
BINANA 2.0: Characterizing Protein/Ligand Interactions in
Python and JavaScript

Jade Young1, Neerja Garikipati1, Jacob D. Durrant1,*

1 Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA

* To whom correspondence should be addressed. Email: durrantj@pitt.edu

Keywords: structural biology, protein/ligand interactions, computer-aided drug discovery,
molecular interactions, Python, JavaScript, web browser

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459812doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.10.459812
http://creativecommons.org/licenses/by/4.0/

Abstract
BINding ANAlyzer (BINANA) is an algorithm for identifying and characterizing protein/ligand

interactions and other factors that contribute to binding. We recently updated BINANA to make
the algorithm more accessible to a broader audience. We have also ported the Python3
codebase to JavaScript, thus enabling BINANA analysis in the web browser. As proof of
principle, we created a web-browser application so students and chemical-biology researchers
can quickly visualize receptor/ligand complexes and their unique binding interactions.

Introduction
Many biochemical processes depend on the association of specific proteins with their small-

molecule ligands. The process by which a protein target recognizes its ligand (“molecular
recognition”) is primarily determined by the non-covalent atomic interactions that form between
the two, including hydrogen bonds, π-π stacking and cation-π interactions, electrostatic
attraction and repulsion, and hydrophobics. These interactions contribute to the overall binding
affinity of the protein/ligand association, and their geometric configuration plays a role in
determining specificity (i.e., the tendency to bind the protein target but not other off-target
proteins). Characterizing protein/ligand interactions can thus yield essential insights into the
biological mechanisms underlying many processes (e.g., signaling, enzymatic catalysis, etc.). In
the context of drug discovery, accurately characterizing protein/ligand interactions allows
medicinal chemists to assess whether a ligand merits further study and pharmaceutical
development.

When assessing a single protein/ligand complex, researchers often rely on manual
inspection using visualization software such as VMD [1], PyMOL [2], or Chimera [3]. But many
use cases require the assessment of many—sometimes thousands—of predicted ligand poses.
The BINding ANAlyzer (BINANA) algorithm (first released in 2011) addresses this challenge by
automating ligand-pose analysis [4], enabling the characterization of far more protein/ligand
complexes than can be manually inspected. For example, McCarthy et al. [5] used BINANA to
identify novel inhibitors of KRAS, a GTPase protein activated via mutation in 15% of human
cancers. After performing a high-throughput virtual screen to evaluate six million compounds for
potential KRAS inhibition, they used BINANA to identify the top predicted ligands that formed
reasonable interactions with the protein receptor. These efforts ultimately led to an
experimentally validated KRAS inhibitor. In a second study, Poli et al. used BINANA to identify
inhibitors of monoacylglycerol lipase (MAGL) [6], a protein involved in the pathogenesis of
neurodegenerative, cancer, inflammatory, and chronic-pain diseases. They docked ~14,000
molecules into the MAGL binding pocket and used BINANA to identify 17 compounds predicted
to form critical interactions with the receptor. Subsequent experiments ultimately revealed three
new compounds that inhibited MAGL activity; one even inhibited the proliferation of breast- and
ovarian-cancer cell lines.

Several groups (including our own) have used BINANA to generate training data for
machine-learning models (“scoring functions”) designed to identify ligands that merit more
careful human scrutiny. Our NNScore2 algorithm [7] leverages BINANA descriptors (among
other metrics) to predict ligand binding strength. NNScore2 has been used to help identify novel
inhibitors of haloalkane dehalogenase [8], VEGFR-2 [9], and aromatase [10], among others.
The DLSCORE scoring function [11] similarly uses BINANA descriptors to predict binding.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459812doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.10.459812
http://creativecommons.org/licenses/by/4.0/

BINANA has also been incorporated into several other programs (e.g., HBonanza [12] and
POVME3 [13]), has inspired similar approaches [14, 15], and has been included in the Open
Drug Discovery Toolkit [16].

