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Abstract 
BINding ANAlyzer (BINANA) is an algorithm for identifying and characterizing protein/ligand 

interactions and other factors that contribute to binding. We recently updated BINANA to make 
the algorithm more accessible to a broader audience. We have also ported the Python3 
codebase to JavaScript, thus enabling BINANA analysis in the web browser. As proof of 
principle, we created a web-browser application so students and chemical-biology researchers 
can quickly visualize receptor/ligand complexes and their unique binding interactions. 

Introduction 
Many biochemical processes depend on the association of specific proteins with their small-

molecule ligands. The process by which a protein target recognizes its ligand (“molecular 
recognition”) is primarily determined by the non-covalent atomic interactions that form between 
the two, including hydrogen bonds, π-π stacking and cation-π interactions, electrostatic 
attraction and repulsion, and hydrophobics. These interactions contribute to the overall binding 
affinity of the protein/ligand association, and their geometric configuration plays a role in 
determining specificity (i.e., the tendency to bind the protein target but not other off-target 
proteins). Characterizing protein/ligand interactions can thus yield essential insights into the 
biological mechanisms underlying many processes (e.g., signaling, enzymatic catalysis, etc.). In 
the context of drug discovery, accurately characterizing protein/ligand interactions allows 
medicinal chemists to assess whether a ligand merits further study and pharmaceutical 
development. 

When assessing a single protein/ligand complex, researchers often rely on manual 
inspection using visualization software such as VMD [1], PyMOL [2], or Chimera [3]. But many 
use cases require the assessment of many—sometimes thousands—of predicted ligand poses. 
The BINding ANAlyzer (BINANA) algorithm (first released in 2011) addresses this challenge by 
automating ligand-pose analysis [4], enabling the characterization of far more protein/ligand 
complexes than can be manually inspected. For example, McCarthy et al. [5] used BINANA to 
identify novel inhibitors of KRAS, a GTPase protein activated via mutation in 15% of human 
cancers. After performing a high-throughput virtual screen to evaluate six million compounds for 
potential KRAS inhibition, they used BINANA to identify the top predicted ligands that formed 
reasonable interactions with the protein receptor. These efforts ultimately led to an 
experimentally validated KRAS inhibitor. In a second study, Poli et al. used BINANA to identify 
inhibitors of monoacylglycerol lipase (MAGL) [6], a protein involved in the pathogenesis of 
neurodegenerative, cancer, inflammatory, and chronic-pain diseases. They docked ~14,000 
molecules into the MAGL binding pocket and used BINANA to identify 17 compounds predicted 
to form critical interactions with the receptor. Subsequent experiments ultimately revealed three 
new compounds that inhibited MAGL activity; one even inhibited the proliferation of breast- and 
ovarian-cancer cell lines. 

Several groups (including our own) have used BINANA to generate training data for 
machine-learning models (“scoring functions”) designed to identify ligands that merit more 
careful human scrutiny. Our NNScore2 algorithm [7] leverages BINANA descriptors (among 
other metrics) to predict ligand binding strength. NNScore2 has been used to help identify novel 
inhibitors of haloalkane dehalogenase [8], VEGFR-2 [9], and aromatase [10], among others. 
The DLSCORE scoring function [11] similarly uses BINANA descriptors to predict binding. 
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BINANA has also been incorporated into several other programs (e.g., HBonanza [12] and 
POVME3 [13]), has inspired similar approaches [14, 15], and has been included in the Open 
Drug Discovery Toolkit [16]. 

These examples of broad adoption aside, the original BINANA implementation has some 
notable usability limitations. It runs only from the command line and provides no built-in 
visualization of the identified interactions, instead requiring separate visualization software. 
From the perspective of tool developers, BINANA 1.0 is also challenging because (1) its 
codebase organization does not allow for modular import into other Python scripts, (2) it is 
written in a now unmaintained programming language (Python2), and (3) its output is difficult to 
parse, complicating efforts to process BINANA analyses in other programs. 

