
Modelling neural entrainment and its persistence:

influence of frequency of stimulation and phase at

the stimulus offset

Mónica Otero1,2, Caroline Lea-Carnall3, Pavel Prado4,
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Abstract.

The entrainment (synchronization) of brain oscillations to the frequency of sensory

stimuli is a key mechanism that shapes perceptual and cognitive processes, such

that atypical neural entrainment leads to neuro-psychological deficits. Objective. We

investigated the dynamic of neural entrainment. Particular attention was paid to

the oscillatory behavior that succeed the end of the stimulation, since the persistence

(reverberation) of neural entrainment may condition future sensory representations

based on predictions about stimulus rhythmicity. Approach. A modified Jansen-Rit

neural mass model of coupled cortical columns generated a time series whose frequency

spectrum resembled that of the electroencephalogram. We evaluated spectro-temporal

features of entrainment, during and after rhythmic stimulation of different frequencies,

as a function of the resonance frequency of the neural population and the coupling

strength between cortical columns. We tested if the duration of the entrainment

persistence depended on the state of the neural network at the time the stimulus

ends. Main Results. The entrainment of the column that received the stimulation

was maximum when the frequency of the entrainer was within a narrow range around

the resonance frequency of the column. When this occurred, entrainment persisted for

several cycles after the stimulus terminated, and the propagation of the entrainment

to other columns was facilitated. Propagation depended on the resonance frequency

of the second column, and the coupling strength between columns. The duration of

the persistence of the entrainment depended on the phase of the neural oscillation at

the time the entrainer terminated, such that falling phases (from π/2 to 3π/2 in a sine

function) led to longer persistence than rising phases (from 0 to π/2 and 3π/2 to 2π).

Significance. The study bridges between models of neural oscillations and empirical

electrophysiology, and provides insights to the use of rhythmic sensory stimulation for

neuroenhancement.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459802doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.10.459802


Modelling neural entrainment and phase dependent persistence 2

Keywords: model of entrainment, persistence of the entrainment, alpha phase and

persistence duration

Submitted to: Journal of Neural Engineering

1. Introduction

Sensory stimulation has being used for the modulation of brain oscillations for clinical

and non-clinical purposes due to their safety and effectiveness [1–5]. As a matter of fact,

neuromodulation is considered a promising therapeutic tool that promotes cognitive

enhancement by increasing the ability of distributed cortical networks to coordinate

and generates brain rhythms. The impairment of this oscillatory dynamics, which is

referred to as oscillophaties, can result in altered behavioral outcomes, and has impact

on several neurological and psychiatric disorders including schizophrenia, Alzheimer

disease, Parkinson’s disease, epilepsy and sleep disorders [6–13].

The theoretical framework supporting neuro-modulation states that the stimulus-

driving neural oscillations result from the synchronization (or coupling) of neural

oscillations to the frequency of external stimuli [14–17]. This process is referred to

as neural entrainment, and is argued to be a basic mechanism that shapes sensory

perception. Neural entrainment is crucial for structuring incoming information streams

for further processing, including, attention selection, learning, and motor execution

[14–18]. Speech perception, and music appreciation in particular, rely on neural

entrainment to extract relevant features from the continuous acoustic signals [14, 19].

When endogenous brain oscillations phase align to salient events in the sound stream,

particularly in the delta/theta (1-7.5 Hz) frequency band of the electroencephalogram

(EEG), the events are processed and perceived more readily than temporally non-

overlapping events [20–22].

Although well characterized from a phenomenological perspective, neuro-

modulation therapies based on periodic brain stimulation generally lacks mechanistic

models of how sensory stimulation interacts with the underlying brain oscillations,

causing changes in behavioral and perceptual responses [23]. These neural stimulation

tools may benefit from mathematical models of entrainment that contain plausible

physiological approximations.

Entrainment arises due to the phase realignment of endogenous oscillations to the

driving stimulus [14–17, 24]. When multiple oscillators are simultaneously recorded in

a mean field activity as in the case of EEG, their aligned phases add up, leading to

an increase in amplitude of the EEG oscillation [25]. Consequently, when periodic

sensory stimulation is presented, entrainment can lead to the generation of a steady-

state responses, i.e., scalp-recorded brain oscillations locked to the periodicity of the

sensory input. Typically, the steady-state responses are observed as an increase in the

power spectrum at the frequency of the driving stimulus [26].
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Empirical studies have found that the amplitude of entrained oscillations does

not return to the baseline immediately after the stimulus offset but remains relatively

high for approximately three consecutive cycles, i.e., the entrainment persists after the

stimulus offset [24, 27–33]. Consistent evidence supports the idea that the persistence

of this stimulus-driven brain oscillations after the stimulus offset represents a coding

mechanism of temporal expectations [27, 34]. In the visual domain, the persistence of

alpha EEG oscillations elicited by sinusoidally-varying light reflects the functioning of

fronto-occipital neuronal circuits, which may serve to prime the sensory representation

of incoming visual stimuli based on predictions about stimulus rhythmicity [27].

Furthermore, the persistence of the EEG alpha entrainment depends on the phase of the

stimulus-driven oscillatory activity at the time the visual stimulus is removed. While

longer persistence duration is observed when the visual stimulation terminates towards

the troughs of the alpha oscillations, the persistence of the entrainment is shortened

when the stimuli terminate near the peaks of the EEG oscillation [27].

There are no concrete theories describing how the entrainment persists after the

sensory stimulus is removed, or how the entrained signal is propagated between neural

regions. Additionally, the functional relationship between the frequency of the driving

stimulus, the intrinsic oscillatory properties of the neural circuit involved, and the

duration of the persistence is not well understood. While addressing this open question

experimentally is challenging, mathematical modelling provides a robust approach to

investigating mechanisms of neural entrainment using biophysical, generative models

of EEG oscillations, such as the modified version of the Jansen-Rit neural mass model

proposed by [35].

The Jansen-Rit NMM is a biophysical representation of the average activity of

a neural assembly, which can be thought of as a cortical column or even a cortical

region [36–38]. In its simplest form, Jansen-Rit NMM is able to reproduce spectral

features observed in EEG recordings but is limited to generating activity within a

single narrow frequency band around 10 Hz (alpha) [38–40]. This model generated

oscillatory EEG-like signals with a particular preferred oscillatory frequency, (referred

as to the resonance frequency), which correspond to the frequency at which a peak in

the power spectrum of the EEG is obtained. In the model, the resonance frequency of

the oscillation is mostly determined by the parameters controlling the the postsynaptic

membrane potential.

In order to simulate the full EEG spectrum, extensions to the original Jansen-

Rit NMM have been established. In this paper we focus on the work by David and

Friston [35] who proposed a neural mass consisting of multiple neural populations, such

that each population generates activity at a particular resonance frequency. The output

of the model is a weighted sum of each of these populations allowing the simulation of

rich dynamics much closer to that of physiological EEG recordings.Therefore, a preferred

oscillatory frequency emerged in the simulated EEG-like oscillation, being determined

by the relative proportion of neurons of the NMM tuned to a particular frequency.