These examples of broad adoption aside, the original BINANA implementation has some
notable usability limitations. It runs only from the command line and provides no built-in
visualization of the identified interactions, instead requiring separate visualization software.
From the perspective of tool developers, BINANA 1.0 is also challenging because (1) its
codebase organization does not allow for modular import into other Python scripts, (2) it is
written in a now unmaintained programming language (Python2), and (3) its output is difficult to
parse, complicating efforts to process BINANA analyses in other programs.

We developed BINANA 2.0 to address these challenges. The updated version can still run
from the command line, but many users will benefit from our new web-browser implementation,
which provides built-in molecular visualization that simplifies analysis. Tool-development
researchers will benefit from updates to the Python codebase. We refactored the original
implementation using a more modular programming approach that allows developers to
integrate BINANA functions more easily into their projects (e.g., by importing individual modules
as needed). We also added JSON-formatted output for easy processing by other computational
tools and rewrote the code to be compatible with Python3 and JavaScript transpilation. To
further encourage broad adoption and integration, we release BINANA 2.0 under a more
permissive license than previous versions (Apache License, Version 2.0). Users can download
the source free of charge from http://durrantlab.com/binana-download/ or access the browser
app at http://durrantlab.com/binana/.

BINANA Python codebase

Improving modularity and Python3 compatibility
We split the BINANA codebase into modules (separate files) to enable access as a Python

library from other scripts. The original BINANA 1.0 was a stand-alone application (i.e., its
codebase was contained in a single file, and its functions were not organized into modules), but
several other groups have nevertheless incorporated BINANA code into their software projects
[11, 13, 16]. To further enable such use, we refactored the BINANA codebase so other software
can more easily import BINANA’s essential functions, including (1) loading PDBQT and PDB
files containing receptor and bound-ligand structures, (2) analyzing those structures to identify
specific protein/ligand interactions, and (3) saving BINANA analyses in various formats.

In refactoring the BINANA code, we also updated the codebase to make it compatible with
Python3. The original version of BINANA was written in the now discontinued Python2
language.

Documentation
We created a documentation website to further improve BINANA usability:

http://durrantlab.com/apps/binana/docs/. The website describes how to use the stand-alone
BINANA program. It also catalogs the extensive docstrings associated with each public BINANA
function so tool developers can quickly learn how to access the library’s application
programming interface (API). Finally, the documentation also provides a copy of a Jupyter
notebook demonstrating how to use BINANA as a Python library. The BINANA download
includes the same notebook in an “examples” directory.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459812doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.10.459812
http://creativecommons.org/licenses/by/4.0/

JSON output
The original version of BINANA saved binding-pose analyses to a PDB file or a VMD state

file (for visualization using the popular program Visual Molecular Dynamics [1]). The new
version of BINANA retains these features and further allows data export to the machine-
readable JSON format. Many researchers have used BINANA to automatically assess the
binding poses of large compound sets (e.g., in the context of virtual screens [5, 6]). To extract
the data from these many analyses for subsequent processing, they have had to parse the
BINANA-log text files directly. Now that BINANA outputs to JSON, this process will be much
simplified.

Identifying protein/ligand interactions and other characterizations
To analyze a given protein/ligand complex, the user provides BINANA with molecular

models of the protein and bound ligand in the PDBQT (recommended) or PDB format. BINANA
then considers the positions and angles of various chemical groups to identify common
interactions and otherwise characterize the complex.

BINANA 2.0 identifies the same protein/ligand interactions and characterizations that
previous versions identified. These include close (< 4.0 Å by default) and closest (< 2.5 Å)
contacts as well as hydrophobic, salt-bridge, π-π, and cation-π interactions. BINANA also tallies
the number of times a ligand atom comes near the backbone or side chain of an alpha-helix,
beta-sheet, or “other” secondary-structure amino acid. If the receptor/ligand models include
hydrogen atoms, BINANA identifies hydrogen bonds. If the user provides models in the PDBQT
format (which includes AutoDock atom types and Gasteiger partial charges [17]), BINANA also
tallies the electrostatic energies between proximate protein/ligand atoms, the ligand atom types,
and the number of ligand rotatable bonds. Full details can be found in the original BINANA
manuscript [4].

