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Abstract

Recent advances in neural decoding have accelerated the development of brain-computer interfaces aimed
at assisting users with everyday tasks such as speaking, walking, and manipulating objects. However, current
approaches for training neural decoders commonly require large quantities of labeled data, which can be labo-
rious or infeasible to obtain in real-world settings. One intriguing alternative uses self-supervised models that
share self-generated pseudo-labels between two data streams; such models have shown exceptional performance
on unlabeled audio and video data, but it remains unclear how well they extend to neural decoding. Here, we
learn neural decoders without labels by leveraging multiple simultaneously recorded data streams, including
neural, kinematic, and physiological signals. Specifically, we apply cross-modal, self-supervised deep clustering
to decode movements from brain recordings; these decoders are compared to supervised and unimodal, self-
supervised models. We find that sharing pseudo-labels between two data streams during training substantially
increases decoding performance compared to unimodal, self-supervised models, with accuracies approaching
those of supervised decoders trained on labeled data. Next, we develop decoders trained on three modalities
that match or slightly exceed the performance of supervised models, achieving state-of-the-art neural decod-
ing accuracy. Cross-modal decoding is a flexible, promising approach for robust, adaptive neural decoding in
real-world applications without any labels.
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1 Introduction

Brain–computer interfaces that decode neural activity
to control robotic or virtual devices have shown great
potential to assist patients with neurological disabili-
ties [1–7], while also furthering our understanding of
brain function [8–10]. Much of the recent progress in
brain-computer interfaces has been driven by advances
in neural decoding algorithms [11–14]. However, these
algorithms typically rely on supervised learning and
thus require large amounts of labeled training data;
even as large quantities of neural data are now rou-
tinely recorded, generating annotated datasets by cu-
rating “ground truth” labels can be laborious and may
involve human error [15,16]. Furthermore, decoding al-
gorithms that are useful in the real world must be able
to adapt to new scenarios and non-stationary neural
signals with few or no labels [17–20]. One promising
approach is to use self-supervised learning techniques,
which generate pseudo-labels from the data itself and
then use those pseudo-labels to train a model iter-
atively without prior labels (see [21, 22] for compre-
hensive reviews of self-supervised approaches). Self-
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supervised neural decoding models would ideally avoid
overfitting to irrelevant variations in the training data
and achieve performance comparable to supervised de-
coders. Such robust, self-supervised neural decoders
would largely eliminate the need for tedious data an-
notation [23, 24], expedite analyses of large, complex
neural datasets, and lay the groundwork for brain-
computer interfaces that can dynamically recalibrate
in real-world settings.

Self-supervised learning has been most successfully
applied in natural language processing and computer
vision, with performance similar to that of top super-
vised models. State-of-the-art techniques in natural
language processing are often self-supervised [27–29],
using held-out words from the training set to learn
robust language models. In computer vision, pop-
ular self-supervised approaches include learning low-
dimensional representations that reconstruct the origi-
nal input (e.g. autoencoders [30]) as well as contrastive
approaches that learn when augmented image pairs are
similar or different (e.g. GANs and Siamese neural
networks [31–34]). However, autoencoders typically
minimize the mean squared error between the input
and reconstruction, which ignores low amplitude, high

1

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459775doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.10.459775
http://creativecommons.org/licenses/by-nd/4.0/


Swap
pseudo-labels

Unimodal, self-supervised decoding(a)

Kinematic data

Comparing decoders(c)

Supervised

Unimodal

Cross-modal

Neural data

Cross-modal, self-supervised decoding(b)

Figure 1: Cross-modal deep clustering for decoding behaviors from unlabeled neural data. (a) Self-
supervised deep clustering iteratively generates pseudo-labels based on the current decoding model’s outputs in order
to train a neural decoder without the need for labeled data. For this study, we use HTNet [25] as the decoding model
to predict movement-related behaviors from segmented neural data. (b) To improve model robustness, we applied
cross-modal deep clustering [26], which swaps neural decoder pseudo-labels with those from additional kinematic and/or
physiological data streams. (c) We find that neural decoders trained using cross-modal, self-supervised learning approach
the performance of supervised neural decoders trained on labeled data.

frequency activity that may be important for the de-
coding task [35]. For contrastive approaches, creating
dissimilar training pairs can be difficult because there
are many ways that an image or signal of interest can
differ (e.g. comparing an image of a cat’s face with
an image of the cat’s paw, the back of the cat’s head,
or a dog’s face); in other words, it may not be clear
which differences are useful for training a particular
model. Several non-contrastive methods have recently
been developed that do not require generating dissim-
ilar training pairs [36–39]. For example, deep cluster-
ing generates pseudo-labels based on the structure of
the data itself, which are then used to iteratively train
the model and update the pseudo-labels for the next
training step [38]. Many self-supervised techniques
have approached or exceeded supervised model perfor-
mance [33, 36, 37], demonstrating that labeled data is
not always necessary to train a robust model.

Even so, self-supervised neural decoding remains
a formidable challenge for multiple reasons. First,
neural oscillations recorded with scalp electroen-
cephalography (EEG) or intracranial electrocorticog-
raphy (ECoG) differ greatly from language and image
data [40–44]. Relevant features for neural decoding of-
ten lack a clear baseline [20,45], are non-stationary over
long time periods [46,47], exponentially decrease in am-
plitude at higher frequencies [48, 49], and occur in a
small fraction of the total recording electrodes [50,51].
Second, while contrastive techniques have been applied
for neural decoding [35,52–55], neural data can be noisy
and variable from one example to the next, so creating
dissimilar examples is often difficult, even with labeled
data [56, 57]. Furthermore, many self-supervised ap-
proaches in computer vision augment the input images
during training to improve model robustness [39,58,59].
While random crops, rotations, and translations make
sense for image data, deciding how to augment neural

data is less clear, especially when the behaviorally rel-
evant frequencies are not known [52,60]. For these rea-
sons, it is preferable to use a self-supervised approach
for neural decoding that does not rely on contrastive
learning and data augmentations.

Sharing information across different data streams
provides an intriguing opportunity for self-supervised
training of neural decoders. Neuroscience research
studies often include multiple data streams recorded
simultaneously with the neural recordings, such as
muscle activation [64, 65], kinematics of human move-
ments [63,66–68], and various physiological signals [69,
70]. Each data stream has its own variability, but be-
haviorally relevant activity should be evident in mul-
tiple data streams, assuming each one is acquired at
a similar timescale and contains information related
to the behaviors of interest. Therefore, sharing in-
formation across multiple data streams plausibly pro-
vides realistic variations for robust training without re-
quiring data augmentation. Indeed, multi-modal and
sensor fusion approaches are already commonly ap-
plied to improve supervised neural decoding perfor-
mance [24, 71–73]. For self-supervised learning, Al-
wassel et al. [26] showed that combining audio and
video data streams improved the performance of non-
contrastive, deep clustering models, with performance
matching those of supervised models. However, it is
unclear how well this cross-modal approach extends to
self-supervised neural decoding.

