assign contigs that contain single-copy marker64

genes into bins iteratively and adjust the number of bins dynamically (step 3 in Fig. 1). Finally, MetaCoAG bins the remaining65

contigs using label propagation algorithms based on the assembly graph (step 4 in Fig. 1), performs a postprocessing step, and66

outputs the bins along with their corresponding contigs. Each step of MetaCoAG is explained in detail in the Methods section.67

Benchmarks using simHC+ Dataset68

We first benchmarked MetaCoAG against two popular contig-binning tools, MaxBin218 and MetaBAT229 on the simulated69

dataset simHC+17 which consists of 100 bacterial genomes (please refer to Supplementary Data 1 Table 1 for further details of70

the simHC+ dataset) 1. We evaluated the binning results of the simHC+ dataset produced by all the tools using the two popular71

evaluation tools AMBER31 and CheckM32. AMBER assesses the quality of bins based on the ground truth annotations provided72

and CheckM assesses the quality of bins based on sets of single-copy marker genes. We analyzed the purity, completeness and73

F1-score of the binning results calculated by AMBER (at the nucleotide level) and CheckM. MetaCoAG has recovered bins74

with a better trade-off between purity and completeness when compared to other binning tools (Fig. 2 (a)) with an average75

purity of 91.07% and an average completeness of 82.73% from AMBER and an average purity of 97.55% and an average76

completeness of 87.17% from CheckM. This better trade-off is demonstrated from the best F1-score results produced by77

MetaCoAG with a median F1-score of 95.69% from AMBER (Fig. 2 (b)) and a median F1-score of 98.48% from CheckM78

(Fig. 2 (c)) when compared with other binning tools. Even though MetaBAT2 has recorded the highest average purity (98.30%79

from AMBER and 100.0% from CheckM), it has a very low average completeness (13.02% from AMBER and 29.59% from80

CheckM) because all contigs shorter than 1,500bp (i.e. 60.49% of the contigs in the entire dataset) were discarded. Please refer81

to Supplementary Data 1 Table 2 for the exact values of the AMBER and CheckM results of the simHC+ dataset. We also used82

CheckM to count the number of high-, medium- and low-quality bins produced by all the binning tools for the simHC+ dataset83

(Supplementary Data 1 Table 6). MetaCoAG has recovered the highest number of high-quality bins (69 bins) and the lowest84

number of low-quality bins (13 bins) for the simHC+ dataset.85

We further used AMBER to analyze the species recovered by each binning tool for the simHC+ dataset. Out of the 10086

species, MetaCoAG was able to recover more species than other tools (Supplementary Data 1 Table 4), thanks to its adaptable87

bin-breaking mechanism that allows to separate more species rather than combining them together. We also analyzed the88

F1-score of these recovered species (Supplementary Data 1 Fig. 2), and observed that MetaCoAG has recovered more species89

1Please note that the recently published tool Vamb30 was not used to evaluate the simHC+ dataset as the number of contigs was less than the number
recommended by the authors (https://github.com/RasmussenLab/vamb#recommended-workflow).
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with high F1-score than the other binning tools (Please refer to Supplementary Data 1 Table 4 for comparison of the F1-score of90

the species recovered by MaxBin2, MetaBAT2 and MetaCoAG). Many existing binning tools assume that the oligonucleotide91

composition and coverage are conserved across the genome. Hence it is challenging for such tools to bin species with high92

variance in oligonucleotide composition and/or coverage. Moreover, these tools face difficulties when recovering species93

with low abundance due to the rare occurrence of species-specific signals. In Fig. 3, we visualize and compare the binning94

results of MaxBin2 and MetaCoAG 2 against the ground truth for the following species, Pseudomonas putida and Arthrobacter95

arilaitensis. The species Pseudomonas putida has a high variance in oligonucleotide composition (standard deviation > 0.01596

for the tetranucleotide composition of its contigs) and thus MaxBin2 has split this species into multiple bins incorrectly (refer97

to Fig. 3 (a)). The species Arthrobacter arilaitensis has a high variance in genome coverage (standard deviation > 50× for the98

coverages of its contigs) and thus MaxBin2 has mis-binned some high-coverage contigs into other species with high coverage99