In this study we employed a Jansen-Rit NMM comprising two coupled cortical
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columns, to represent the entrainment of intrinsic oscillations in the EEG alpha band

elicited by a sinusoidally varying light. We investigated possible mechanisms that sustain

the neural entrainment, as well as the persistence of the stimulus-driven oscillation

after the end of the stimulation. We analyzed the dynamics of the entrainment as a

function of the match between the resonance frequency of the NMM and the frequency

of the driving force. Furthermore, we investigated the relation between the duration

of the persistence of the entrainment and the terminating phase of the oscillatory

EEG-like activity of the NMM at the stimulus offset. Since it is well known that

primary visual cortex is hierarchically connected with other cortical regions processing

visual information, and that previous investigations have examined the propagation of

oscillatory signals between cortical columns [35, 38], we analyzed possible physiological

factors affecting the propagation of the entrainment. Our results contributes to

understand neural entrainment. More remarkable still, the results can contribute to

enhance the specificity and effectiveness of established neural stimulation tools, therefore

impacting the design of stimulation strategies for neuro-modulation therapies based on

periodic brain stimulation.

2. Methods

2.1. Model of entrainment using a Jansen-Rit NMM approach

Here we use a modified version of the Jansen-Rit NMM, proposed by David and

Friston [35] which allowed us to account for two populations; one tuned to alpha and

the other to gamma band resonance frequencies 1). The model is able to produce richer

dynamics than the standard Jansen-Rit model allowing for generation of the full EEG

spectrum.

We drove the model with ’external’ repetitive stimulus at a range of frequencies

to study the mechanisms of the entrainment and its persistence. We connected two

similar cortical columns, coupled in cascade (i.e., unidirectionally from column 1 to

column 2), following the approach in [35, 38] to investigate the conditions under which

the entrainment propagates from one unit to the next (Figure 2).

2.1.1. Double population Jansen-Rit NMM column:

In the model, it is assumed that a particular cortical area comprises several res-

onant neuronal circuits, where each circuit is tuned to a particular frequency. This

idea is supported by experimental results demonstrating that, while a particular brain

region is sensitive to several oscillatory drivers, it will display a maximum sensitivity to

a particular stimulation frequency (optimum frequency), and decreased sensitivities to

drivers with frequencies outside of this range (e.g., [41–43]).

The NMM column consisted of two neural populations, connected in parallel (Figure
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1). This combination allows the generation of a broadband EEG spectrum, from theta

to gamma oscillations [35]. Each cortical population (resonant circuits) were defined to

display different kinetics, such that they generated alpha (α) or gamma (γ) oscillations.

The model includes excitatory/inhibitory interneurons interacting with pyramidal

cells and uses two non-linear transformations. The first represents the site of generation

of action potentials, and is a wave-to-pulse conversion. This function relates the mean

firing rate of neurons to average post-synaptic depolarization. The other transformation

is a pulse-to-wave conversion implemented at a synaptic level, which models the average

post-synaptic response as a linear convolution of the incoming spike rate [35].

Each neural population comprised three sub-population (types) of neurons;

excitatory pyramidal cells, excitatory inter-neurons (spiny stellate cells) and inhibitory

interneurons (Figure 1). In this circuit, excitatory output of the pyramidal cells is

sent to both types of interneuron sub-populations, which provide feedback loops to the

pyramidal cells. The extrinsic input P (t), which is composed of noise plus any stimulus-

driven input is received by the pyramidal cells. The extrinsic input of the column

represents a pulse density with arbitrary units [40].
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Figure 1: The modified Jansen-Rit NMM.The cortical column is made of two populations (α

and γ neurons). Each population comprises three sub-population (types) of neurons; excitatory

pyramidal cells (gray shadow), excitatory inter-neurons (blue shadow) and inhibitory inter-

neurons (red shadow). The parameters rα and rγ tune the contribution of each sub-population

to the column such that when the column is pure α rα = 1 and when the column generates

pure γ oscillations rγ = 1 and rα = 1. The postsynaptic (PSP) functions are split into 2 parts

[hαe,i and hγe,i] representing populations of α and γ kinetics, respectively.
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Since each population (α and γ) have both excitatory and inhibitory sub-

populations, four postsynaptic generating functions are obtained for the column: hαe , hγe
and hαi , hγi (Table 1).

The parameters aα, Aα, bα, Bα were obtained from anatomical data [38,40], and were

determined such that the resonance frequency of the neural populations were in the α

frequency range of the EEG (≈10 Hz), to represent the visual cortex. The parameters

(aγ, Aγ, bγ, Bγ) are those described in [35] to represent local neuronal peacemakers [44].

Both sets of parameters used for the PSP generation of the two populations are presented

in Supplementary Tables 1 and 2.

Table 1: Postsynaptic generating functions for each neural population (α, and γ), and

their corresponding excitatory and inhibitory sub-populations

Type of sub-population α population γ population

Excitatory hαe (t) = Aαaαte−a
αt hγe (t) = Aγaγte−a

γt

Inhibitory hαi (t) = Bαbαte−b
αt hγi (t) = Bγbγte−b

γt

Aα,γ , Bα,γ represent the maximum amplitude of the excitatory and inhibitory PSP for each

sub-population and aα,γ , bα,γ are the so-called lumped parameters that take into account all

the distributed delays in the dendritic network [36].

The relative proportion of each population within the cortical column is controlled

by the “ratio” parameter r; 0 < r < 1 (Figure 1) [35]. As a consequence, when r = 1,

the NMM will generate α oscillations and when r = 0 oscillations will be in the γ range.

We define rα as the proportion of the α generating population, noting that rγ = 1− rα.

In the model, the EEG-like activity is represented by y (Figure 1), which is

computed as the linear sum of the outputs from each neural population of the column;

where y1α and y1γ are the outputs of the of the excitatory inter-neurons for both α

and γ populations respectively, and y2α , y2γ are the outputs of the of the inhibitory

inter-neurons for both α and γ populations respectively. We can consider this EEG-like

activity to represent the activity of the neural generators of the EEG, without taking

into account the volume conduction or the head geometry. Moreover, the output (mean

firing rate) of the pyramidal cells is represented by y0 (Figure 1).

The implicit assumption for the two-populations model is that every population

expresses the same cyto-architectonic structure, having on average the same inputs

and using identical constants Ck with k = 1, 2, 3, 4 as in [35]. The intra sub-population

connectivity constants C1, C2, C3 and C4 were determined using anatomical information

[38] and represent the average of the number of synaptic connections between sub-

populations (Figure 1). All the connectivity constants are expressed as a fraction of C

(Supplementary Materials Table 3).

Sigm(V ) denotes a nonlinear sigmoid function which transforms the average

membrane potential of a neural population into an average firing rate 1.The function

Sigm remains the same for each sub-population, for both excitatory and inhibitory

branches of the cortical column. The Sigm function (equation 1) shapes classical
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properties of neurons: thresholds and saturation for the generation of action potentials

[40].

Sigm(v) =
2e0

1 + eλ(v0−v)
(1)

In Equation 1, e0 determines the maximal firing rate of the population, λ

controls the steepness of the sigmoidal function, and v0 is the post-synaptic potential

corresponding to the 50% of the firing rate (e0). Moreover, v0 can be either viewed

as a firing threshold or as the excitability of the populations, whereas v is the average

pre-synaptic membrane potential. The values of these parameters were empirically

determined in [45].