In this paper, we show that cross-modal, self-
supervised training yields state-of-the-art neural de-
coders that approach supervised decoding performance
despite only training on unlabeled data (Fig. 1). We
also extend the approach of Alwassel et al. [26] to any
number of data streams and assess the performance
of neural decoders trained with this cross-modal, self-
supervised approach. We compare cross-modal de-
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Table 1: Multi-modal datasets used to test cross-modal neural decoding. We assessed the performance of
supervised and self-supervised models using four multi-modal datasets during various movement tasks. Data streams
include electrocorticography (ECoG), electroencephalography (EEG), electromyography (EMG), and multiple kinematic
measurements. Kinematic measurements were obtained from markerless motion capture applied to video recordings
(ECoG move/rest [56]), exoskeleton positions (EEG move/rest [61]), dataglove recordings (ECoG finger flexion [62]),
and motion capture markers (EEG balance perturbations [63]). We computed the number of events per participant after
balancing events across classes.

Dataset name Task
# of

classes
# of

participants
# of data
streams

Data streams
Events per
participant
(mean±SD)

ECoG
move/rest

naturalistic arm
movement or rest

2 12 2
ECoG,

2D arm position
1155±568

EEG
move/rest

cued elbow flexion
or rest

2 15 2
EEG,

3D arm position
118±1

ECoG finger
flexion

cued flexion of
individual fingers

5 8 2
ECoG,

finger joint angles
114±36

EEG balance
perturbations

rotations/pulls while
standing/walking

4 30 3
EEG, EMG,

3D body position
571±89

coders learned without labels to supervised models and
unimodal, self-supervised models. We find that shar-
ing pseudo-labels across multiple data streams substan-
tially improves the performance of self-supervised neu-
ral decoding models, with accuracies approaching those
of supervised models. When we increase the number of
data streams from two to three, cross-modal model per-
formance matches or even slightly exceeds supervised
model accuracy. This cross-modal, self-supervised ap-
proach provides a compelling alternative to tedious
data annotation of neural recordings, enabling scal-
able analyses of large, complex neural datasets and ro-
bust brain-computer interfaces that can readily adapt
to new real-world scenarios.

2 Results

Self-supervised learning with deep clustering uses pat-
terns that emerge from the data to iteratively train a
neural decoder, and cross-modal deep clustering takes
further advantage of correlated patterns among mul-
tiple data streams. To understand this training ap-
proach, let us first consider a single stream of data,
where a unimodal deep clustering decoding model is
trained alongside a clustering algorithm that assigns
each sample to a cluster based on the decoding model’s
output [38,74]. Training proceeds iteratively, alternat-
ing between (1) optimizing the decoding model with
the current cluster assignments (pseudo-labels) using
backpropagation and (2) updating the pseudo-labels
given the current decoding model [74, 75]. Pseudo-
labels are constrained to equally partition the data to
avoid the case where all events are assigned to one clus-
ter. Similarly, cross-modal deep clustering uses pseudo-
labels, but each decoding model is optimized using

pseudo-labels from another data stream. In this way,
after many iterations, this swapping of pseudo-labels
directly ties together the data streams and the out-
put of their decoding models [26]. Thus, cross-modal
deep clustering provides a straightforward procedure to
share information among multiple data streams while
maintaining separate decoding models for each data
stream.

We assessed cross-modal, self-supervised decoding
performance on four datasets (Table 1) and demon-
strate in each case that cross-modal decoding out-
performs unimodal, self-supervised models and ap-
proaches the accuracy of supervised models. We con-
sider three movement decoding tasks: determining
whether a participant’s arm was moving or at rest
(ECoG move/rest [56, 76] and EEG move/rest [61]),
predicting which of five fingers was being flexed (ECoG
finger flexion [40,62]), and determining whether a par-
ticipant was exposed to a visual or physical balance
perturbation while either walking or standing (EEG
balance perturbations [63]). Our decoding models all
use the HTNet architecture, a compact convolutional
neural network that has been demonstrated to perform
well at decoding ECoG/EEG data [25,77].

We validated trained decoding models using accu-
racy on a withheld test set, which reflects how well
each model generalizes to unseen data. We also assess
each decoder’s ability to effectively cluster unseen data
using the v-measure [78]. To compute test accuracy
for deep clustering models, we linearly mapped model
output clusters to true labels from the training data
and used this mapping to generate predictions with
the test set [79]. During model training, we found that
cross-modal, self-supervised decoders often converged
to nearly identical accuracies across data streams for
each decoding task (Table S1). The differences in test
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Figure 2: Cross-modal decoding of arm movement vs. rest approaches supervised decoding accuracies.
Decoding test accuracy is shown for ECoG move/rest (a–b) and EEG move/rest (e–f) datasets, averaged over 10
random folds. Note that cross-modal training accuracy is quite similar between the two decoders from each data stream;
the differences in test accuracy primarily reflect how well each decoder is able to generalize to unseen data from its
respective data stream. For both datasets, the cross-modal decoders are able to leverage the high separability in the arm
position data stream to achieve test accuracies well above unimodal, self-supervised models that approach supervised
model performance. Single-participant performance is shown in (c–d) and (g–h) for the ECoG move/rest and EEG
move/rest datasets, respectively. Random chance performance is denoted by the dashed, horizontal line at 50%.

accuracy that we report in this section primarily re-
flect how well each trained model is able to generalize
to unseen data from its respective data stream.

2.1 Cross-modal decoding with two
data streams

For all decoding tasks, we find that sharing self-
supervised pseudo-labels among two data streams sub-
stantially improves decoding performance compared to
unimodal, self-supervised models, while also approach-
ing test accuracies of supervised models. In addition,
we observe similar differences across model types for
clustering performance (Table S2).