(refer to Fig. 3 (b)). However, MetaCoAG has been able to recover these species with high F1-score values, e.g., improving100

the F1 score for Pseudomonas putida from 59.78% to 99.56% and improving the F1-score for Arthrobacter arilaitensis from101

97.65% to 98.99%. Despite the high variance in oligonucleotide composition and coverage, MetaCoAG has been able to102

recover these species accurately, thanks to the additional connectivity information from the assembly graph.103

Another challenge faced by the majority of the existing binning tools is the inability to accurately separate contigs of104

species belonging to the same genus, where such species tend to have similar oligonucleotide composition and appear in similar105

abundances. For example, the following three species in simHC+, Streptococcus pneumoniae, Streptococcus thermophilus and106

Streptococcus suis are in the same genus Streptococcus, and they have very similar oligonucleotide composition (Refer to Fig. 4107

(a)) and similar coverages (Streptococcus pneumoniae: 56×, Streptococcus thermophilus: 60× and Streptococcus suis: 50×).108

Not surprisingly, contigs from these three species were incorrectly binned by MaxBin2 and even ignored by MataBAT2 because109

they share similar composition and coverage profiles (Refer to Fig. 4 (b)). On the contrary, MetaCoAG was able to accurately110

bin most of the contigs from these three species because they naturally form three subgraphs in the assembly graph (Refer to111

Fig. 4 (b)), thus improving the F1-scores of Streptococcus pneumoniae from 46.51% to 93.40%, Streptococcus thermophilus112

from 49.97% to 95.67% and Streptococcus suis from 72.39% to 95.95%. Fig. 4 (b) demonstrates that the use of assembly graph113

in MetaCoAG can assist in the separation of species, despite the high similarity in oligonucleotide composition and coverage of114

certain species.115

Benchmarks using CAMI2 Toy Human Microbiome Project Datasets116

We benchmarked MetaCoAG against MaxBin218, MetaBAT229, and Vamb30 on five publicly available datasets from the toy117

Human Microbiome Project dataset of the second Critical Assessment of Metagenomic Interpretation (CAMI)33 challenge118

(Please refer to Supplementary Data 1 Table 1 for further details of the CAMI datasets). Multiple samples from each dataset119

were co-assembled together to obtain the final contigs for binning. Please refer to Supplementary Data 1 Fig. 5-7 for the120

multi-sample binning results, where we assembled the samples individually and binned them.121

We evaluated the binning results of the CAMI datasets using CheckM32 and reported the F1-score of the bins produced by122

all the binning tools. Fig. 5 (a)-(e) shows that overall MetaCoAG has achieved the best binning results among all the binning123

tools. The overall median F1-scores averaging from all 5 CAMI datasets for MetaCoAG, MaxBin2, MetaBAT2 and Vamb124

are 86.77%, 75.41%, 1.57% and 33.30%, respectively. More specifically, MetaCoAG has recovered more complete bins with125

higher purity when compared to other tools (Please refer to Supplementary Data 1 Fig. 3 and 4 for completeness and purity126

results). MetaCoAG produced the highest numbers of high-quality and medium-quality bins combined together for all the127

CAMI datasets (Refer to Supplementary Data 1 Table 6). Note that only MaxBin2 outperforms MetaCoAG in terms of the128

number of high-quality bins just for the GI dataset. This dataset had a low density in its assembly graph (Please refer to129

Supplementary Data 1 Table 1 for density of the assembly graph) which prevented MetaCoAG from making full use of the130

assembly graphs.131

Benchmarks using Sharon and COPD datasets132

We benchmarked MetaCoAG against MaxBin218, MetaBAT229 and Vamb30 on two real metagenomic datasets; Sharon dataset133

obtained from a pre-born infant’s gut34 and COPD dataset obtained from the Chronic Obstructive Pulmonary Disease (COPD)134