2.1.2. Coupling two modified Jansen-Rit NMM columns

Inter-column connectivity is defined as in [35] (Figure 2). Both columns of the

model received uncorrelated extrinsic noise inputs (n1(t) and n2(t)) representing the

background noise in the cortex. Noise was sampled from a Gaussian distribution with

a mean of 221 and standard deviation of 31 [38,40].
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Figure 2: Schematic representation of the Jansen-Rit model consisting in two cortical columns

of two populations each. Areas are coupled in cascade (unidirectionally from column 1 to

column 2). Noise inputs n1(t) and n2(t) targets columns 1 and 2 at the same time, respectively,

but only the first column was targeted by the sinusoidal driven input S(t). The coupling

strength k12 mediates the connectivity between columns (equation 2).

Only the first column received a sinusoidal input S(t), which was added to the noise,

n1(t). The decision to use a sinusoidal function as input to the model, simulates the

effect of sinusoidally-varying stimulation of EEG oscillations, which include the effect of

the terminating phase of a driving stimulus (phase of the stimulation at the offset) on

the persistence of the entrainment [27].

The coupling strength from column 1 to column 2 was controlled by the coupling

coefficient [38], k12, which attenuates the output of the first column (y0) before feeding

into the second column (Figure 2). k12 was initially set as a value between 0 and 1,
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and was recalculated in every iteration [35] (noted as k12∗(n)) to adjust for the total

variance of the system as shown in Equation 2:

k12∗(n) =
σn2(n)

√
2k12− k122

σy0(n)
(2)

where σn2(n) is the variance of the noise input to column 2 and σy0(n) is the variance

of the output from column 1, both in the nth iteration. This allowed us to specify a

coupling coefficient k12∗(n) bounded between 0 (no coupling) and 1 (no extrinsic input

noise). The system of equations governing a 2-population 2-column model are given in

Supplementary Information.

All the simulations were implemented in Matlab (2014b). The stochastic Euler

expansion method was used to solve the system of ordinary differential equations

governing the behaviour of the units, with initial conditions set to zero. Parameter

values can be found in Supplementary Information 1, 2, 3 and 4. The system was

approximated via an Euler expansion with an integration step of ∆t = 1ms [46] as it has

been shown that the numerical solution generated with this method has a distribution

that resembles the distribution of the exact solution in the mean square sense (mean-

square error of order ∆t2) [47]. In a pilot study, we found that doubling or halving the

length of the integration step did not effect the results.

2.2. Simulations

Initially, we tested the effects of entrainment on a single column (equivalent to have

coupled columns with k12 = 0).

• The power of alpha oscillations of column 1 as a function of α proportion rα, when

a combination of white noise and an 11 Hz oscillation was the input of column 1

(section 3.1).

• The power spectrum of the oscillatory activity of a cortical column as a function of

rα and the frequency of the driving force (section 3.1).

• The duration of the entrainment persistence as a function of rα (section 3.2). The

methodology followed to compute the persistence duration is described in Methods

section 2.3.

Next, we tested propagation of the entrained signal between 2 columns.

• The power of the entrainment of column 2, as a function of rα of the column 2, the

rα of column 1, and k12, when the first unit received an 11-Hz oscillatory input

(sections 3.3 and 3.4).

• The duration of the entrainment persistence of column 2, as a function of rα of

the column 2, the rα of column 1, and k12, when the first unit received an 11 Hz

oscillatory input (sections 3.5).
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• The effect of the terminating phase of the sinusoidally input of column 1 on the

persistence duration of column 2, when rα=0.9 for both columns, and k12=0.9

(section 3.6).

Unless explicitly stated otherwise, simulations were run for a total of 5000 time steps

(5 s). The stimulus lasted for 2745 ms, such that the terminating phase of the oscillation

was π. The model output (y) was divided into three stages: baseline pre-stimulus (the

1-second period just preceding the stimulus onset), SSVEP interval (defined as the time

interval between 0.5 s after the stimulus onset and the stimulus offset), and post-stimulus

stage (from the stimulus offset to the end of the simulation.

Simulations were performed such that rα was varied between 0.1 and 0.9, in steps

of 0.1. We simulated 1000 trials for each rα value. From the pool of traces obtained

for each rα, 50 trials were randomly sampled without replacement. This operation was

repeated 30 times to simulate 30 individuals with 50 trials each. The power spectrum

of the ongoing oscillations (pre-stimulus interval, 1 s before the stimulus onset), and

the neural entrainment (time interval between 0.5 s after the stimulus onset and the

stimulus offset) were computed using the discrete Fourier transform. The mean power

spectrum [48] of both baseline and entrainment was computed for each rα in each subject

(50 trials). Following, the corresponding sample mean (30 subjects) was obtained.

2.3. Persistence of the entrainment duration computation

We computed the persistence duration of the model output after the stimulus offset

as described in [27] (Figure 3). In summary, for each experimental condition (phase

termination), 50 trials were randomly sampled without replacement 30 times from the

entire data, such that the response of 30 subjects with 50 trials each was simulated.

Trials belonging to the same subject were averaged in the time-domain (simulating an

experimental condition in a particular individual) (Figure 3 A). The averaged signals

were narrow-band filtered (±1 Hz around the stimulation frequency), using a zero-phase

shift Butterworth filter of order 8 (time constant of 0.018 s for a 10 Hz oscillation). As

described by Otero et al. [27], this procedure did not affect the evident oscillatory activity

which succeeded the stimulus offset. Narrow-band filtering of the signal was performed

to allow estimation of the physiological parameters of the entrainment (amplitude of

the oscillations, duration of the persistence, among others) from the envelope of the

time-domain averaged signal, which in turn was computed using the Hilbert transform.

Computation of envelopes using the Hilbert transform is particularly recommended on

narrow-band filtered signals [49–52].
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Figure 3: Summary of the pipeline for calculating the persistence duration (PD). (A) SSVEP

signals are bandpass filtered ±1 Hz around the frequency of stimulation. The envelope of

the SSVEP signal is extracted using the Hilbert transform, which results in an instantaneous

estimate of the amplitude. Dashed vertical lines represent the stimulus onset and offset,

respectively. (B) Time points beyond stimulus offset are classified into entrained (blue) or not

entrained (red) regions. Persistence duration is defined as the time from stimulus offset where

the signal is continuously classified as belonging to the entrained distribution.

We use the Hilbert function provided in Matlab to obtain Discrete-time analytic

signal and its envelope. The time resolution of the Hilbert transform was calculated

such that the Full-Width at Half-Maximum (FWHM) of the impulse response of the

Hilbert transform corresponded to 7.8 ms.

Simulated signals were divided in (pre-stimulus interval, 1 s before the stimulus

onset), and the neural entrainment (time interval between 0.5 s after the stimulus onset

and the stimulus offset) (Figure 3 A). Individual classifiers were constructed based on

the amplitude distribution of pre-stimulus (stimulus off, not entrained) and during 1 s

of stimulation (SSVEP, computed in the time period between 1 and 2 seconds after the

stimulus onset). This step allowed us to identify the boundary between the persistence of

entrainment and baseline. This methodology followed a signal detection approach [53],

where two distributions are discriminated: the “noise” distribution given by the baseline

(in this case, the simulated ongoing EEG) and the “signal” distribution given by the

entrainment (simulated SSVEP signal). Gaussian functions were fit to the instantaneous

amplitudes of pre-stimulus and SSVEP, and the constructed normal distributions were

used to calculate the probability of the post-stimulus amplitudes belonging to either

baseline or entrained stages. The cutoff value for classification was the intersection

between the baseline and the entrained distributions. Therefore, the boundary between

the persistence of entrainment and post-stimulus baseline (cutoff value) was defined

using a neutral decision criterion, where neither stage was favored [27]. The duration of

the persistence of entrainment was defined as the time interval after the stimulus offset

which was classified as belonging to the entrained stage, or conversely, that differed from
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baseline (Figure 3B).