The BINANA 2.0 interaction criteria are identical to the original version, except for close and
closest contacts. Previously, these two interactions were mutually exclusive (i.e., those
protein/ligand atom pairs that were close enough to be categorized as “closest” were not also
considered to be “close”). In BINANA 2.0, all closest contacts are also close.

BINANA JavaScript codebase and browser-app implementation

Porting BINANA to JavaScript
To broaden the impact of our BINANA algorithm, we transpiled the Python code to

JavaScript using a software tool called Transcrypt (transcrypt.org). Transpilation rewrites or
“translates” computer code written in one language (e.g., Python) into another (e.g., JavaScript).
The resulting JavaScript library, BINANA.js, has the same functionality as the Python version
but can be easily accessed from web apps running in any modern web browser. The BINANA
download includes a Jupyter notebook and a simple HTML example file showing how to use
BINANA.js.

BINANA browser app
To help non-computationalists better engage with the library, we integrated BINANA.js into a

user-friendly browser-based application that detects and visualizes protein/ligand interactions.

Designing and compiling the browser-app user interface
The BINANA browser app provides an interactive graphical user interface (GUI). We

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459812doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.10.459812
http://creativecommons.org/licenses/by/4.0/

designed the BINANA GUI using the same approach described elsewhere [18, 19]. In brief, the
GUI was written in the TypeScript programming language, which compiles to JavaScript. We
used Vue.js, an open-source web application framework, to compose reusable GUI components
(e.g., text fields, buttons, etc.), and the BootstrapVue library to style all GUI components
consistently according to the Bootstrap4 framework. We also used a custom molecular-
visualization Vue.js component that leverages the 3Dmol.js JavaScript library [20] to display
macromolecular and small-molecule structures in the browser, as required for visualizing
BINANA-predicted protein/ligand interactions.

To compile these components and the BINANA.js library itself into a single web app, we
used Webpack, an open-source module bundler, to manage the organization and composition
of our source libraries and files. Webpack copies required files, combines files where possible,
removes unneeded code, etc. The build process also used Google’s Closure Compiler to
optimize the file size and performance of the TypeScript-compiled JavaScript code.

Figure 1. The BINANA web-app interface. (A) The “Advanced Parameters” button allows users to
specify custom BINANA parameters. (B) The “Input Files” panel allows users to load their protein/ligand
structures into the browser’s memory. (C) The “Molecular “Viewer” panel shows the detected interactions.
(D) The “Save” button saves the results to the user’s disk.

Browser-app Usage
Advanced parameters. The “Advanced Parameters” button appears at the top of the

BINANA browser-app interface (Figure 1A). When clicked, a series of text fields appears that
allows the user to modify the BINANA-library parameters. These fields initially contain the
default values used by the BINANA command-line tool and Python library. We expect most
users will wish to leave them unchanged, so they are hidden by default.

Input files. The “Input Files” section allows users to load a ligand or receptor PDBQT or
PDB file into their browser’s memory (Figure 1B). The structures are never uploaded to any
third-party server, helping to ensure data privacy. Users can also run BINANA using build-in
example ligand and receptor files by clicking the “Use Example Files” button.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459812doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.10.459812
http://creativecommons.org/licenses/by/4.0/

Molecular viewer. The protein/ligand complex appears in the “Molecular Viewer” section of
the browser app (Figure 1C), which also presents three general categories of interactions:
“Common,” “Contacts,” and “Aromatic.” Clicking on the corresponding button opens a drop-
down menu so users can choose which specific interaction to visualize. Under “Common,” users
can select “Hydrogen Bonds,” “Hydrophobic,” or “Salt Bridge” interactions; under “Contacts,”
users can select “Close” or “Closest” interactions; and under “Aromatic,” users can select “π-π
Stacking,” “T Shaped,” or “Cation-π” interactions.