2.1.1 Decoding arm movement vs. rest

In both move/rest decoding tasks, cross-modal, self-
supervised neural decoders consistently outperform
unimodal, self-supervised models and approach super-
vised model test accuracy (Fig. 2). For the naturalis-
tic ECoG move/rest dataset, we find that neural de-

coder test accuracy is significantly affected by model
type (p = 3.25e − 5; Friedman test [80]). Cross-
modal ECoG decoders achieve an average accuracy of
87% ± 8% (mean±SD), which is well above random
chance (50%). We find that cross-modal decoders have
a small but significant decrease in test accuracy com-
pared to supervised decoding performance (91%± 5%,
p = 0.005; Wilcoxon signed-rank test with false dis-
covery rate correction [81, 82]). In contrast, the av-
erage test accuracy for unimodal, self-supervised de-
coders is only 57% ± 5%, which is significantly lower
than both cross-modal and supervised model perfor-
mances (p = 7.32e − 4 for both). We find similar dif-
ferences among models for the EEG move/rest dataset,
with EEG test accuracy significantly affected by model
type (p = 1.73e−6). Again, the test accuracies of cross-
modal (74% ± 10%) and supervised (81% ± 8%) de-
coders are well above random chance (50%), but do sig-
nificantly differ from each other (p = 0.003). Still, both
cross-modal and supervised decoders substantially out-
perform unimodal, self-supervised models (50% ± 6%,
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p = 9.20e−5 for both comparisons), demonstrating the
usefulness of cross-modal training for self-supervised
neural decoding.

For both move/rest tasks, all three model types de-
code unseen arm position with over 90% accuracy.
We find that this pose decoding performance is sig-
nificantly affected by model type for EEG move/rest
(p = 9.65e − 6), but not for the ECoG move/rest
dataset (p = 0.067). For ECoG move/rest, supervised
models are the most accurate at decoding move/rest
from 2D arm position (99% ± 1%), followed by uni-
modal (98% ± 3%) and cross-modal (97% ± 3%) mod-
els. When decoding 3D arm position for the EEG
move/rest dataset, we find that cross-modal models
(94%±4%) have a small but significant decrease in de-
coding performance compared to supervised (98%±2%,
p = 0.002) and unimodal (98% ± 2%, p = 0.002) mod-
els. These high test accuracies for all decoders indicate
how separable the move and rest classes are when de-
coding arm position. Cross-modal models are able to
leverage this high separability in the arm position data
stream to improve self-supervised neural decoding per-
formance, which explains why cross-modal neural de-
coders notably outperform unimodal, self-supervised
models.

2.1.2 Decoding finger flexion

When testing decoding performance on a more com-
plex task, we find that pairwise cross-modal training
again improves neural decoding performance substan-
tially compared with unimodal, self-supervised models
and nears supervised model performance (Fig. 3). We
observe a significant effect of model type on neural de-
coding for this task (p = 0.002). Cross-modal neural
decoders (53%±12%; mean±SD) achieve substantially
higher test accuracies than unimodal, self-supervised
models (23%±4%) and approach supervised model per-
formance (57% ± 9%). Unimodal neural decoders per-
form near random chance (20%) for most participants,
which is significantly worse than both cross-modal and
supervised neural decoders (p = 0.012 for both).

Similar to decoding arm position for the move/rest
datasets, all three model types can decode unseen fin-
ger joint angles at or above 90% accuracy. We ob-
serve a significant effect of model type on test accu-
racy when decoding joint angles (p = 0.008). Cross-
modal joint angle decoders (90% ± 14%) have a small
but significant decrease in performance compared to
supervised models (100%± 1%, p = 0.023). Unimodal,
self-supervised model accuracy (91% ± 14%) is simi-
lar to cross-modal performance, indicating that super-
vised training yields more robust joint angle decoders
than self-supervised learning. One explanation is this
dataset contains a low number of events per class (23±7
events per class) and that adding more training data
would close the performance gap between supervised
and self-supervised models. Regardless, cross-modal
training is again able to leverage the high separabil-
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Figure 3: Cross-modal neural decoders achieve
comparable performance to supervised models for
decoding finger flexion. (a–b) Cross-modal decoders
again leverage the high separability in finger joint angles for
different finger movements to nearly match supervised neu-
ral decoding performance. (c–d) Decoding performance is
shown for each participant, averaged over 10 random folds.
Random chance is indicated by the dashed, horizontal line
at 20%.

ity within the finger joint angle data stream to train
high-quality neural decoders.

2.1.3 Decoding balance perturbations

For decoding balance perturbations, our results are
consistent in observing that the pairwise cross-modal
neural decoders outperform unimodal, self-supervised
models and approach supervised model performance
(Fig. 4). Because many participants performed this
task, almost all comparisons of decoder test accuracy
are statistically significant (p < 0.05), except between
the two pairwise cross-modal models for the EEG data
stream (p = 0.154). Still, we find that the pair-
wise cross-modal neural decoders (EEG/body pose:
79% ± 18%; EEG/EMG: 77% ± 19%) perform in be-
tween unimodal, self-supervised models (62% ± 18%)
and supervised models (88% ± 24%). Note that these
average test accuracies are heavily influenced by poor
decoding performance near random chance (25%) for
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Figure 4: Cross-modal decoding across three data streams matches or even exceeds supervised model
performance. (a–c) We performed cross-modal decoding using two or all three data streams. Cross-modal models
using all three data streams perform similar to or slightly better than supervised decoders, demonstrating that sharing
information among multiple data streams can lead to robust neural decoders even without labeled training data. (d–
f) Single-participant test accuracies show the high variability decoding performance, especially for the EEG data stream.
This high variability in EEG decoding performance is not surprising because recordings took place during perturbed
balance-beam walking and are likely contaminated with noise from head motion, neck muscles, and eye movements.
Random chance is denoted by the dashed, horizontal line at 25%.

P02, P04, P11, and P15. These and other neural de-
coding outliers reflect the variable signal quality across
participants during mobile EEG recordings, especially
with only minimal pre-processing to reduce noise. Even
so, pairwise cross-modal neural decoders using either
body position or EMG clearly outperform unimodal,
self-supervised models and demonstrate that any task-
relevant data stream can be useful in improving self-
supervised decoding performance.

Unlike the other datasets, pairwise cross-modal neu-
ral decoders approach supervised model performance
despite using a non-neural data stream that is not
easily separable across classes. Supervised decod-
ing performance is well above chance (body position:

81% ± 10%; EMG: 84% ± 6%), but not at the near-
perfect test accuracies seen for the other datasets. Sim-
ilarly, unimodal, self-supervised models only achieve
∼ 50% test accuracy (body position: 54%±10%; EMG:
46%±5%), which is far below pairwise cross-modal ac-
curacies for decoding body position (EEG/body pose:
75% ± 10%; body pose/EMG: 70% ± 12%) and EMG
(EEG/EMG: 77%± 8%; body pose/EMG: 73%± 9%).
These results demonstrate how cross-modal training
can still develop high-quality self-supervised decoders,
even without an easily separable data stream.