3. Results

3.1. Simulation 1: Neural entrainment as a function of resonance

frequency of the NMM

Initially, we investigate the effects of entrainment and persistence on a single-column

model. In this section, the NMM column was tuned to exhibit different intrinsic

oscillatory activity which was achieved by varying the relative proportion of α and

γ populations. We observe the effect of an entraining frequency in the α range (11 Hz)

on the columns dynamics. A detailed analysis of the intrinsic oscillations can be found

in Supplementary Information.

In Figure 4, we illustrated examples of the activity generated by single columns

with intrinsic oscillations in the gamma range (rα = 0.2, and rα = 0.3), as well

as alpha oscillations (rα = 0.8, and rα = 0.9) when an 11 Hz driving force was

applied. As expected, intrinsic oscillations were evident before the presentation of the

stimulus. The frequency of these intrinsic oscillations depended on rα. Columns with

low rα exhibited basal oscillations in the gamma frequency-range, columns with high rα)

exhibited intrinsic oscillations in the alpha frequency range (Figure 4, middle panels).

After the stimulus onset (time 0 s), amplitude of the intrinsic oscillation increased as

compared to the pre-stimulus interval. The amplitude of the oscillation remained stable

until the end of the stimulation. In other words, the 11 Hz driver entrained the intrinsic

oscillation of the NMM column (Figure 4, left panels). Consequently, power spectra

had a clear peak at the frequency bin corresponding with that of the oscillatory input

(Figure 4, right panels). Hereafter, this spectral peak will be referred as the alpha power

of entrainment.
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Figure 4: Examples of the response of single NMM column to oscillatory external drivers of

11 Hz. The examples correspond to α proportion values of rα = 0.2 and rα = 0.3, which

resulted in the generation of gamma oscillations, and rα = 0.8 and rα = 0.9, which resulted

in alpha oscillations. For each rα, the time series and power spectrum of the column activity

are presented. The time series represent the time-average of all the trials. The onset of the

stimulation corresponds to time zero, whereas the stimulus offset is represented by a dashed

vertical line. Power spectrum was computed for both basal and entrained conditions.

Alpha power at the entraining frequency was found to be directly related to rα, such

that higher values for rα were associated with greater power at the entraining frequency.

Based on the results presented above, the parameter rα should be interpreted as the

ability of the columns to be entrained to extrinsic alpha oscillations.
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A comprehensive representation of the effect of rα on the power of the alpha

entrainment elicited by a 11 Hz driving force is illustrated in Figure 5. When the

proportion of neurons tuned to alpha oscillations was less than 0.5, the power of alpha

oscillations were relatively small. However, for rα between 0.1 and 0.5, the mean

alpha power was always higher than zero. For rα higher than 0.5, the alpha power

systematically increased, although a robust entrainment was only obtained when rα

was 0.9.

Figure 5: Alpha power as a function of the α proportion (rα) in a single-column NMM. The

frequency of the driver was 11 Hz and α proportion rα was varied from 0.1 to 0.9 in steps of

0.1. Values represent the mean ± standard deviation of power, calculated from 50 simulations

of the neural activity.

The results presented above were expanded to analyze the combined effect of α

proportion (rα) and the frequency of the driving force on the power spectrum of the

oscillatory activity of a NMM. To this end, the frequency of the oscillatory input (S(t),

Figure 2) was varied from 1 up to 60 Hz, in steps of 1 Hz. Simultaneously, the α

proportion was varied between rα = 0.1 and rα = 0.9, in steps of 0.01.

The most prominent feature of the model dynamics was the presence of two clear

spectral peaks. They were obtained when the frequency of the driving force corresponded

to the resonance frequency of the neural populations comprising the column, i.e., 11 and

43 Hz, respectively (Figure 6). This way, the maximum alpha power was obtained when

rα was between 0.7 and 0.9 and the column was stimulated with the 11 Hz driver.

Likewise, the maximum gamma power was obtained when rα was between 0.1 and 0.3

and the column was stimulated with the 43 Hz driver. The power of both alpha and

gamma oscillations systematically decreased as the frequency of the driver moved away

from the respective resonance frequency.
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Figure 6: Resonance phenomenon. Entrainment of a single-column NMM as a function of the

frequency of the driving force and the proportion of neurons tuned to alpha oscillations (rα).

Alpha proportion rα was varied from 0.1 (γ) to 0.9 (α), while the driving frequency was varied

from 1 to 60 Hz. Although the entrainment could be generated at any frequency, maximum

responses were only obtained at those driving frequencies coinciding with the alpha or gamma

band resonances.

We found that the maximum power spectrum of gamma entrained oscillations

was higher than that of the alpha oscillations. This was not a consequence of a

difference in the relative number of neurons responding to the stimulation, since the

relative proportion of gamma-tuned neurons for rα=0.1 was equal to that of α-tuned

neurons for rα=0.9. The differences in the power of alpha and gamma entrainment

results from the differences in the post-synaptic (PSP) functions of the excitatory and

inhibitory neurons comprising the α and γ populations, respectively (see Supplementary

Information for details), where PSP amplitudes are greater for the γ population than

for the α population.

3.2. Simulation 2: Persistence of the entrainment as a function of the

resonance frequency of the NMM

The behavior of the entrainment after the stimulus offset, when the NMM column

was tuned to α oscillations (Figure 4), resembled those described in previous studies

[27,29,32,33]. That is, the amplitude of the alpha oscillation did not return to baseline

immediately after the stimulus offset but persisted for several hundred milliseconds.
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For rα between 0.1 and 0.7, the alpha oscillatory activity of the NMM outlasted

the stimulus offset for less than 100 ms, i.e., in less of a cycle of the sinusoidal input.

Nevertheless, the mean PD was 270 ms when the rα of the NMM was increased to

0.9 (7). This PD was approximately three cycles of a typical alpha oscillation, and is

comparable to those obtained in electrophysiological experiments [27–33].

Figure 7: Effect of rα on the persistence duration of the entrainment elicited by a driving force

of frequency 11 Hz. The plot represents the mean ± standard deviation of the persistence,

calculated from 30 simulated subjects.

3.3. Simulation 3: Propagation of the entrainment between coupled

columns

Next we added a second column, coupled as described in Methods (section 2.1.2), to

investigate the effects of resonance on the propagation of an entraining signal. Examples

of the time evolution and spectral features of the oscillatory activity of identical columns

coupled in cascade (with unidirectional coupling from column 1 to column 2) are

presented in Figure 8. As expected, a clear entrainment of column 1 was obtained,

when rα = 0.9 and a 11 Hz driving force was presented, (see Figure 8 A). The inter-

column coupling coefficient (k12) was set to 0.5 (equation 2) and both basal oscillations

and entrainment propagated. While the power of the basal alpha-oscillation of column

2 was increased as compared with that of column 1, the entrainment of column 2 was

reduced in comparison with that of the first column.
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Figure 8: Examples of the entrainment of identical columns with unidirectional coupling from

column 1 to column 2. The first column was targeted with a driver at 11 Hz. Coupling strength

from column 1 to column 2 is k12 = 0.5. Time series and power spectrum is shown, in the

basal (left) and the entrained (right) conditions. (A) Two identical columns with α proportion

rα = 0.9. (B) Two identical columns with α proportion rα = 0.2.