Interaction viewer. Once the user selects a specific interaction, semi-transparent red and
yellow spheres highlight the participating protein and
ligand atoms, respectively. We call this visualization
scheme “By Molecule.” Clicking the corresponding
button (Figure 1D) toggles on the alternate “By
Interaction” scheme, in which hydrogen-bond
donors and acceptors are highlighted in yellow and
red, respectively, and salt-bridge positive and
negative moieties are highlighted in blue and red,
respectively. Clicking on the “Interactions” button
further toggles the display of lines that connect the
relevant protein and ligand atoms (Figure 1D). For
hydrogen bonds, the line is a solid arrow that points
from the hydrogen-bond donor to the acceptor.
Otherwise, the line is dashed. The browser app also
provides a “Save” button (Figure 1D) that allows
users to save a zip file containing a copy of their
protein/ligand files, as well as a thorough description
of all BINANA.js-detected interactions in the JSON
format, which is both human and machine readable.

Examples of use
To test the web version of BINANA, we selected

two receptor/ligand complexes and visualized them
in the browser.

M2 muscarinic acetylcholine receptor
Muscarinic acetylcholine receptors (mACHhRs)

are G protein-coupled receptors (GPCRs) activated
by acetylcholine [21]. As of 2017, ~34% of FDA-
approved drugs targeted GPCRs [22], so studying
GPCR/ligand complexes is useful for structure-
based drug discovery and design [22]. Despite
sharing between 64 and 82% sequence similarity,
the five mACHhR subtypes differ in tissue
distribution and GTP-binding protein partners [21].
The M2 muscarinic receptor, for example, is
expressed in peripheral tissues and regulates heart

Figure 2. The muscarinic acetylcholine
receptor M2 bound to LY2119620, an
allosteric ligand. (A) A schematic of the
ligand, created using MarvinSketch 18.24.0,
ChemAxon (https://www.chemaxon.com). (B)
The ligand forms a hydrogen bond with
TYR80. (C) The ligand also participates in π-
stacking interactions with TRP422 and
TYR177.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459812doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.10.459812
http://creativecommons.org/licenses/by/4.0/

rate [21]. Clinically approved small-molecule drugs that modulate M2 activity can effectively treat
bradycardia (e.g., atropine [23]), urinary incontinence (e.g., tolterodine [23]), etc.

We used the BINANA web app to visualize a structure of M2 bound to LY2119620, a small-
molecule, positive allosteric M2 modulator (Figure 2A). Allosteric muscarinic-receptor ligands are
significant because they may enable improved receptor selectivity. All muscarinic receptors bind
acetylcholine, so their orthosteric (primary) binding pockets are in many ways chemically similar.
Identifying orthosteric ligands that bind to only one receptor subtype is thus challenging. In
contrast, allosteric pockets may be more varied. Although LY2119620 also binds M4 muscarinic
receptors and so is not strictly receptor specific [24], in principle allostery enables the design of
ligands with improved specificity. We downloaded a PDB file of the receptor/ligand complex
(PDB 6OIK [21]), added hydrogen atoms to the structure and ligand using MolProbity [25-27],
and loaded the resulting model into the BINANA web app.

BINANA visualization revealed a hydrogen bond between an LY2119620 carbonyl oxygen
atom and the side-chain hydroxyl group of TYR80 (Figure 2B, black arrow). The aromatic
LY2119620 bicyclic moiety also forms π-π stacking interactions with TRP422 and TYR177
(Figure 2C, black dotted lines).