6

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459775doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.10.459775
http://creativecommons.org/licenses/by-nd/4.0/


2.2 Cross-modal decoding with three
data streams

By combining all three data streams from the EEG
balance perturbations dataset, we improve cross-modal
decoding performance to nearly match or even slightly
exceed supervised model performance (Fig. 4). Again,
almost all comparisons are statistically significant (p <
0.05) due to how many participants are in this dataset.
For decoding EEG, trimodal neural decoding perfor-
mance (87% ± 21%) is substantially higher than uni-
modal and pairwise cross-modal accuracies. We do
find a small but significant decrease in trimodal perfor-
mance compared with supervised decoders (p = 0.003),
but both decoders are within ∼ 1–3% for most partic-
ipants. In addition, trimodal decoding performance
for the non-neural data streams is notably increased
compared to pairwise cross-modal decoders (body po-
sition: 81% ± 16%, EMG: 85% ± 8%). For decoding
body position, trimodal decoding performance is not
significantly different from supervised decoder accu-
racies (p = 0.133). For EMG decoding, we actually
observe a small but significant increase in trimodal de-
coding accuracy over supervised decoding performance
(p = 0.005). We also find similar differences among
model types for clustering performance (Table S3).
Taken together, our findings demonstrate that includ-
ing additional data streams can lead to robust self-
supervised decoders that do not require labeled train-
ing data.

2.3 Effect of expected number of clus-
ters on performance

We also assess how the expected number of clusters
(K) impacts pairwise cross-modal performance, find-
ing that selecting a value for K that is above the true
number of classes notably affects test accuracy but not
clustering performance (Fig. S1). We performed this
assessment on the ECoG finger flexion dataset. For
both data streams, setting K to less than the number
of classes led to decreases in test accuracy and cluster-
ing performance relative to cross-modal models with K
equal to the number of classes. In addition, we found
that over-clustering, or setting K to greater than the
number of classes, also decreases test accuracy com-
pared with K equal to the number of classes, likely
because the model had difficulty generalizing clusters
that divided up the same class. In contrast, cluster-
ing performance for over-clustered models increases or
stays the same compared to models with K equal to the
number of classes. These findings highlight the impor-
tance of carefully selecting K depending on the overall
goal; if generalized decoding is desired, then K should
be carefully chosen, but if clustering is the primary
objective, then choosing a large K should be sufficient.

3 Discussion

In this paper, we demonstrate that cross-modal deep
clustering extends well to neural decoding applications.
We show four examples where cross-modal neural de-
coders achieve performance that approaches supervised
models despite using no labeled data. Because neu-
ral recordings are routinely measured simultaneously
with multiple other data streams, we also extend this
cross-modal approach to include more than two data
streams and find notably improved performance when
adding a third data stream to train cross-modal neu-
ral decoders. Our findings demonstrate that includ-
ing additional, task-relevant data streams during cross-
modal training leads to robust, self-supervised neural
decoders that do not require labeled data.

To our knowledge, cross-modal deep clustering is
the first self-supervised approach that can create high-
performing neural decoders from unlabeled data with-
out relying on contrastive learning and data augmen-
tations. This approach seems to perform well because
variations among different, task-relevant data streams
reduce overfitting during model training, similar to
what is achieved by data augmentation [52, 53]. Even
supervised neural decoders can overfit to the inher-
ent variability of neural data, as well as task-irrelevant
changes in neural activity due to factors such as fatigue
and emotional state [14, 83, 84]. These task-irrelevant
patterns are less likely to appear across multiple data
streams, thus reducing the tendency to overfit. This
hypothesis also explains why adding more data streams
improves cross-modal decoder performance for the
EEG balance perturbations dataset (Fig. 4) and un-
derlies many sensor fusion and multi-modal approaches
for reliable neural decoding [71–73, 85, 86]. Our pro-
posed approach for cross-modal deep clustering us-
ing any number of data streams (Fig. 5) leverages
the multiple neural, physiological, and kinematic data
streams often collected in neuroscience research stud-
ies [24,66–70,87,88].

Cross-modal deep clustering can also be adapted to
a wide variety of different model architectures and data
streams. Here, we used a convolutional neural network
(HTNet) for decoding [25], but we could have applied a
larger convolutional neural network model or added re-
current layers [89, 90]. Such adjustments could poten-
tially improve decoding accuracy, but would increase
training time and possibly require more training data
to train. HTNet is also able to pool neural data across
multiple participants, raising the possibility of train-
ing neural decoders on unlabeled, multi-participant
data [25]. In addition to its flexibility in model archi-
tecture, cross-modal deep clustering can also be applied
to any data streams that are synchronously recorded.
We chose kinematic data streams such as body posi-
tion and joint angle because of their high relevance
to movement behaviors [91]. Ideal data streams con-
tain high-quality, task-relevant information. For ex-
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ploratory analyses of large neural datasets, selecting
certain data streams could also be used to bias models
towards decoding specific behaviors.

Despite its impressive decoding performance on un-
labeled data, cross-modal deep clustering has multiple
limitations to consider. First, like with many cluster-
ing algorithms, the number of expected clusters must
be chosen with extreme care to obtain high-quality de-
coding performance on unseen data (Fig. S1). One way
to decide on a reasonable number of expected clus-
ters without data labels is to generate clusters for a
subset of examples, train a classifier using the clus-
ter assignments, and test how well this classifier’s pre-
dictions match the cluster assignments for the unseen
data. This cross-validation approach has been used
for selecting the optimal number of clusters during k-
means clustering [92]. Another limiting factor of our
current approach is that it requires segmented, event-
related neural data that transitions from a consistent
baseline rest state. We could have potentially extended
our approach to continuous data using a sliding win-
dow [93, 94], but we would have to account for event
transitions from non-rest states [95]. Finally, our ap-
proach may not be appropriate for decoding imag-
ined movements, where kinematic data streams are not
available. Still, studies have shown that other data
streams such as eye gaze, heart rate, and muscle ac-
tivity can be affected by imagined movements [96–98]
and thus may be useful for cross-modal decoding of
imagined movements.