A different behavior was obtained when columns were tuned to gamma oscillations

(rα = 0.2) and the first columns received an 11 Hz driving force (Figure 8 B). In this
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condition, the alpha entrainment in the first column was not optimal (a substantial

increase of the alpha band power was not obtained). Furthermore, the power of the

gamma oscillations of the first column during the stimulation interval was similar to

that of the basal stage (Figure 8 B).

3.4. Simulation 4: Effect of the coupling strength in the propagation of

the entrainment

We investigated the effect of the α proportion on the alpha power of the second column

of the pair, as a function of rα of column 2, and k12. The first column was tuned to

alpha (rα = 0.9) or gamma oscillations (rα = 0.2), and received an 11 Hz oscillation

input. As mentioned above, both cortical columns received extrinsic noise inputs.

The scenario in which columns 1 is tuned to alpha oscillations (rα = 0.9), and

therefore is entrained by the driving force, is presented in Figure 9 (left panel). In

this situation, when rα of column 2 varied between 0.1 and 0.7, the alpha power of

the entrainment remained relatively constant and did not depended on the coupling

strength k12 (Figure 9, left panel). Higher alpha power were consistently obtained as

rα increased from 0.7 up to 0.9. Steeper increases in alpha power were obtained as k12

increased. Furthermore, the effect of k12 was not linear.

k12 = 0.9
k12 = 0.5
k12 = 0.1

Figure 9: Effect of coupling strength k12 on the propagation of the entrainment as a function

of the α proportion rα of the second column. Three values of k12 are presented: black lines

(k12 = 0.1), blue lines (k12 = 0.5) and red lines (k12 = 0.9). The alpha power of a second

column coupled to a first column receiving an oscillatory input at 11 Hz is shown. (Left

panel) Alpha proportion of the first column was rα = 0.9. (Right panel) Alpha proportion

of the first column was rα = 0.2.

In the case that column 1 was tuned to gamma band oscillations rα = 0.2 (Figure

9, right panel), the alpha power of the second column did not varied as a function of α

proportion in the entire range of rα we tested. This behavior was observed for any of

the three k12 tested values.
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3.5. Simulation 5: Propagation of the persistence of the entrainment

The PD of the entrainment of column 2 was analyzed as a function of the rα of the first

column, rα of the second column, and k12. The results are illustrated in Figure 10.

k12 = 0.9
k12 = 0.5
k12 = 0.1

Figure 10: Effect of α proportion rα and coupling strength k12 on persistence duration. Plots

represent the mean and standard deviation of the persistence duration of the second column of

the pair obtained for k12 = 0.1 (black lines), k12 = 0.5 (blue lines) and k12 = 0.9 (red lines).

The first column only received the driving frequency and we present the case for rα = 0.9 (left

panel), and rα = 0.2 (right panel)

We performed a two-way factorial ANOVA to analyze the effect of rα of column

2, and k12 on the PD. The factor rα of column 2 had nine levels (from 0.1 up to 0.9,

in steps of 0.1), whereas factor k12 had three levels (0.1, 0.5, and 0.9). Both rα of

column 2, and k12 had statistically significant effect on the duration of the persistence

(F=127.72, p<0.05; and F=41.04, p<0.05 for the effects of rα and k12, respectively).

Furthermore, the interaction rα and k12 also had significantly statistically effect on the

duration of the persistence (F=4.65, p<0.05).

The PD of the entrainment of column 2, computed for a particular k12, did not

vary when rα increased from 0.1 up to 0.4. For additional systematic increases in rα,

longer PD were obtained (Fisher LSD post-hoc test, p<0.05). The PD of column 2,

when the rα of this column increased from 0.1 up to 0.6, did not varied as a function of

k12. For rα between 0.7 and 0.9, the PD increased as k12 varied from 0.1 to 0.5, and

remained constant when k12 increased from 0.5 up to 0.9 (Figure 10).

In the case that the column receiving the 11 Hz was tuned to gamma oscillations

(rα = 0.2), the coupling strength did not have any evident effect on the PD of the second

column (Figure 10 right panel).
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3.6. Simulation 6: Effect of the phase at the stimulus offset in the

persistence duration

The persistence of the entrainment has been described experimentally as a function of

the phase of the EEG at which stimuli were removed [27]. In this section, we will analyze

if a modified Jansen’s model replicates this experimental results. We note that there

are slight differences in the way the phase was controlled between simulated data in this

research and EEG recordings in [27]. In the experimental study, the phase angles of

the EEG at the time the stimulus ended were determined retrospectively (a posteriori).

This implied that a particular experimental condition (phase of the stimulus at the

offset) did not correspond to a particular phase angle of the EEG oscillation but were

uniformly distributed in a range of phase angles (Figure 5 in [27]). By contrast, phase

angles were determined beforehand (a priori) in the simulated data, hence the sinusoidal

inputs corresponding to an specific phase condition finished at exactly the same phase

angle.

We restricted the analysis to scenario in which the optimal entrainment persistence

was obtained (rα = 0.9 for both columns, and k12=0.9) (Figure 10). Unlike previous

simulations, the 11 Hz sinusoidal inputs ended at different phases. In other words, inputs

corresponding to different terminating phases had different duration. The shortest

stimulation was 2700 ms, which corresponds with 30 cycles of a sinusoidal function

of frequency 11 Hz. Eighteen equidistant phases covering a cycle of the oscillation were

sampled. In an 11 Hz sinusoid, this sampling is equivalent to have eighteen stimuli

with different duration, in which the duration of stimuli representing two consecutive

terminating phases varied in 5 ms. The PD corresponding to each terminating phase of

the driving stimulus was calculated as described in section 2.3.

The PD of the alpha entrainment was highly dependent on the phase of the model

output at the point the 11 Hz sinusoid was removed (Figure 11 A). The longest PD was

found when the phase of the model output at the stimulus offset was π. The shortest

PD were encountered in the opposite phase (phase 0). Therefore, while a group of

terminating phases facilitated the persistence of the entrainment, others impede it.
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Figure 11: Persistence duration of the EEG like activity of a Jansen’s modified NMM as

a function of the phase of the oscillation at the time the driving force was removed. (A)

Persistence duration obtained for each of the eighteen sampled phases. Bars represent the mean

and standard error calculated for N=30. (B) Falling and rising phases of the EEG-like activity

(EEG-like phases towards the trough and the peaks of the alpha-oscillation, respectively) at the

stimulus offset were grouped together, and plotted according to its PD. Each plot represents

the mean (red vertical line) and median (black vertical line) of the PD computed for N = 270).

To draw the analogy with the experimental results presented in [27] using EEG

recordings, PD were pooled in two groups: persistence elicited by rising phases of the

oscillation at the stimulus offset (phases ranging from 0 to π, and from 3π/2 to 2π) and

persistence elicited by falling phases (phases range (π/2 to 3π/2). A t-test (p<0.05) was

implemented to compared the mean PD obtained by the different group of phases (Figure

11 B). As a result, the persistence obtained when the phase of the EEG-like oscillation

was towards the trough of the cycle (falling phases) was statistically significant longer

than that obtained when the phase of the EEG-like oscillation was towards the peak

of the cycle (falling phases) (t=14.51; p<0.05). This result is consistent with the

experimental findings described by [27], although the specific phases that facilitate or

impede entrainment were different between the model and the experiments. Possible

reasons for this discrepancy will be addressed in Discussion section. 4.3.