Lung Microbiome35. These datasets contain multiple samples (or runs) and further details about the samples used can be found135

in Supplementary Data 1 Table 3. The contigs and assembly graph for each dataset was obtained by co-assembling the reads136

from all the samples together. Please refer to Supplementary Data 1 Fig. 5-7 for the multi-sample binning results, where we137

assembled the samples individually and binned them.138

Similar to the simHC+ and CAMI datasets, we again use CheckM32 to evaluate the bins produced by all the binning tools139

and identify high-quality bins. Fig. 5 (f)-(g) shows that MetaCoAG has also achieved the best binning result in terms of the140

median F1-score for both the real datasets. For the Sharon dataset, MetaCoAG records a median F1-score of 99.24% while the141

2MetaBAT2 was not included in this comparison as it had not recovered the species Pseudomonas putida and Arthrobacter arilaitensis.
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second-best tool (Vamb) has a median F1-score of 83.88%. For the COPD dataset, MetaCoAG records a median F1-score142

of 75.68% while the second-best tool (MaxBin2) has a median F1-score of 25.13%. Furthermore, MetaCoAG has produced143

the highest number of high-quality bins and the lowest number of low-quality bins for both the real datasets (Please refer to144

Supplementary Data 1 Table 6 for the exact counts).145

We used GTDB-Tk36 to annotate all the high-quality bins produced by MetaCoAG, MaxBin2 and Vamb 3 for both datasets.146

Then we compared the taxonomic annotations (up to the species level) with the analysis results reported by the authors of these147

datasets (Refer to Table 1). Table 1 shows that MetaCoAG achieves the best consistency with the original analysis reported148

by the authors. In the Sharon dataset, the five most abundant species reported according to the authors34; Staphylococcus149

epidermidis, Enterococcus faecalis, Cutibacterium avidum, Peptoniphilus lacydonensis and Staphylococcus aureus have been150

successfully identified by all the three binning tools. However, Vamb missed Staphylococcus hominis, which is reported as a151

rare species in the Sharon dataset34. Moreover, MetaCoAG is the only tool that is able to recover Leuconostoc citreum, which is152

also identified as a rare species in the Sharon dataset34. These results denote the ability of MetaCoAG to recover rare species in153

real metagenomics samples that are ignored by other binning tools.154

In the COPD dataset, there is a larger discrepancy among MaxBin2, Vamb and MetaCoAG. Only two species, Peptostrepto-155

coccus sp. and SR1 bacterium human oral taxon HOT-345, have been identified by all the three binning tools. SR1 bacterium156

human oral taxon HOT-345 and Lachnospiraceae bacterium oral taxon 096 have been added to NCBI taxonomy recently37 and157

hence are not found in the original analysis35. Compared to MetaCoAG, MaxBin2 failed to identify three species Prevotella158

pallens, Prevotella shahii and Prevotella histicola while Vamb only identified Prevotella pallens under the genus Prevotella.159

Similarly, Vamb failed to identify two species, Capnocytophaga gingivalis and Capnocytophaga leadbetteri, both of which are160

identified by MaxBin2 and MetaCoAG. Moreover, the species Anaeroglobus micronuciformis only identified by MaxBin2 was161

not present in the top 50 genera ranked by abundance in the original analysis35, which is likely to be a false-positive. These162

results demonstrate that MetaCoAG has been able to recover more species correctly with respect to the original analysis of163

these real datasets.164

Discussion165

Metagenomic sequencing and de novo assembly, coupled with binning methods have facilitated the characterization of different166

microbial communities. The majority of existing metagenomic contig-binning tools do not make use of the valuable connectivity167

information found in assembly graphs from which the contigs are derived. Furthermore, existing tools do not make use of168

multiple single-copy marker genes throughout the entire binning process.169

MetaCoAG is a stand-alone tool for binning metagenomic contigs that makes use of composition, coverage and assembly170

graphs simultaneously. The use of connectivity information from the assembly graphs makes the binning process of MetaCoAG171

robust against high variance of intra-species oligonucleotide composition and coverage as well as similar inter-species172

oligonucleotide composition and coverage (within the same genus). Experimental results on both simulated and real datasets173

show that MetaCoAG achieves the best binning results compared to state-of-the-art tools, especially producing more high-quality174

bins and recovering more species.175

MetaCoAG can be easily extended to work with other assemblers based on assembly graphs (e.g., the de Bruijn graph22,176

the string graph38, the repeat graph39, etc.) for both short and long reads. In the future, we plan to extend MetaCoAG to support177

overlapped binning25, i.e. detect contigs that may belong to multiple species. Furthermore, we plan to incorporate MetaCoAG178

with assembly pipelines that may lead to more efficient and accurate analysis for metagenomic datasets.179