This cross-modal deep clustering approach can be
extended to a wide variety of neural decoding appli-
cations where limited labeled data is available, includ-
ing predicting mood and somatosensation [99,100]. In
addition, fine-tuning and other transfer learning tech-
niques can be readily applied to improve trained model
performance, as is often done for self-supervised mod-
els [52, 53]. Our current approach of randomly shar-
ing pseudo-labels for more than two data streams may
be made more rigorous by weighting each data stream
based on its reliability and data quality. Data augmen-
tations could also be useful in improving decoder per-
formance. While we focused on self-supervised learning
without data augmentations, deep clustering has been
frequently applied to augmented data [38, 39, 74]. Us-
ing multiple data streams should help minimize any bi-
ases introduced by a specific data augmentation. Over-
all, cross-modal deep clustering is a promising alterna-
tive to tedious data annotation and provides a reliable
framework for achieving high-quality neural decoding
when curating an annotated dataset is difficult or in-
feasible.

4 Methods

4.1 Cross-modal deep clustering

We implemented the unimodal deep clustering ap-
proach from Asano et al. [74] (Fig. 5(b)). This uni-
modal approach alternates between (1) optimizing the
decoding model given the current pseudo-labels and (2)
updating the pseudo-labels given the current decod-
ing model. This first step involves minimizing cross-
entropy loss, similar to supervised training (Fig. 5(a)).
In the second step, the Sinkhorn-Knopp algorithm
takes in the model outputs and updates the label as-
signments with the constraint that the pseudo-labels
must equally partition the data among the expected
number of clusters [74, 75]. This constraint avoids sit-
uations where all events are assigned the same pseudo-
label and the model minimizes cross-entropy loss by
always predicting the same label [74]. We primarily
set the number of expected clusters (K) equal to the
number of true clusters and later explored the effects
of K on model performance. All models were created
and trained using Python 3.8.5 and PyTorch 1.7.1.

We modified this unimodal approach from Asano et
al. [74] to share pseudo-labels across multiple modal-
ities as done in Alwassel et al. [26] (Fig. 5(c)). This
cross-modal deep clustering approach was found to out-
perform other multi-modal deep clustering models [26].
Cross-modal deep clustering involves swapping pseudo-
labels between the two data streams when optimizing
the decoding model. This swapping directly affects not
only how the decoding model is learned, but also in-
directly what the pseudo-labels are because they are
generated from the decoding model’s output.

We extend this pairwise cross-modal deep cluster-
ing approach to accommodate more than two data
streams. For each event, we randomly select a pseudo-
label to train the decoding model for a particular data
stream from any of the other data streams. When
there are only two data streams, the two models sim-
ply swap pseudo-labels, just like the previous pairwise
approach [26]. With our extended N-wise cross-modal
deep clustering approach, we assume that the decod-
ing models for every data stream will converge to sim-
ilar pseudo-labels by the end of training. Otherwise,
the trained models may be biased to the most recent
pseudo-labels used during training.

4.2 HTNet decoding model

For the decoding model, we used HTNet [25], a convo-
lutional neural network for generalized neural decod-
ing. We chose HTNet because it has few parameters
and identifies data-driven spatiotemporal features in
the frequency domain, where neural data is often most
easily separated. We also applied HTNet for decoding
all non-neural data streams to maintain consistency
across datasets. We used the user-defined number of
expected clusters to determine the size of HTNet’s out-
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Figure 5: Supervised and self-supervised training paradigms. We compare performance of supervised neural
decoders with unimodal and cross-modal self-supervised deep clustering models. (a) Supervised decoders are trained
using the true data labels. (b) In contrast, deep clustering self-generates pseudo-labels by clustering the neural network
model outputs and then uses these pseudo-labels to train the model. Note that the neural network and clustering
technique are alternately optimized during training. (c) In cross-modal deep clustering, decoder models for each data
steam are trained using pseudo-labels randomly selected from all other data streams except itself. For all supervised and
self-supervised approaches, we used HTNet, a convolutional neural network for decoding ECoG and EEG data, as the
neural network decoder.

put layer. That way, HTNet generates one value for
each expected cluster, which are transformed using the
softmax function into joint probabilities estimated by
the model. These estimated probabilities are compared
to the pseudo-label for event and cross-entropy loss be-
tween the two is minimized [74].

We slightly modified the original HTNet architecture
by replacing the initial temporal convolution layer with
SincNet filters [101]. Instead of learning the entire con-
volution kernel, each SincNet filter learns only the min-
imum and maximum frequency cutoffs for a pre-defined
band-pass filter. Compared with a temporal convolu-
tion layer, SincNet filters are less biased towards low
frequencies because they do not need to learn the com-
plex kernel shape often needed for isolating high fre-
quencies. We found that SincNet filters improve HT-
Net’s performance, especially for data streams such as
ECoG with task-relevant features at high-frequencies.

4.3 Datasets

We assess cross-modal deep clustering performance on
four datasets that span a variety of tasks and record-
ing modalities (Table 1). All four datasets are pub-
licly available and include at least one other synchro-
nized data stream besides the neural recording. Note
that we did not discard noisy events for any dataset.
Variability in the number of events across participants
reflects either differences in the number of events ac-
tually recorded or events that were discarded because
not enough data was available to segment.

4.3.1 ECoG move vs. rest dataset

Concurrent intracranial ECoG and upper-body posi-
tions were obtained from 12 human participants (8
males, 4 females; aged 29±8 years old [mean±SD]) dur-
ing continuous clinical epilepsy monitoring conducted
at Harborview Medical Center in Seattle, WA [56, 76,
102]. ECoG electrodes were implanted primarily in one
hemisphere (5 right, 7 left) and included cortical sur-

9

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459775doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.10.459775
http://creativecommons.org/licenses/by-nd/4.0/


face recordings along with penetrating electrodes into
subcortical areas. This study was approved by the
University of Washington Institutional Review Board,
and all participants provided written informed consent.
ECoG and pose data were sampled at 500 Hz and 30
FPS, respectively. This dataset is publicly available at:
https://doi.org/10.6084/m9.figshare.16599782.

The goal is to discriminate between rest events
and movements of the arm contralateral to the im-
planted electrode hemisphere. Move/rest classifica-
tions were determined via markerless pose tracking
of video recordings and automated state segmenta-
tion [76]. Move events were defined as wrist move-
ments that followed 0.5 seconds of no movement. In
contrast, rest events denoted periods of 3 or more sec-
onds with no movement in either wrist. We balanced
the number of move/rest events using random under-
sampling [103], leading to 1155±568 events per partic-
ipant.