Pseudomonas aeruginosa peptidyl-tRNA
hydrolase

Peptidyl tRNA hydrolase (Pth) is a potential
drug target found in multiple species of bacteria,
including Escherichia coli, Mycobacterium
tuberculosis, Mycobacterium smegmatis, and
Pseudomonas aeruginosa. The process of mRNA
translation produces a peptidyl-tRNA intermediate,
but ribosomes often release this intermediate
when mRNA translation stalls. Pth separates
peptidyl-tRNA into free tRNA and peptide by
cleaving the ester bond between the C-terminus of
the peptide and the 2’ or 3’ hydroxyl group at the 3’
end of the tRNA [28]. This cleavage frees the
tRNA and peptide for reuse. In the absence of Pth
activity, peptidyl-tRNAs cannot be recycled,
ultimately resulting in bacterial death [28]. Small-
molecule Pth inhibitors thus have potential as
antibacterial therapeutics.

To demonstrate the BINANA web app applied
to docked (predicted) ligand poses, we performed
a virtual screen targeting the Pth active site. In
brief, we prepared a model of the Pth receptor
from Pseudomonas aeruginosa based on the
4QBK crystal structure [29]. We used PDB2PQR
[30-32] to add hydrogens atoms to the protein,
OpenBabel [33] to convert the PQR file to PDB,
and MGLTools [34] to convert the PDB file to

Figure 3. The peptidyl-tRNA hydrolase
bound to a predicted ligand identified in a
virtual screen. (A) A schematic of the ligand,
created using MarvinSketch 18.24.0,
ChemAxon (https://www.chemaxon.com). B)
The ligand is predicted to form multiple
hydrogen bonds with ASN116. (C) The ligand
also participates in a π-stacking interaction with
TYR68.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459812doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.10.459812
http://creativecommons.org/licenses/by/4.0/

PDBQT. Because Pth binds peptide-based compounds, we also prepared a virtual library of
approximately 60,000 easy-to-synthesize dipeptides provided by the Distributed Drug Discovery
(D3) program [35-39]. We used Gypsum-DL to generate 3D models of these compounds and to
enumerate alternate protonation, chiral, and tautomeric states [39]. The dipeptide files were also
converted to the PDBQT format using OpenBabel and MGLTools.

We performed an initial docking run using Webina [18], a browser-app version of the
docking program AutoDock Vina [40]. We used this initial run to determine appropriate
coordinates and dimensions for the docking box and to confirm that our docking protocol could
generally recapture the crystallographic pose of a known ligand (PDB 4QBK [29]). Having
identified acceptable parameters, we docked all ~60,000 compounds using command-line Vina
running on resources provided by the University of Pittsburgh’s Center for Research Computing
(default parameters).

The two best-scoring compounds both had Vina scores of -9.0 kcal/mol. We loaded one of
these, (2S)‐2‐[(2R)‐2‐amino‐3‐(anthracen‐9‐yl)propanamido]‐3‐(quinolin‐2‐yl)propanoic acid,
into the BINANA web app (Figure 3A). The visualization suggests that the ligand participates in
three hydrogen bonds with the receptor, each with ASN116 (Figure 3B, black arrows), as well
as a π-stacking interaction with TYR68 (Figure 3C, dotted lines).

Related programs
Several free desktop tools can also characterize receptor/ligand complexes (e.g., Visual

Molecular Dynamics, PyMOL, and UCSF Chimera). Similar commercial tools include MOE
(chemcomp.com), Discovery Studio (accelrys.com), SAMSON (samson-connect.net), and Small
Molecule Drug Discovery Suite (schrodinger.com). Though powerful, these tools require
separate download and installation. Some are also expensive, and even the free programs
impose restrictions on commercial use in some cases. Furthermore, none of these desktop
programs provides a JavaScript API that enables easy integration into user-friendly browser
apps. In contrast, BINANA 2.0 includes a JavaScript implementation called BINANA.js, which
we used to build a web app that can be freely accessed by simply visiting a website. We also
release BINANA 2.0 under the terms of the open-source Apache License, Version 2.0, which
permits incorporation into any program, commercial or otherwise.

nAPOLI [41] and PLIP [42] are examples of free online tools for characterizing
receptor/ligand complexes. Both include convenient web-based interfaces, and PLIP also works
as a command-line program. BINANA.js-powered browser apps have several advantages over
these useful server apps. For example, BINANA.js allows apps to detect intermolecular
interactions in the browser itself, without requiring users to upload their (possibly proprietary)
structures to a third-party system. Instead, a simple web server sends the BINANA.js library to
users’ browsers to detect interactions locally on their own machines. Consequently, BINANA.js-
powered browser apps do not require an extensive remote computing infrastructure where
calculations take place “in the cloud.”