4. Discussion

4.1. Summary

In this study, we followed David and Friston [35] in adapting the Jansen-Rit NMM [38,40]

to construct a neural mass model capable of generating the entire EEG spectrum. This
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comprised a hybrid column with a mix of gamma and alpha tuned populations. Without

loss of generality we investigated the effect of driving this column with external alpha

oscillations on the entrainment of the NMM as a function of the alpha/gamma ratio

of the column. Furthermore, we analyzed the propagation of the entrainment from

one column to another, and the factors that allowed the entrainment to persist after

termination of the oscillatory input. Our results indicate that the relative proportion

of neurons of the NMM tuned to the frequency of the oscillatory driving force directly

determines the strength of the entrained signal, and the duration of the persistence of

the entrainment after the termination of the periodic input. When two NMM were

coupled, the relative proportion of neurons tuned to the frequency of the oscillatory

driving force in each NMM, as well as the coupling strength between columns were the

factors that determined the propagation of the entrainment from one column to the

other. Additionally, the persistence of the entrainment depended on the phase of the

EEG-like oscillatory activity of the NMM at the time stimulus terminates.

Since a 11-Hz sinusoid (alpha band stimulation) was the driving force that served

as input to the NMM, our study provides a plausible explanation for experimental

results analyzing the entrainment of EEG alpha oscillation in response to periodic visual

stimulation in the alpha band [14, 16, 25]. Remarkably, our results suggest that the

internal functioning of the NMM, which in turn is defined by the cytoarchitecture of

the cerebral cortex, is able to account for the persistence of the stimulus-driving alpha

oscillation after the end of the sensory stimulation [24,28–33], as well as the effect of the

terminating phase of a sinusoidal light stimulus on the duration of the persistence [27].

Although we restricted the analysis of the entrainment to alpha oscillations, our results

can be extrapolated to any particular frequency band of the EEG.

4.2. Frequency-dependent neural entrainment

The proportion of neurons tuned to a particular stimulus oscillatory frequency in a

given brain region is difficult to be determined experimentally. Using simulations, the

results presented in Figure 5 demonstrate that 10 percent of alpha tuned neurons in the

NNM is sufficient to generate alpha entrainment. Nevertheless, the entrainment will

be maximum only when the driver matches the resonance frequency of the oscillatory

neural system (Figures 5 and 6). This is in accordance with previous studies [54, 55],

showing that the coding of stimulus periodicities in a particular brain area is performed

by different neuronal populations, in which each neural ensemble is tuned to a given

range of driving frequencies. The sensitivity of the area to oscillatory stimuli is then

determined by the relative size of the different populations comprising the area, such

that the resonance frequency of the cerebral region will correspond to the frequency

at which the largest population forming the area is tuned to. This is evident in the

oscillatory activity of cortical columns with different rα presented in Figure 5. In those

columns, the frequency of intrinsic oscillations (the resonance frequency) is determined

by the oscillatory properties of the neural population most represented in the cortical
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region. These results support the idea of that the amplitude of the stimulus-induced

oscillation in a particular brain region, as a function of the frequency of the stimulation,

is proportional to the size of the neural population tuned to the frequency of the sensory

stimulus. [41,56].

Furthermore, the results presented in this study contribute to the understating of

steady-state responses recorded from the scalp, i.e., EEG oscillations locked to the

periodicity of the stimulation, which have relatively constant amplitude and phase

over the stimulation interval. These oscillatory responses can be interpreted, at

least partially, as the phase alignment of multiple EEG generators (multiple NMM)

responding to the periodic stimulation [25]. In other words, while neural entrainment

is the physiological process occurring at the level of EEG generators, the steady-state

responses represent the observable manifestation of the entrainment. Consequently,

the fact of having different number of neurons with a distinct resonance frequency is

also a theoretical support for experimental data of scalp-recorded SSEP, which exhibits

different amplitudes in response to sensory stimuli of equal modality and intensity, but

presented at different frequencies [54,55,57]. This sensitivity to the stimulus periodicity

is represented by the temporal modulation transfer function of the oscillatory response

(the amplitude of the steady-state responses as a function of the frequency of the driving

force eliciting the oscillation). This is a typical inverted V-shaped function, where the

frequency at which the maximum amplitude is obtained (best modulation frequency of

the steady-state response) can be assumed as the resonance frequency of the underlying

neural generators. For frequencies above and below the best modulation frequency,

the amplitude of the steady-state response is proportional to the size of the neural

populations tagging the frequency of the sensory stimulation [41].

In fact, the size of the neural population responding to the sensory stimulation

could determine the sensitivity of the neural network to the stimulus periodicity, i.e., the

resonance frequency of the steady-state generator, and therefore the best modulation

frequency of the scalp-recorded brain oscillation. This topic has been addressed in

a recent study [58], which demonstrated that the driving frequency which elicits the

maximum amplitude of steady-state responses in the visual cortex is inversely correlated

with the area of the visual field covered by the stimulation. Assuming that expanded

stimuli activate larger neural population, this result indicates that the resonance

frequency of the oscillatory neural network is ultimately determined by the the size

of the network [58]. This can be extrapolated to the resonance frequency of steady-

state responses of different modalities. In the human brain, the volume of the primary

visual, somatosensory and auditory primary cortices are 23 cm3, 13 cm3 and 3 cm3,

respectively (e.g, [59–61]). Considering that the cytoarchitecture remain constant across

these sensory cortices, the highest amplitude of the SSVEP, as compared to that of other

sensory modalities, represents the largest size of the visual cortex relative to that of the

other primary sensory regions.

Furthermore, our modeling of entrainment suggest that, in the case that different

neuronal populations tagging different regions of the spectrum have the same size, the
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dynamic of the ionic current generating the PSP might be critical for the oscillatory

activity of the neurons. This is evident in the power of the alpha and gamma entrainment

of NMM columns with equivalent proportion of neurons tuned to the particular driving

frequency (when rα was 0.9 and 0.1, respectively, Figure 6). This difference is a

consequence of the greater post-synaptic (PSP) amplitude of the gamma-tuned neurons

as compared to that of the alpha-tuned neurons, which in turn depend of the ratio

between the amplitude of the inhibitory and excitatory PSP (Table 1).

4.3. Mechanism of the persistence of entrainment

Experimental studies in different sensory modalities have consistently demonstrated

that the SSEP persist after the stimulus offset for times equivalent to three periods of

the entraining stimulus, approximately [27–30]. Our modeling results shed light on the

conditions needed for the entrainment to outlast the stimulus offset.

When the proportion of alpha-tuned neurons (rα) of the NMM is lower than 0.7, the

entrainment elicited by an 11 Hz driving force outlast the stimulus offset in less of a cycle

of the stimulus oscillation, i.e., the persistence duration is negligible (Figure 7). This

indicates that the entrainment of a given NMM will persist after the stimulus offset

only when more than 70 percent of its neurons are tuned to the input periodicities.

To reproduce empirical observations of persistence, it was necessary that at least 90

percent of the neural population has resonance frequency equal to that of the driving

force (Figure 7). In this regard, it is important to mention that the variations in the

entrainment persistence as a function of rα (Figure 7) resemble the relationship between

the power of entrainment and rα (Figure 5). This indicates that robust entrainment is

needed for the oscillation be able to outlast the stimulus offset, which in turn is achieved

when a sufficiently high amount of neurons of the brain region has resonance frequency

equal to the frequency of the driving force. These results strongly support experimental

results showing that driving forces with frequency outside the EEG alpha band elicit

on-responses at the beginning, and off-responses at the end of stimulation instead of

alpha entrainment [62].