ECoG data was preprocessed by removing DC drift,
high-amplitude discontinuities, band-pass filtering (1–
200 Hz), notch filtering, referencing to the common
median across electrodes, and downsampling to 250
Hz [56]. We selected two-dimensional pose trajecto-
ries obtained from video recordings for 3 keypoints
(shoulder, elbow, and wrist of the contralateral arm)
and computed the difference between neighboring time-
points. Data from both modalities were trimmed to
2-second segments centered around each event.

4.3.2 EEG move vs. rest dataset

Concurrent EEG and arm positions were recorded
from 15 human participants during visually cued el-
bow flexion (6 males, 9 females; aged 27±5 years old
[mean±SD]). EEG data was recorded from 61 elec-
trodes and sampled at 512 Hz. For pose data, we
selected three-dimensional elbow and wrist positions
recorded by an exoskeleton during the experiment and
sampled at 512 Hz. This study was approved by the
ethics committee of the Medical University of Graz,
and all participants provided written informed con-
sent [61]. This dataset is publicly available at: http:

//bnci-horizon-2020.eu/database/data-sets.

Similar to the previous dataset, the decoding task
involves 2-class classification of either move or rest
events. Here, a move event corresponds to cued elbow
flexion of the right arm. Each participant performed
120 total trials (60 movement and 60 rest trials). We
aligned data segments to movement onset, which was
identified by thresholding the wrist’s radial displace-
ment after the visual cue to move.

EEG data was notch filtered at 50 Hz, referenced
to the right mastoid, and band-pass filtered (0.01–200
Hz). We performed further processing by high-pass
filtering at 1 Hz, average referencing, and resampling
to 250 Hz. Three-dimensional pose trajectories were
obtained from each participant’s right elbow and hand,

and we computed the difference between neighboring
timepoints to quantify the change in position.

4.3.3 ECoG finger flexion dataset

ECoG and finger joint angles were recorded concur-
rently from 9 human participants during visually cued
finger flexion (3 males, 6 females; aged 27±9 years
old). ECoG electrodes were implanted primarily in
one hemisphere (2 right, 7 left) and included only cor-
tical surface recordings (38–64 electrodes per partic-
ipant). Finger joint angles were recorded using a 5
degree-of-freedom dataglove sensor [62]. All patients
participated in a purely voluntary manner, after pro-
viding informed written consent, under experimental
protocols approved by the Institutional Review Board
of the University of Washington (#12193). All patient
data was anonymized according to IRB protocol, in ac-
cordance with HIPAA mandate. These data originally
appeared in the manuscript “Human Motor Cortical
Activity Is Selectively Phase-Entrained on Underlying
Rhythms” published in PLoS Computational Biology
in 2012 [62]. Both ECoG and finger joint angles were
originally sampled at 1000 Hz. This dataset is pub-
licly available at: https://searchworks.stanford.

edu/view/zk881ps0522 [40].

The decoding task here is to classify which of five
fingers is being flexed. All finger flexions occurred
in the hand contralateral to the ECoG implantation
hemisphere. Each cued finger flexion lasted 2 seconds,
followed by 2 seconds of rest. Every participant per-
formed 150 pseudo-randomly interleaved finger flexions
(30 for each finger).

We discarded one participant due to an inability to
obtain cued movement times. ECoG data was band-
pass filtered between 4–250 Hz, notch filtered at 60 Hz
and its harmonics, average referenced, and downsam-
pled to 250 Hz. Pose data was standardized and also
downsampled to 250 Hz. We removed finger flexion
events where no movement occurred.

4.3.4 EEG balance perturbations dataset

Concurrent EEG, electromyography (EMG), and
three-dimensional body position were collected from
30 human participants during sensorimotor perturba-
tions to standing and walking balance (15 males, 15
females; aged 23±5 years old [mean±SD]) [63]. EEG
data was recorded from 128 electrodes and sampled
at 512 Hz. EMG was sampled at 1 kHz and col-
lected from 4 muscles on each leg (8 total): tibialis
anterior, soleus, medial gastrocnemius, and peroneus
longus. Three-dimensional body position of the head
and sacrum was recorded using motion capture mark-
ers with 100 Hz sampling. This protocol was approved
by the University of Michigan Health Sciences and Be-
havioral Sciences Institutional Review Board, and all
subjects provided written informed consent [63]. This

10

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459775doi: bioRxiv preprint 

https://doi.org/10.6084/m9.figshare.16599782
http://bnci-horizon-2020.eu/database/data-sets
http://bnci-horizon-2020.eu/database/data-sets
https://searchworks.stanford.edu/view/zk881ps0522
https://searchworks.stanford.edu/view/zk881ps0522
https://doi.org/10.1101/2021.09.10.459775
http://creativecommons.org/licenses/by-nd/4.0/


dataset is publicly available at: https://openneuro.

org/datasets/ds003739.

The decoding task for this dataset is to classify be-
tween two sensorimotor perturbations during either
standing or walking (4 total classes). Sensorimotor per-
turbations involved either a 1-second mediolateral pull
at the waist or a half-second 20 degree field-of-view
rotation using a virtual reality headset. Each class in-
cludes 150 events recorded during a separate 10-minute
recording session and balanced between left/right pulls
or clockwise/counterclockwise rotations.

EEG data were downsampled to 256 Hz, 1 Hz high-
pass filtered, and referenced to the common median
across electrodes. We removed the linear trends in
EMG and pose data using Matlab 2013a. EMG and
pose data were then resampled to match the EEG sam-
pling rate of 256 Hz.

4.4 Model comparisons and hyperpa-
rameters

We compared decoder model performance after three
types of training: supervised, unimodal self-supervised,
and cross-modal self-supervised. All decoder hyper-
parameters were fixed across these three models; the
only difference was using either the true labels or self-
generated pseudo-labels during model training. We
trained supervised and unimodal, self-supervised mod-
els for 40 epochs, while cross-modal models were
trained for 200 epochs. We selected 40 epochs based on
the average number of epochs used to train HTNet on
similar neural data [25]. For that approach, the like-
lihood of overfitting was minimized by applying early
stopping based on improvement in validation set ac-
curacy. For cross-modal models, we performed model
training over many more epochs in order to provide
enough time to converge across all data streams. Un-
like unimodal and supervised models, we found that
cross-modal models did not overfit when trained over
hundreds of epochs.