Methods180

Step 0: Assemble Reads into Contigs and Construct the Assembly Graph181

This preprocessing step is carried out to assemble the reads into contigs and obtain the assembly graph. Metagenomic182

assemblers first use graph models to connect overlapping reads or k-mers and to infer contigs as non-branching paths. After183

graph simplification, the vertices represent contigs and edges represent connections between contigs in the assembly graph.184

Here we use the popular metagenomic assembler metaSPAdes21 to derive input contigs and assembly graphs. Note that the185

assembly graphs can also be obtained similarly using other metagenomic assemblers such as MEGAHIT20 and metaFlye40.186

Step 1: Identify Contigs with Single-Copy Marker Genes187

Single-copy marker genes appear only once in a bacterial genome and are conserved in the majority of bacterial genomes15–17.188

Similar to approaches such as MaxBin17 and MaxBin218, MetaCoAG uses 107 single-copy marker genes to distinguish contigs189

belonging to different species. For each of the 107 single-copy marker genes, we use FragGeneScan41 and HMMER42 to190

3MetaBAT2 results were not considered for GTDB-Tk annotations as the results had very low number of high-quality bins compared to the other binning
tools.
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identify the contigs containing this single-copy marker gene. A single-copy marker gene is considered to be contained in a191

contig if at least 50% of the length of the gene is aligned to this contig.192

Step 2: Order Single-copy Marker Genes and Estimate the Number of Initial Bins193

For a given single-copy marker gene, the contigs containing this marker gene should come from different species (e.g., if two194

contigs contain the same marker gene, then the two contigs should belong to two different species). In the ideal case, if we have195

a near-perfect assembly, the number of contigs that contain the same single-copy marker gene should be equal to the number of196

species present in the sample. However, in reality, assemblies can be fragmented and erroneous, which may make it challenging197

to recover all single-copy marker genes and hence, lowering the counts of contigs containing each single-copy marker gene.198

To get a better estimation of the number of species, we obtain the counts of contigs containing each single-copy marker199

gene. We also recorded the single-copy marker genes found in each contig. Now we order all the single-copy marker genes200

according to the descending order of the number of contigs containing them. For the single-copy marker genes having the201

same number of contigs, we order them according to the descending order of the total count of single-copy marker genes found202

in its constituent contigs. We refer to this list of ordered marker genes as SMG where a single-copy marker gene gi has a set203

of contigs C(gi) containing gi. Then, the number of initial bins is set to be the largest count of contigs a marker gene has to204

recover the maximum number of species possible from the marker gene information.205

Step 3: Bin Contigs with Single-copy Marker Genes206

Step 3a: Initialize Bins207

We initialize the bins using the contigs of the first single-copy marker gene g1 in SMG; i.e., we initialize a new bin B for each208

contig in C(g1) (as shown in Step 3a of Fig. 1). We define the initialized set of bins as BINS. Please note that the number of209

bins |BINS| may change during the binning process.210

Calculating Composition and Coverage Probabilities211

Previous studies on metagenomics binning have used genomic signatures as they follow species-specific patterns17, 43. The212

most commonly used genomic signatures to characterise composition information are tetranucleotide frequencies (strings of213

length k = 4, also known as tetramers). We obtain the normalized tetranucleotide frequency vectors of each contig c as tetra(c).214

We obtain the tetranucleotide composition distance dtetra(c,c′) between two contigs c and c′ as shown in equation 1 where215

distE is the Euclidean distance function.216

dtetra(c,c′) = distE
(
tetra(c), tetra(c′)

)
(1)