Broad compatibility
We have tested the BINANA Python and JavaScript libraries on the operating systems,

Python versions, and browsers listed in Table 1. The software depends on no external Python
or JavaScript libraries, so we do not anticipate compatibility issues on other, untested setups.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459812doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.10.459812
http://creativecommons.org/licenses/by/4.0/

Operating System Python Browser (JavaScript)
Ubuntu (Linux) 20.04.2 LTS Python 3.9.1 Chromium 92.0.4515.159
 Firefox 91.0
macOS Mojave 10.14.6 Python 3.6.7 Chrome 93.0.4577.42
 Firefox 91.0.1
 Safari 14.1.2
Microsoft Windows 10 Home Python 3.8.8 Chrome 92.0.4515.159
 Firefox 91.0.1
 Edge 92.0.902.73
Android 11 N/A Chrome 92.0.4515.131
 Firefox 90.1.1
iOS 14.7.1 N/A Safari 14.1
Table 1. Operating system, Python, and web-browser compatibility.

Conclusion
BINANA 2.0 retains the core functionality of the original version in that it can run as a stand-

alone, command-line program. But it now also serves as a Python library that others can
incorporate into their Python-based computational-biology tools. We also ported the BINANA
library to JavaScript, enabling use in the web browser. To demonstrate how to incorporate
BINANA.js into browser-based applications, we created the BINANA browser app. This app can
be accessed online, enabling easy access and visualization without requiring command-line
use.

Data software and availability
Users can download the BINANA 2.0 source code—including the Python3/JavaScript

libraries and the web-app graphical user interface—free of charge from
http://durrantlab.com/binana-download/. We release BINANA 2.0 under the terms of the open-
source Apache License, Version 2.0. Users can also freely access the BINANA browser app at
http://durrantlab.com/binana/, and the API documentation at
http://durrantlab.com/apps/binana/docs/.

Supporting information
The “SMILES.csv” file includes the names and SMILES strings of the ligands depicted in

Figures 2 and 3.

Acknowledgements
We thank the University of Pittsburgh’s Center for Research Computing for providing helpful

computer resources. This work was supported by the National Institute of General Medical
Sciences of the National Institutes of Health [R01GM132353 to J. D. D.]. The content is solely
the responsibility of the authors and does not necessarily represent the official views of the
National Institutes of Health.

References

1. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph.
1996;14(1): 33-38, 27-38.

2. DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein
crystallography. 2002;40(1): 82-92.

3. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. Ucsf

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459812doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.10.459812
http://creativecommons.org/licenses/by/4.0/

chimera--a visualization system for exploratory research and analysis. J Comput Chem.
2004;25(13): 1605-1612.

4. Durrant JD, McCammon JA. BINANA: A novel algorithm for ligand-binding
characterization. J Mol Graph Model. 2011;29(6): 888-893.

5. McCarthy MJ, Pagba CV, Prakash P, Naji AK, van der Hoeven D, Liang H, et al. Discovery
of high-affinity noncovalent allosteric kras inhibitors that disrupt effector binding. ACS
Omega. 2019;4(2): 2921-2930.

6. Poli G, Lapillo M, Jha V, Mouawad N, Caligiuri I, Macchia M, et al. Computationally driven
discovery of phenyl(piperazin-1-yl)methanone derivatives as reversible monoacylglycerol
lipase (magl) inhibitors. J Enzyme Inhib Med Chem. 2019;34(1): 589-596.

7. Durrant JD, McCammon JA. NNScore 2.0: A neural-network receptor-ligand scoring
function. J Chem Inf Model. 2011;51(11): 2897-2903.