We set decoder model (HTNet) hyperparameters for
the two move/rest datasets based on our previous de-
coding study [25]. For the ECoG finger flexion encoder,
we increased the number of spatial filters from 2 to 5
(Table S4) to adequately capture different spatial fea-
tures across finger movements. To keep the total num-
ber of fitted parameters low, we decreased the number
of temporal filters to 6. In addition, we didn’t use
SincNet and spectral power for the arm position data
to preserve the low-frequency features of the data. For
the EEG balance dataset, we similarly increased the
number of spatial filters to 3 and decreased the num-
ber of temporal filters to 6.

4.5 Model validation metrics

We chose two metrics for validating trained decod-
ing model performance: test accuracy and v-measure.

Both model validation metrics are always averaged over
10 folds, selected with stratified random sampling to
preserve the percentage of samples for each class within
each folds. Test accuracy measures model classification
accuracy on unseen data, while v-measure assesses the
model’s ability to separately cluster different classes.
For accuracy, we computed the linear mapping between
true and predicted clusters that yielded the maximum
accuracy on the training set [79]. Then, we computed
the accuracy on the test set using the same mapping
between true and predicted clusters. For v-measure,
we computed the harmonic mean of completeness (how
much of each class is present in a single cluster) and
homogeneity (how much each cluster is made up of
a single class) [78]. V-measure can range between 0
and 1, with 1 indicating perfect clustering. We focus
primarily on test accuracy instead of clustering perfor-
mance because we want trained decoding models that
can generalize to unseen data.

Code and data availability

Our code is publicly available at: https://github.

com/BruntonUWBio/cross-modal-ssl-htnet. The
code in this repository can be used in conjunction
with publicly available ECoG [40,76] and EEG [61,63]
datasets to generate all of the main findings and figures
from our study.
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[5] Stephanie Martin, Josédel R. Millán, Robert T.
Knight, and Brian N. Pasley. The use of intracra-
nial recordings to decode human language: Chal-
lenges and opportunities. Brain and Language,
193:73–83, 2019.

[6] Omid G Sani, Yuxiao Yang, Morgan B Lee,
Heather E Dawes, Edward F Chang, and
Maryam M Shanechi. Mood variations decoded
from multi-site intracranial human brain activity.
Nature Biotechnology, 36(10):954–961, 2018.

[7] David A Moses, Sean L Metzger, Jessie R Liu,
Gopala K Anumanchipalli, Joseph G Makin,
Pengfei F Sun, Josh Chartier, Maximilian E
Dougherty, Patricia M Liu, Gary M Abrams, et al.
Neuroprosthesis for decoding speech in a paralyzed
person with anarthria. New England Journal of
Medicine, 385(3):217–227, 2021.

[8] Alan D Degenhart, William E Bishop, Emily R
Oby, Elizabeth C Tyler-Kabara, Steven M Chase,
Aaron P Batista, and M Yu Byron. Stabilization
of a brain–computer interface via the alignment of
low-dimensional spaces of neural activity. Nature
Biomedical Engineering, pages 1–14, 2020.

[9] Emily R Oby, Jay A Hennig, Aaron P Batista,
M Yu Byron, and Steven M Chase. Intracortical
brain–machine interfaces. In Neural Engineering,
pages 185–221. Springer, 2020.

[10] Jennifer L Collinger, Robert A Gaunt, and An-
drew B Schwartz. Progress towards restoring upper
limb movement and sensation through intracorti-
cal brain-computer interfaces. Current Opinion in
Biomedical Engineering, 8:84–92, 2018.

[11] Xiaotong Gu, Zehong Cao, Alireza Jolfaei, Peng
Xu, Dongrui Wu, Tzyy-Ping Jung, and Chin-
Teng Lin. Eeg-based brain-computer interfaces
(bcis): A survey of recent studies on signal sens-
ing technologies and computational intelligence ap-
proaches and their applications. arXiv preprint
arXiv:2001.11337, 2020.

[12] Rajesh P. N. Rao. Brain-Computer Interfac-
ing: An Introduction. Cambridge University Press,
Cambridge, 2013.

[13] Chethan Pandarinath, K Cora Ames, Abigail A
Russo, Ali Farshchian, Lee E Miller, Eva L Dyer,
and Jonathan C Kao. Latent factors and dy-
namics in motor cortex and their application to
brain–machine interfaces. Journal of Neuroscience,
38(44):9390–9401, 2018.

[14] Joshua I Glaser, Ari S Benjamin, Raeed H Chowd-
hury, Matthew G Perich, Lee E Miller, and Kon-
rad P Kording. Machine learning for neural decod-
ing. Eneuro, 7(4), 2020.

[15] Nima Bigdely-Shamlo, Jeremy Cockfield, Scott
Makeig, Thomas Rognon, Chris La Valle, Makoto
Miyakoshi, and Kay A Robbins. Hierarchical event
descriptors (hed): semi-structured tagging for real-
world events in large-scale eeg. Frontiers in neu-
roinformatics, 10:42, 2016.

[16] Pierre Karashchuk, Katie L Rupp, Evyn S Dickin-
son, Elischa Sanders, Eiman Azim, Bingni W Brun-
ton, and John C Tuthill. Anipose: a toolkit for ro-
bust markerless 3d pose estimation. BioRxiv, 2020.

[17] Dongrui Wu, Yifan Xu, and Bao-Liang Lu. Trans-
fer learning for eeg-based brain-computer inter-
faces: A review of progress made since 2016, 2020.

[18] Jan Van Erp, Fabien Lotte, and Michael Tanger-
mann. Brain-computer interfaces: beyond medical
applications. Computer, 45(4):26–34, 2012.

[19] Gan Huang, Guangquan Liu, Jianjun Meng, Ding-
guo Zhang, and Xiangyang Zhu. Model based gen-
eralization analysis of common spatial pattern in
brain computer interfaces. Cognitive neurodynam-
ics, 4(3):217–223, 2010.

[20] Mike X Cohen. Analyzing Neural Time Series
Data: Theory and Practice, jan 2014.

[21] Longlong Jing and Yingli Tian. Self-supervised
visual feature learning with deep neural networks:
A survey. IEEE transactions on pattern analysis
and machine intelligence, 2020.

[22] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian,
Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-
supervised learning: Generative or contrastive.
IEEE Transactions on Knowledge and Data Engi-
neering, 2021.

[23] Karine Lacourse, Ben Yetton, Sara Mednick, and
Simon C Warby. Massive online data annotation,
crowdsourcing to generate high quality sleep spin-
dle annotations from eeg data. Scientific data,
7(1):1–14, 2020.