The persistence of the entrainment can be explained by the presence of feedback

loops (reverberant circuits) in the functioning of cortical columns. Considering the

circuitry of a NMM when rα=0.9 (Figure 1), the output of the pyramidal cell y0

just after the oscillatory input terminates will be high enough to make the feed-back

loops to have significant influences in the post-synaptic potential of the pyramidal cells.

Consequently, both y1 and y2 (the output of the excitatory inter-neurons and the output

of the inhibitory inter-neurons, respectively) will present values above those computed

when the input of the model is exclusively composed by noise (baseline). The integration

of these excitatory and inhibitory post-synaptic potentials (summation of y1 and y2)

then results in a postsynaptic potential y higher than the noise floor. The entrainment

of the NMM will persist as long as y remains above baseline. In the subsequent cycle

of the loop, lower y1 and y2 are systematically obtained in absent of stimulation, such
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that y return to baseline at times which correspond with three periods of an oscillation

with frequency equal to the resonance frequency of the alpha-tuned population.

4.4. Persistence duration of the entrainment depends on the phase of the EEG-like

signal at the stimulus offset

The results replicated empirical findings which demonstrated that the phase of the

stimulus offset determined the duration of persistence (Figure 11) [27]. Specifically,

the rising phases of the stimulus offset (EEG phases towards the trough of the alpha-

oscillation) showed to facilitate the persistence of entrainment while falling phases

impede it, i.e., they induce longer and shorter persistence duration, respectively [27].

Additionally, the in silico model allowed us to expand the resolution of the phase

information meaning that we could analyse the effect of stimulus offset during 18 phases

(compared to 4 in the experimental study [27]).

Considering the different nature of the oscillatory activity elicited by the human

brain and that of the NMM, direct comparison of the results is difficult. Nevertheless,

this study, as well the results described in [27], provide evidence that the behavior of

the entrainment after the stimulus offset was sensitive to the phase at the stimulus

offset. These can be understood as the excitation/inhibition state of the neural network

at the time the stimulus terminates, and may vary as a function of arousal and the

level of engagement to a particular task [63]. These authors implemented a cortical

oscillator network model which included a thalamo-cortical loop as the main circuit

involved in the generation and maintenance of alpha oscillations, and simulated the

oscillatory activity in three different states: eyes-open, eyes-closed, and task-engaged.

They observed that stimulation enhanced endogenous oscillations both during and

immediately after stimulation and that enhancement depended on the brain state,

results that were corroborated by experiments of neuro-modulation with repetitive

transcranial alternating current stimulation.

4.5. Propagation of the entrainment

The finding that entrainment is able to propagate between units in the model further

corroborates experimental results [64] in which the presentation of simultaneous,

amplitude-modulated audio-visual input in the theta band, enhanced the episodic

(associative) memory for these audio-visual streams. The theta-specificity of these

memory effects suggested that the sensory entrainment reaches downstream memory

areas that are known to resonate at theta frequency, such as the hippocampus [14].

Hence, the entrainment by external rhythmic stimulation was found to propagate beyond

the input area (supra-modality of entrainment) [64]. The double column NMM, in which

units are connected in cascade (from cloumn 1 to column 2), can be understood as a

representation of hierarchical organisation of neural sub-populations within a cortical

region, or different areas.
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When a driving force is presented to the first column of the pair of connected units,

the propagation of the entrainment depended on three factors. First and foremost, the

initial (sending) unit needs to be stimulated at its resonance frequency. Furthermore,

it is necessary that the oscillatory activity of the first unit matches (or it is near to) the

resonance frequency of the second unit. If these conditions are fulfilled, the propagation

will depend on factors controlling the information transfer between units, which is

represented in the model by k12 (Figure 2). In a physiological system, this parameter

can be interpreted as the density of connections between the regions, in combination

with the type and density of ion channels mediating the synaptic transmission. The

rules governing the propagation of the steady region of the entrainment also regulate

the propagation of the persistence (Figure 10).

Therefore, our results provide insights about the anatomical limits of the

propagation of entrainment, suggesting that the propagation will be restricted to

cortical regions sharing similar intrinsic frequencies, hence processing the same type

of information. This study confirms that Jansen-Rit based models are a suitable tool to

study basic mechanisms of neural oscillations, including the persistence and propagation

of neural entrainment. Future studies about the propagation of entrainment over large-

scale cortical regions might involve the connection of a greater number of cortical

Jansen’s columns, similar to that used to generate ongoing EEG activity in [39]. These

investigations will contribute to advance the knowledge of the possible mechanisms

underlying neural entrainment, relevant for the design of neuro-modulation strategies

based on repetitive stimulation.
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Supplementary Materials

Supplementary Tables

Table 1: Parameters used for the post-synaptic potential (PSP) generation of the α population

Parameter Biophysical Interpretation Standard Value

A Maximum amplitude of the excitatory population 3.25 mV

a Lumped parameter: Spatially distributed delays 100 s−1

B Maximum amplitude of the inhibitory population 22 mV

b Lumped parameter: Spatially distributed delays 50 s−1

Table 2: Parameters used for the post-synaptic potential (PSP) generation of the γ population.

Parameter Biophysical Interpretation Standard Value

A Maximum amplitude of the excitatory population 11.375 mV

a Lumped parameter: Spatially distributed delays 350 s−1

B Maximum amplitude of the inhibitory population 132 mV

b Lumped parameter: Spatially distributed delays 300 s−1

Table 3: General parameters of the connectivity constants between sub-populations of the

model

Significance Parameter Standard Value

General constant C 135

Synapses between pyramidal cells

and excitatory interneurons

C1 C

C2 0.8*C

Synapses between pyramidal cells

and inhibitory inter-neurons

C3 0.25*C

C4 0.25*C

Table 4: General parameters of the Sigm function of the model

Parameter Biophysical Interpretation Standard Value

e0 Maximum firing rate 2.5

v0 Firing threshold 6 mV

s Steepness of the sigmoidal function 0.56
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Supplementary Equations

System of equations for the alpha population for both columns. These equations are

equivalent for the γ population.

The outputs of the three postsynaptic boxes in the first column were noted as: the

resulting from the pyramidal cells y0, the output of the excitatory inter-neurons y1 and

the output of the inhibitory inter-neurons y2. After coupling the columns, the output

of these three postsynaptic boxes, for the second column, were termed as y6, y7 and y8.

Furthermore, each postsynaptic box was computed having into account that they are

composed by two populations (α and γ) and the proportion that represent each of this

populations in every column (rα1 and rα2 ).

Thus, y0 and y6, representing the outputs of the postsynaptic boxes of the columns

1 and 2 respectively, were computed as:

y0(t) = rα1 y0α(t) + (1− rα1 )y0γ(t) (1)

y6(t) = rα2 y6α(t) + (1− rα2 )y6γ(t) (2)

An equivalent reasoning is made for computing the output of the excitatory branch

for both columns: y1(t) for column 1, and y7(t) for column 2. The resulting equations

are given by:

y1(t) = rα1 y1α(t) + (1− rα1 )y1γ(t) (3)

y7(t) = rα2 y7α(t) + (1− rα2 )y7γ(t) (4)

The output for the inhibitory branch for columns 1 and 2 are y2 and y8 respectively,

computed as:

y2(t) = rα1 y2α(t) + (1− rα1 )y2γ(t) (5)

y8(t) = rα2 y8α(t) + (1− rα2 )y8γ(t) (6)

Furthermore, the postsynaptic membrane potential in the pyramidal cell (equivalent

to the EEG y(t) = y1(t)− y2(t)), were computed for each column in the coupled NMM.