We follow the method used by Wu et al.17 and define the probability function that c and c′ belong to the same specie based217

on their composition, Pcomp(c,c′) as shown in equation 2.218

Pcomp(c,c′) =
Nintra

(
dtetra(c,c′)|µintra,σ

2
intra
)

Nintra
(
dtetra(c,c′)|µintra,σ2

intra

)
+Ninter

(
dtetra(c,c′)|µinter,σ2

inter

) (2)

Nintra and Ninter are Gaussian distributions with µintra, σintra, µinter and σinter set according to the latest values of MaxBin219

2.2.718 which have been calculated by analysing the Euclidean distance between the tetranucleotide frequencies of pairs of220

sequences sampled from the same genome (intra) and different genomes (inter). If the distance is lower between two sequences,221

they are more probable to belong to the same genome.222

We use the coverage information of the contigs as coverage carries important information about the abundance of species223

and has been used in previous metagenomics binning studies15, 17. Shotgun sequencing has shown to follow the Lader-224

Waterman model44 and the Poisson distribution has been used to obtain the sequencing coverage of nucleotides and applied in225

metagenomics binning17, 45. Modifying the definition found in Wu et al.17, we define the probability function that c and c′226

belongs to the same species given their coverage values in each sample, Pcov(c,c′) as shown in equation 3.227

Pcov(c,c′) = min

(
M

∏
n=1

Poisson
(
covn(c)|covn(c′)

)
,

M

∏
n=1

Poisson
(
covn(c′)|covn(c)

))
(3)

Here covn(c) and covn(c′) refer to the coverage values of the contigs c and c′ respectively in the sample n where M is the228

number of samples. Poisson is the Poisson probability mass function.229
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Step 3b: Construct a Weighted Bipartite Graph and Find a Minimum-Weight Full Matching230

In the previous steps, we have used single-copy marker genes to identify pairs of contigs that belong to different species.231

Remind that contigs in different bins in BINS are expected to belong to different species and contigs in C(gi) are also expected232

to belong to different species. However, there is no measurement to measure how likely a contig c in C(gi) belongs to an233

existing bin B in BINS. Therefore, we introduce a bipartite graph between C(gi) and BINS and propose a weight wc2B(c,B)234

between a contig c in C(gi) and an existing bin B in BINS as shown in equation 4 (averaging over all the contigs in bin B).235

wc2B(c,B) =
∑c′∈B wc2c(c,c′)

|B|
(4)

In equation 4, wc2c(c,c′) is the weight that measures how likely a pair of contigs c and c′ belong to the same species and is236

computed using equation 5.237

wc2c(c,c′) =−
(
log(Pcomp(c,c′))+ log(Pcov(c,c′))

)
(5)

In equation 5, Pcomp(c,c′) and Pcov(c,c′) are calculated according to equations 2 and 3 respectively.238

Now we find a minimum-weight full matching (minimum-cost assignment)46 for the above bipartite graph between C(gi)239

and BINS where every contig c in C(gi) will get paired with exactly one bin B in BINS. For this purpose, we use the minimum-240

weight full matching algorithm implemented in the NetworkX 4 python library which is based on the algorithm proposed by241

Karp46 and the time complexity is O(|C(gi)|× |BINS|× log(|BINS|)).242

In the next step, we will see how we can assign the contigs to existing bins based on the minimum-weight full matching we243

have obtained.244

Step 3c: Assign Contigs to Existing Bins or Dynamically Adjust Bins245

Previous studies have observed that contigs connected to each other in the assembly graph are more likely to belong to the same246

taxonomic group23, 24. While wc2B(c,B) considers both composition and coverage information, the assembly graph has not yet247

been incorporated into the binning process. Therefore, we introduce dgraph(c,B) to measure how well contig c is connected248

to contigs in bin B within the assembly graph. Specifically, dgraph(c,B) is defined as the average length of the shortest-path249

distances between contig c and all the contigs in bin B in the assembly graph. Note that both wc2B(c,B) and dgraph(c,B) will be250

used to assign contigs to existing bins or dynamically adjust the bins.251

We define the thresholds wintra and winter as follows where M is the number of samples in the dataset.252

wintra =−
(
log(pintra)