8. Buryska T, Daniel L, Kunka A, Brezovsky J, Damborsky J, Prokop Z. Discovery of novel
haloalkane dehalogenase inhibitors. Appl Environ Microbiol. 2016;82(6): 1958-1965.

9. Jaballah MY, Serya RAT, Saad N, Khojah SM, Ahmed M, Barakat K, et al. Towards
discovery of novel scaffold with potent antiangiogenic activity; design, synthesis of
pyridazine based compounds, impact of hinge interaction, and accessibility of their
bioactive conformation on vegfr-2 activities. J Enzyme Inhib Med Chem. 2019;34(1): 1573-
1589.

10. Andrianov AM, Nikolaev GI, Kornoushenko YV, Usanov SA. Click chemistry in silico,
docking, quantum chemical calculations, and molecular dynamics simulations to identify
novel 1, 2, 4-triazole-based compounds as potential aromatase inhibitors. SN Applied
Sciences. 2019;1(9): 1-16.

11. Hassan M, Mogollon DC, Fuentes O. Dlscore: A deep learning model for predicting
protein-ligand binding affinities. 2018.

12. Durrant JD, McCammon JA. HBonanza: A computer algorithm for molecular-dynamics-
trajectory hydrogen-bond analysis. J Mol Graph Model. 2011;31: 5-9.

13. Wagner JR, Sorensen J, Hensley N, Wong C, Zhu C, Perison T, et al. POVME 3.0:
Software for mapping binding pocket flexibility. J Chem Theory Comput. 2017;13(9): 4584-
4592.

14. Rabello MM, Rolim LA, Neto PJR, Hernandes MZ. Cyclomolder software: Building
theoretical cyclodextrin derivatives models and evaluating their host: Guest interactions.
Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2019;93(3): 301-308.

15. Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, et al. Moleculenet:
A benchmark for molecular machine learning. Chem Sci. 2018;9(2): 513-530.

16. Wojcikowski M, Zielenkiewicz P, Siedlecki P. Open drug discovery toolkit (oddt): A new
open-source player in the drug discovery field. J Cheminform. 2015;7: 26.

17. Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity—a rapid
access to atomic charges. Tetrahedron. 1980;36(22): 3219-3228.

18. Kochnev Y, Hellemann E, Cassidy KC, Durrant JD. Webina: An open-source library and
web app that runs autodock vina entirely in the web browser. Bioinformatics. 2020;36(16):
4513-4515.

19. Green H, Durrant JD. Deepfrag: An open-source browser app for deep-learning lead
optimization. J Chem Inf Model. 2021;61(6): 2523-2529.

20. Rego N, Koes D. 3dmol.Js: Molecular visualization with webgl. Bioinformatics. 2015;31(8):
1322-1324.

21. Maeda S, Qu Q, Robertson MJ, Skiniotis G, Kobilka BK. Structures of the m1 and m2
muscarinic acetylcholine receptor/G-protein complexes. Science. 2019;364(6440): 552-
557.

22. Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE. Trends in gpcr drug
discovery: New agents, targets and indications. Nat Rev Drug Discov. 2017;16(12): 829-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459812doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.10.459812
http://creativecommons.org/licenses/by/4.0/

842.
23. Nelson CP, Nahorski SR, Challiss RA. Constitutive activity and inverse agonism at the m2

muscarinic acetylcholine receptor. J Pharmacol Exp Ther. 2006;316(1): 279-288.
24. Croy CH, Schober DA, Xiao H, Quets A, Christopoulos A, Felder CC. Characterization of

the novel positive allosteric modulator, ly2119620, at the muscarinic m(2) and m(4)
receptors. Mol Pharmacol. 2014;86(1): 106-115.

25. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, et al. Molprobity: All-
atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res.
2007;35(Web Server issue): W375-383.

26. Chen VB, Arendall WB, 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al.
Molprobity: All-atom structure validation for macromolecular crystallography. Acta
Crystallogr D Biol Crystallogr. 2010;66(Pt 1): 12-21.

27. Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, et al. Molprobity:
More and better reference data for improved all-atom structure validation. Protein Sci.
2018;27(1): 293-315.

28. Das G, Varshney U. Peptidyl-trna hydrolase and its critical role in protein biosynthesis.
Microbiology (Reading). 2006;152(Pt 8): 2191-2195.

29. Singh A, Kumar A, Gautam L, Sharma P, Sinha M, Bhushan A, et al. Structural and
binding studies of peptidyl-trna hydrolase from pseudomonas aeruginosa provide a
platform for the structure-based inhibitor design against peptidyl-trna hydrolase. Biochem
J. 2014;463(3): 329-337.

30. Unni S, Huang Y, Hanson RM, Tobias M, Krishnan S, Li WW, et al. Web servers and
services for electrostatics calculations with apbs and PDB2PQR. J Comput Chem.
2011;32(7): 1488-1491.

31. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, et al. PDB2PQR:
Expanding and upgrading automated preparation of biomolecular structures for molecular
simulations. Nucleic Acids Res. 2007;35(Web Server issue): W522-525.

32. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: An automated pipeline for
the setup of poisson-boltzmann electrostatics calculations. Nucleic Acids Res.
2004;32(Web Server issue): W665-667.

33. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open
babel: An open chemical toolbox. J Cheminform. 2011;3: 33.

34. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. Autodock4
and autodocktools4: Automated docking with selective receptor flexibility. J Comput Chem.
2009;30(16): 2785-2791.

35. Scott WL, Alsina J, Audu CO, Babaev E, Cook L, Dage JL, et al. Distributed drug
discovery, part 2: Global rehearsal of alkylating agents for the synthesis of resin-bound
unnatural amino acids and virtual d(3) catalog construction. J Comb Chem. 2009;11(1):
14-33.

36. Scott WL, Audu CO, Dage JL, Goodwin LA, Martynow JG, Platt LK, et al. Distributed drug
discovery, part 3: Using d(3) methodology to synthesize analogs of an anti-melanoma
compound. J Comb Chem. 2009;11(1): 34-43.

37. Scott WL, O'Donnell MJ. Distributed drug discovery, part 1: Linking academia and
combinatorial chemistry to find drug leads for developing world diseases. J Comb Chem.
2009;11(1): 3-13.

38. Scott WL, Denton RE, Marrs KA, Durrant JD, Samaritoni JG, Abraham MM, et al.
Distributed drug discovery: Advancing chemical education through contextualized
combinatorial solid-phase organic laboratories. Journal of Chemical Education.
2015;92(5): 819-826.

39. Ropp PJ, Spiegel JO, Walker JL, Green H, Morales GA, Milliken KA, et al. Gypsum-DL: An
open-source program for preparing small-molecule libraries for structure-based virtual

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459812doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.10.459812
http://creativecommons.org/licenses/by/4.0/

screening. J Cheminform. 2019;11(1): 34.
40. Trott O, Olson AJ. Autodock vina: Improving the speed and accuracy of docking with a

new scoring function, efficient optimization, and multithreading. J Comput Chem.
2010;31(2): 455-461.

41. Fassio AV, Santos LH, Silveira SA, Ferreira RS, de Melo-Minardi RC. Napoli: A graph-
based strategy to detect and visualize conserved protein-ligand interactions in large-scale.
IEEE/ACM Trans Comput Biol Bioinform. 2020;17(4): 1317-1328.

42. Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. Plip: Fully automated
protein-ligand interaction profiler. Nucleic Acids Res. 2015;43(W1): W443-447.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459812doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.10.459812
http://creativecommons.org/licenses/by/4.0/

Table of contents graphic

XXXX BINANA 2.0: Characterizing
Protein/Ligand Interactions in
Python and JavaScript

Jade Young, Neerja Garikipati,
Jacob D. Durrant*

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459812doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.10.459812
http://creativecommons.org/licenses/by/4.0/