[24] Nancy Wang, Ali Farhadi, Rajesh Rao, and Bingni
Brunton. Ajile movement prediction: Multimodal
deep learning for natural human neural recordings
and video. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

[25] Steven M Peterson, Zoe Steine-Hanson, Nathan
Davis, Rajesh PN Rao, and Bingni W Brunton.
Generalized neural decoders for transfer learning
across participants and recording modalities. Jour-
nal of Neural Engineering, 18(2):026014, 2021.

12

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459775doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.10.459775
http://creativecommons.org/licenses/by-nd/4.0/


[26] Humam Alwassel, Dhruv Mahajan, Bruno Ko-
rbar, Lorenzo Torresani, Bernard Ghanem, and
Du Tran. Self-supervised learning by cross-modal
audio-video clustering. Advances in Neural Infor-
mation Processing Systems, 33, 2020.

[27] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. Distributed representa-
tions of words and phrases and their composition-
ality. In Advances in neural information processing
systems, pages 3111–3119, 2013.

[28] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805, 2018.

[29] Tom B Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-
shot learners. arXiv preprint arXiv:2005.14165,
2020.

[30] Diederik P Kingma and Max Welling. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[31] Ian Goodfellow, Jean Pouget-Abadie, Mehdi
Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative
adversarial nets. Advances in neural information
processing systems, 27, 2014.

[32] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie,
and Ross Girshick. Momentum contrast for unsu-
pervised visual representation learning. In Proceed-
ings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9729–9738,
2020.

[33] Ting Chen, Simon Kornblith, Mohammad
Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations.
In International conference on machine learning,
pages 1597–1607. PMLR, 2020.

[34] Davide Chicco. Siamese neural networks: An
overview. Artificial Neural Networks, pages 73–94,
2021.

[35] Hubert Banville, Omar Chehab, Aapo Hyvärinen,
Denis-Alexander Engemann, and Alexandre Gram-
fort. Uncovering the structure of clinical eeg signals
with self-supervised learning. Journal of Neural
Engineering, 18(4):046020, 2021.

[36] Priya Goyal, Mathilde Caron, Benjamin
Lefaudeux, Min Xu, Pengchao Wang, Vivek
Pai, Mannat Singh, Vitaliy Liptchinsky, Ishan
Misra, Armand Joulin, et al. Self-supervised
pretraining of visual features in the wild. arXiv
preprint arXiv:2103.01988, 2021.

[37] Jean-Bastien Grill, Florian Strub, Florent Altché,
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6 Supplementary Information
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Figure S1: Effect of cluster number on cross-modal decoding performance. (a–b) Cross-modal test accuracy
for the ECoG finger flexion dataset is highest when the number of clusters used to create the pseudo-labels matches the
true number of classes (5). (c–d) In contrast, v-measure performance remains the same or slightly increases when the
number of expected clusters is higher than the true number of classes. These findings demonstrate that the expected
number of clusters should be carefully selected, especially if generalized decoding performance is desired. Test accuracy
denotes average performance on withheld data over 10 folds, with random chance at 20%.
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Table S1: Decoding accuracy on the training data for cross-modal decoding. In most cases, we find that
train accuracies (mean±SD) are quite similar across decoders that share pseudo-labels. These similarities suggest that
much of the differences in cross-modal test accuracies among data streams is due to each decoder’s ability to generalize
to unseen data.

Dataset Data streams
Cross-modal
(with pose)

Cross-modal
(with neural)

Cross-modal
(with EMG)

Cross-modal
(all 3)

ECoG
move/rest

ECoG 97%±4% - - -
2D arm position - 97%±3% - -

EEG
move/rest

EEG 88%±8% - - -
3D arm position - 94%±4% - -

ECoG finger
flexion

ECoG 89%±12% - - -
finger joint angles - 89%±12% - -

EEG balance
perturbations

EEG 79%±18% - 77%±20% 87%±21%
3D body position - 77%±10% 71%±12% 84%±16%

EMG 76%±9% 80%±8% - 92%±7%

Table S2: V-measure clustering performance for pairwise cross-modal decoding. V-measure assessment of
cluster performance is shown for each dataset across participants (mean±SD). For nearly every data stream, cross-modal
decoding has higher clustering performance than unimodal decoders, similar to decoding test accuracy.

Dataset Data streams Supervised Unimodal
Cross-modal
(with pose)

Cross-modal
(with neural)

Cross-modal
(with EMG)

ECoG
move/rest

ECoG 0.59±0.17 0.05±0.04 0.53±0.20 - -
2D arm position 0.96±0.04 0.89±0.11 - 0.90±0.08 -

EEG
move/rest

EEG 0.44±0.17 0.09±0.03 0.35±0.19 - -
3D arm position 0.94±0.07 0.93±0.09 - 0.82±0.11 -

ECoG finger
flexion

ECoG 0.69±0.12 0.53±0.16 0.68±0.13 - -
finger joint angles 1.00±0.01 0.96±0.04 - 0.95±0.04 -

EEG balance
perturbations

EEG 0.83±0.31 0.47±0.22 0.69±0.21 - 0.66±0.23
3D body position 0.66±0.14 0.35±0.14 - 0.61±0.13 0.55±0.15

EMG 0.69±0.09 0.30±0.07 0.57±0.11 0.63±0.10 -

Table S3: V-measure clustering performance for cross-modal decoding of three data streams. Similar to
test accuracy, cluster performance across participants (mean±SD) for cross-modal models approaches or slightly exceeds
supervised cluster performance.

Dataset Data streams Supervised Unimodal
Cross-modal

(all 3)

EEG balance
perturbations

EEG 0.83±0.31 0.47±0.22 0.80±0.26
3D body position 0.66±0.14 0.35±0.14 0.67±0.20

EMG 0.69±0.09 0.30±0.07 0.72±0.11
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Table S4: Decoding model hyperparameters. Decoding model hyperparameter values are shown for each dataset
and data stream. We increased the number of spatial filters for datasets with more than 2 classes while reducing the
number of temporal filters to avoid large differences in model size between datasets. SincNet filters and spectral power
computation were either used (Y) or not used (N) for each data stream. Note that hyperparameter values were fixed
across all self-supervised and supervised model types.

Dataset Data streams
Temporal

filters
Spatial
filters

Use SincNet
filters

Compute spectral
power

ECoG move/rest
ECoG 19 2 Y Y

2D arm position 19 2 Y Y

EEG move/rest
EEG 19 2 Y Y

3D arm position 19 2 Y Y

ECoG finger flexion
ECoG 6 5 Y Y

finger joint angles 6 5 N N

EEG perturbations
EEG 6 3 Y Y

3D body position 6 3 Y Y
EMG 6 3 Y Y
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