)
×M (6)

winter =−
(
log(pinter)

)
×M (7)

Each candidate pair (c,B) obtained from the minimum-weight full matching falls under one of the following three cases as253

shown in Supplementary Data 1 Fig. 1.254

• Case 1: If the weight of the candidate pair wc2B(c,B) is less than or equal to wintra and the average distance dgraph(c,B)255

is less than or equal to dlimit , then contig c will be assigned to bin B, i.e., B← B∪{c} (e.g., contig 4 and Bin 1 in256

Supplementary Data 1 Fig. 1).257

• Case 2: If the weight of the candidate pair wc2B(c,B) is greater than winter and the average distance dgraph(c,B) is greater258

than dlimit , then a new bin B′ is created and contig c is assigned to that new bin, i.e., B′ = {c} and BINS← BINS∪{B′}.259

(e.g., contig 21 in Supplementary Data 1 Fig. 1).260

• Case 3: If wc2B(c,B) and dgraph(c,B) satisfy neither Case 1 nor Case 2, then contig c will not be assigned to any bin261

(e.g., contig 14 in Supplementary Data 1 Fig. 1).262

The default values for parameters pintra, pinter, dlimit were chosen empirically and set to 0.1, 0.01 and 20 respectively. Now263

we iteratively perform Steps 3b and 3c to process all the contigs containing single-copy marker genes. The remaining challenge264

is to bin the contigs which do not contain single-copy marker genes which will be addressed in Step 4.265

4https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.bipartite.matching.minimum_weight_full_matching.html
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Step 4: Bin Remaining Contigs Using Label Propagation266

After we bin the contigs with single-copy marker genes, each such contig receives a label corresponding to its bin. Now we will267

propagate labels from these contigs to other unlabeled contigs within the same connected component.268

Step 4a: Propagate Labels Within Connected Components269

MetaCoAG uses composition, coverage and distance information from the assembly graph to propagate labels from labeled270

contigs to the unlabeled contigs located within the same connected components. More specifically, for each unlabeled271

long contig c (at least 1,000 bp long because short contigs result in unreliable composition and coverage information)272

directly connected or connected via short contigs to a labeled contig c′, MetaCoAG computes a candidate propagation action273

(c′,c,d(c,c′),wc2B(c,B′)) where d(c,c′) is the shortest distance between c and c′ using only unlabeled vertices and wc2B(c,B′)274

is computed according to equation 4 where B′ is the bin to which contig c′ is assigned. Given two candidate propagation actions275

(a,b,d,w) and (a′,b′,d′,w′), (a,b,d,w) has a higher priority than (a′,b′,d′,w′) if d < d′ or (w < w′ and d = d′). MetaCoAG276

iteratively selects the candidate propagation action with the highest priority and executes the corresponding label propagation. If277

a contig to be labeled contains single-copy marker genes, the relevant candidate propagation action is executed if the single-copy278

marker genes of the contig are not present in the intended bin. We restrict the depth of the search for labeled contigs in this step279

to 10 in order to speed up MetaCoAG.280

Step 4b: Propagate Labels Across Different Components281

Note that some components in the assembly graph may not have any labeled contigs and we need to propagate labels from282

labeled bins to unlabeled contigs across components. Calculating pair-wise weights wc2c(c,c′) for all the remaining contigs283

becomes time consuming. Hence, for each bin B we create a representative contig c(B) which has a composition profile and284

a coverage profile calculated by averaging the normalized tetranucleotide frequency vectors and coverage vectors of all the285

contigs in bin B, respectively. These profiles will provide a better representation of the composition and coverage of the bins.286

Then, for each unlabeled contig c, MetaCoAG identifies a bin B that minimizes wc2c(c,c(B)) which is calculated according to287

equation 5, and assigns contig c into that bin B. This propagation is limited to long contigs (at least 1,000 bp long by default).288

If an unlabeled contig contains single-copy marker genes, it is assigned to bin B that minimizes wc2c(c,c(B)) if the single-copy289

marker genes of the contig are not present in bin B. Then, Step 4a is performed again to further propagate labels.290