They were noted as yC1(t) and yC2(t) for columns 1 and 2, respectively, and computed

using equations 1-6 as follows:

yC1(t) = y1(t)− y2(t) (7)

yC2(t) = y7(t)− y8(t) (8)

The system of equations of the model, is composed by the system of equations

describing the α population and the system of equations describing the γ population

for every column. As a matter of example, we described the system of equations for

the alpha population in both columns. Nevertheless, all the codes from the model are

available as Supplementary Materials.
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Alpha population for the first column:

˙y0α(t) = y3α(t)

˙y1α(t) = y4α(t)

˙y2α(t) = y5α(t)

˙y3α(t) = AαaαSigm(yC1(t))− 2aαy3α(t)− (aα)2y0α(t)

˙y4α(t) = Aαaα{P1(t) + C2Sigm(C1y0(t))} − 2aαy4α(t)− (aα)2y1α(t)

˙y5α(t) = Bαbα{C4Sigm(C3y0(t))} − 2bαy5α(t)− (bα)2y2α(t)

(9)

Alpha population for the second column:

˙y6α(t) = y9α(t)

˙y7α(t) = y10α(t)

˙y8α(t) = y11α(t)

˙y9α(t) = AαaαSigm(yC2(t))− 2aαy9α(t)− (aα)2y6α(t)

˙y10α(t) = Aαaα{P2(t) + C2Sigm(C1(y6(t)) + k12Sigm(yC1)}
− 2aαy10α(t)− (aα)2y7α(t)

˙y11α(t) = Bαbα{C4Sigm(C3y6(t))} − 2bαy11α(t)− (bα)2y8α(t)

(10)
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Supplementary Results

Initial Simulations: Intrinsic Oscillations depends on the α proportion parameter rα.

We analyzed intrinsic oscillations generated with a single column NMM, where the

proportion of the α proportion was varied between rα = 0 and rα = 1 in steps

of 0.01. Fifty simulations (trials) were run for each value of rα, in which each

simulation consisted of 1000 time steps (1s). For each trial, the power spectrum

was calculated using the discrete Fourier transform and the mean power spectrum

was computed for each rα value. Trials of the same rα value were averaged in the

time-domain to obtain the time series presented in Supplementary Figure 1. The

extrinsic input was sampled from a Gaussian distributed noise, which represents a

pulse density uniformly distributed between 120 and 320 spikes per second, modeling

the background noise in the cerebral cortex.

Supplementary Figure 1 presents examples of the time series and the power of

intrinsic oscillations for different values of rα. We can observe two examples of

gamma oscillations corresponding to rα = 0.2 and rα = 0.3, and alpha oscillations

using rα = 0.8 and rα = 0.9 ( [35, 38]). A prominent feature of the NMM was the

generation of oscillatory activity to a noise input, which was highly dependent on

rα. While the power spectrum of the neuronal activity was dominated by gamma

oscillations when rα was relatively small (rα = 0.2, and rα = 0.1), alpha oscillations

resulted when the noise input was presented to NMM with (rα = 0.8, and rα = 0.9).

For NMM with rα = 0.2, and rα = 0.9, the peak amplitude was obtained at 43 and

11 Hz, respectively. Slight shifts of the peak frequency of the intrinsic oscillations

toward the middle region of the power spectrum were observed when rα changed to

rα = 0.3 compared to rα = 0.2 and when rα value was rα = 0.8 compared to rα = 0.9.

These shifts in the peak frequency were accompanied by oscillations with broader

frequency spectrum. The power of gamma oscillations was higher than that of the

alpha oscillations, when NMM with equivalent rα are compared (rα = 0.1 against

rα = 0.9, for example). This result can be explained by the different post-synaptic

potentials (PSP) functions of the excitatory and inhibitory neurons comprising the

α and γ populations (Supplementary Figure 3).
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Figure 1: Examples of intrinsic oscillations of single independent units. Time series and Power

Spectrum of independent units obtained varying the parameter of the model rα are shown.

Using rα = 0.2 and rα = 0.3 intrinsic oscillations in the gamma range are obtained, while with

rα = 0.8 and rα = 0.9 alpha oscillations emerged.

A generalization of the effect of α proportion rα on the spectral profile of the NMM

is presented in Figure 2. Simulations were run such that rα was varied between 0 and

1, in 0.1 steps. The spectral profile of all simulation (50 repetitions for each rα) are

plotted together. The results confirmed those presented in Supplementary Figure 1,

and extended the findings to populations with other relative proportion of α-tuned

neurons (rα).

The spectral profile of the single-column two-populations NMM was characterized

by peak amplitudes of alpha and gamma oscillations when rα was close to 0 and 1,

respectively. In those cases, the NMM was tuned to generate α or γ oscillations for

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459802doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.10.459802


Modelling neural entrainment and phase dependent persistence 34

the noise inputs implemented in this study. Consequently, the output of the model

was extremely consistent across repetitions (runs of the simulations) for rα close to

0 and 1. This was reflected in the narrow spectral profile of the oscillatory activity

obtained at those rα. The generation of alpha oscillations expanded for 0.8 ≤ rα ≤ 1,

while the generation of gamma oscillations expanded for 0 ≤ rα ≤ 0.3. The

spectral profile obtained for intermediate values of rα were a consequence of having

NMM with different mixes (combinations) of α and γ-tuned neural populations.

As expected, these mixed neuronal ensembles made the oscillatory behavior of NMM

with intermediate rα display a wider frequency profile than those presented by NMM

with extreme values of rα.
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Figure 2: Spectral representation of the intrinsic oscillations of the model as a function of the

α proportion rα.

Comparing Excitatory and Inhibitory PSPs for α and γ populations

The PSP functions (hαe , hγe , h
α
i and hγi ,) for both α and γ populations, composed by

excitatory and inhibitory sub-populations are presented in Figure 3. It is noteworthy

that temporal dynamics are different between α and γ populations due to their

PSP functions. Slower temporal evolution and smaller amplitude are found in α

population PSPs in comparison to those presented by the γ population. At the

same time, there is a difference between inhibitory PSP (IPSP) and excitatory PSP
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(EPSP) of any particular population (α and γ). IPSP presented increased amplitude

and longer duration as compared to the corresponding EPSP. These behaviours are

due to parameters Aα,γ, Bα,γ and aα,γ and bα,γ of the equations, which control the

PSP functions amplitudes and temporal courses.

𝒕𝒊𝒎𝒆 (𝒔) 𝒕𝒊𝒎𝒆 (𝒔) 

𝒉𝒆(𝒕) 𝒉𝒊(𝒕) 

𝒉𝒆(𝒕) 𝒉𝒊(𝒕) 

ALPHA 

GAMMA 

Figure 3: Comparison between the Excitatory and Inhibitory Postsynaptic Potentials

generating functions for α and γ populations. (Top panels) Dynamics of excitatory (left

chart) and inhibitory PSP (right chart) of α-tuned sub-populations (Parameters in Table 1).

(Lower panels) Equivalent γ dynamics are shown (Parameters in Table 2).
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