Step 4e: Postprocessing291

In this step, we will make final adjustment on the current bins. Two bins B and B′ are mergeable if they have no common marker292

genes and wc2c(c(B),c(B′)) (calculated by equation 5) is upper bounded by wintra (defined in Step 3c). Then, MetaCoAG293

creates a graph where vertices denote current bins and edges between two vertices denote that the corresponding two bins are294

mergeable. Now we use the implementation of python-igraph library to find maximal cliques (https://igraph.org/c/doc/igraph-295

Cliques.html#igraph_maximal_cliques) in this graph and merge the bins found in each maximal clique. After merging bins, we296

also remove the bins which contain less than one third (set by default) of the single-copy marker genes. Finally, MetaCoAG297

outputs the bins along with their corresponding contigs.298

Datasets299

Simulated Datasets300

We evaluated the binning performance on the simulated simHC+ dataset17 which consists of 100 bacterial species. Paired-end301

MiSeq reads were simulated using InSilicoSeq47 with 300 bp mean read length.302

CAMI2 Toy Human Microbiome Project Datasets303

We used the simulated metagenome data from the toy Human Microbiome project of the second CAMI challenge33.304

Metagenomes were simulated from five different body sites of the human host as follows.305

1. Urogenital tract - referred as CAMI UG306

2. Skin - referred as CAMI Skin307

3. Oral cavity - referred as CAMI Oral308

4. Gastrointestinal tract - referred as CAMI GI309

5. Airways - referred as CAMI Airways310
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Real Datasets311

We used the following real datasets to evaluate the binning performance on real-world metagenomic data.312

1. Pre-born infant gut metagenome,34 - referred as Sharon313

2. Metagenomics of the Chronic Obstructive Pulmonary Disease (COPD) Lung Microbiome35 - referred as COPD314

Please refer to Supplementary Data 1 Tables 1 and 3 for further details of all the datasets.315

Tools Used316

We used the popular metagenomic assembler metaSPAdes21 (from SPAdes version 3.15.248) to assemble reads into contigs317

and obtain the assembly graphs. The mean coverage of each contig in each sample was calculate using CoverM (available at318

https://github.com/wwood/CoverM).319

MetaCoAG was benchmarked against the binning tools MaxBin2 (version 2.2.7) 18 in its default settings, MetaBAT2320

(version 2.12.1)29 with -m 1500 and Vamb (version 3.0.1)30 in both co-assembly and multi-sample modes with the parameter321

--minfasta 200000 as suggested by the authors. The commands used to run these tools can be found in Supplementary322

Data 1 Fig. 7.323

The binning results were evaluated using the tools AMBER31 (version 2.0.2), CheckM32 (version 1.1.3) and GTDB-Tk36
324

(version 1.5.0).325

Evaluation Criteria326

Since the ground truth species for the simHC+ dataset were available, we used Minimap249 to map the contigs to the reference327

genomes and determine the ground truth. With this ground truth annotation of contigs, we used AMBER31 to assess the binning328

results of the simHC+ dataset. We set the recall as AMBER completeness and precision as AMBER purity and calculated the329

F1-score as 2 ×(precision×recall)/(precision+recall) for each bin/species.330

For all the datasets, we determined the completeness and contamination of the bins produced by each tool using CheckM32.331

We set the completeness as CheckM completeness and purity as 1/(1 + CheckM contamination). To check the trade-off332

between completeness and purity, we set the recall as completeness and precision as purity, and calculated the F1-score as 2333

×(precision×recall)/(precision+recall) for each bin. Furthermore, we counted the number of high-quality bins (bins which have334

>80% recall and >90% precision), medium-quality bins (bins which have >50% recall and >80% precision) and low-quality335

bins (bins which are not considered as high-quality or medium-quality).336

To determine the species identified by the binning tools, we annotated all the high-quality bins of the real metagenomic337

datasets produced from the three best-performing tools; MetaCoAG, MaxBin2 and Vamb using GTDB-Tk36 up to the species338

level. The species were determined by the classification string produced by GTDB-Tk.339
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Figure 1. MetaCoAG Workflow. The assembly graph with contigs are provided as inputs to MetaCoAG. MetaCoAG first
identifies a list of contigs that contain each single-copy marker gene. MetaCoAG further counts the number of contigs
containing each single-copy marker gene and estimates the initial number of bins. Next, MetaCoAG applies a graph-matching
algorithm to assign contigs that contain single-copy marker genes into bins iteratively and adjust the number of bins
dynamically. Then, MetaCoAG bins the remaining contigs using label propagation algorithms based on the assembly graph and
performs a postprocessing step. Finally, MetaCoAG outputs the bins along with their corresponding contigs.
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Figure 2. AMBER and CheckM results of the bins of the simHC+ dataset. (a) Quality of bins in terms of average
completeness per bin vs. average purity per bin obtained from AMBER and CheckM. (b) F1-score of the bins obtained from
AMBER. (c) F1-score of the bins obtained from CheckM.
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Figure 3. Visualization of the binning results of the simHC+ dataset for species with high variance in oligonucleotide
composition and high variance in coverage. Visualization of the binning results from MaxBin2 and MetaCoAG for a species
with (a) high variance in oligonucleotide composition (standard deviation > 0.015) and (b) high variance in coverage (standard
deviation > 50×). Gray color nodes denote contigs which were binned to bins other than the ones specified in the figure.
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Figure 4. Visualization of the tetranucleotide composition and binning results of three Streptococcus genomes in the
simHC+ dataset. (a) Tetranucleotide distributions of the three Streptococcus genomes; Streptococcus pneumoniae (red) with
56× coverage, Streptococcus suis (yellow) with 60× coverage and Streptococcus thermophilus (green) with 50× coverage. (b)
Visualization of the binning results from MaxBin2 and MetaCoAG for three Streptococcus genomes. White color nodes denote
discarded contigs and gray color nodes denote contigs which were binned to bins other than the three Streptococcus genomes.
MetaBAT2 was not included as it had not recovered these three species.
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Figure 5. F1-score of the CAMI and real datasets. The F1-scores of the bins found in the CAMI and real datasets by all
the binning tools in co-assembly mode.
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Dataset Species MaxBin218 Vamb30 MetaCoAG Present in
original analysis

Sharon34

Cutibacterium avidum 3 3 3 3
Enterococcus faecalis 3 3 3 3
Peptoniphilus lacydonensis 3 3 3 3
Staphylococcus aureus 3 3 3 3
Staphylococcus epidermidis 3 3 3 3
Staphylococcus hominis 3 7 3 3
Leuconostoc citreum 7 7 3 3

COPD35*

Peptostreptococcus sp. 3 3 3 3

SR1 bacterium human oral taxon HOT-345 3 3 3 7†

Prevotella pallens 7 3 3 3
Haemophilus sputorum 7 3 3 3
Herbaspirillum huttiense 7 3 3 3
Capnocytophaga gingivalis 3 7 3 3
Capnocytophaga leadbetteri 3 7 3 3
Lancefieldella sp000564995 3 7 3 3
Actinomyces graevenitzii 3 7 7 3
Actinomyces oris 3 7 7 3
Anaeroglobus micronuciformis 3 7 7 7
Eubacterium sulci 7 7 3 3
Prevotella shahii 7 7 3 3
Prevotella histicola 7 7 3 3

Lachnospiraceae bacterium oral taxon 096 7 7 3 7†

Table 1. High-quality species found from the GTDB-Tk annotations of MetaCoAG, MaxBin2 and Vamb for the real
metagenomic datasets. We annotated all the high-quality bins of the real metagenomic datasets produced from MetaCoAG,
MaxBin2 and Vamb using GTDB-Tk up to the species level. Then we determined whether these taxonomic groups are actually
present in the original analysis. The species were determined by the classification string produced by GTDB-Tk up to species
level. 3 denotes that the species is present and 7 denotes that the species is absent in the result/analysis. Green colored items
match the original analysis whereas the red colored items do not match the original analysis.
*For the COPD dataset, the species were determined as present in the original analysis based on the 50 most abundant genera
presented.
† These species were added to NCBI taxonomy in year 202037 which is after the COPD analysis35.
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