We developed BINANA 2.0 to address these challenges. The updated version can still run 
from the command line, but many users will benefit from our new web-browser implementation, 
which provides built-in molecular visualization that simplifies analysis. Tool-development 
researchers will benefit from updates to the Python codebase. We refactored the original 
implementation using a more modular programming approach that allows developers to 
integrate BINANA functions more easily into their projects (e.g., by importing individual modules 
as needed). We also added JSON-formatted output for easy processing by other computational 
tools and rewrote the code to be compatible with Python3 and JavaScript transpilation. To 
further encourage broad adoption and integration, we release BINANA 2.0 under a more 
permissive license than previous versions (Apache License, Version 2.0). Users can download 
the source free of charge from http://durrantlab.com/binana-download/ or access the browser 
app at http://durrantlab.com/binana/. 

BINANA Python codebase 

Improving modularity and Python3 compatibility 
We split the BINANA codebase into modules (separate files) to enable access as a Python 

library from other scripts. The original BINANA 1.0 was a stand-alone application (i.e., its 
codebase was contained in a single file, and its functions were not organized into modules), but 
several other groups have nevertheless incorporated BINANA code into their software projects 
[11, 13, 16]. To further enable such use, we refactored the BINANA codebase so other software 
can more easily import BINANA’s essential functions, including (1) loading PDBQT and PDB 
files containing receptor and bound-ligand structures, (2) analyzing those structures to identify 
specific protein/ligand interactions, and (3) saving BINANA analyses in various formats.  

In refactoring the BINANA code, we also updated the codebase to make it compatible with 
Python3. The original version of BINANA was written in the now discontinued Python2 
language.  

Documentation 
We created a documentation website to further improve BINANA usability: 

http://durrantlab.com/apps/binana/docs/. The website describes how to use the stand-alone 
BINANA program. It also catalogs the extensive docstrings associated with each public BINANA 
function so tool developers can quickly learn how to access the library’s application 
programming interface (API). Finally, the documentation also provides a copy of a Jupyter 
notebook demonstrating how to use BINANA as a Python library. The BINANA download 
includes the same notebook in an “examples” directory. 
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JSON output 
The original version of BINANA saved binding-pose analyses to a PDB file or a VMD state 

file (for visualization using the popular program Visual Molecular Dynamics [1]). The new 
version of BINANA retains these features and further allows data export to the machine-
readable JSON format. Many researchers have used BINANA to automatically assess the 
binding poses of large compound sets (e.g., in the context of virtual screens [5, 6]). To extract 
the data from these many analyses for subsequent processing, they have had to parse the 
BINANA-log text files directly. Now that BINANA outputs to JSON, this process will be much 
simplified. 

Identifying protein/ligand interactions and other characterizations 
To analyze a given protein/ligand complex, the user provides BINANA with molecular 

models of the protein and bound ligand in the PDBQT (recommended) or PDB format. BINANA 
then considers the positions and angles of various chemical groups to identify common 
interactions and otherwise characterize the complex.  

BINANA 2.0 identifies the same protein/ligand interactions and characterizations that 
previous versions identified. These include close (< 4.0 Å by default) and closest (< 2.5 Å) 
contacts as well as hydrophobic, salt-bridge, π-π, and cation-π interactions. BINANA also tallies 
the number of times a ligand atom comes near the backbone or side chain of an alpha-helix, 
beta-sheet, or “other” secondary-structure amino acid. If the receptor/ligand models include 
hydrogen atoms, BINANA identifies hydrogen bonds. If the user provides models in the PDBQT 
format (which includes AutoDock atom types and Gasteiger partial charges [17]), BINANA also 
tallies the electrostatic energies between proximate protein/ligand atoms, the ligand atom types, 
and the number of ligand rotatable bonds. Full details can be found in the original BINANA 
manuscript [4]. 

The BINANA 2.0 interaction criteria are identical to the original version, except for close and 
closest contacts. Previously, these two interactions were mutually exclusive (i.e., those 
protein/ligand atom pairs that were close enough to be categorized as “closest” were not also 
considered to be “close”). In BINANA 2.0, all closest contacts are also close. 

BINANA JavaScript codebase and browser-app implementation 

Porting BINANA to JavaScript 
To broaden the impact of our BINANA algorithm, we transpiled the Python code to 

JavaScript using a software tool called Transcrypt (transcrypt.org). Transpilation rewrites or 
“translates” computer code written in one language (e.g., Python) into another (e.g., JavaScript). 
The resulting JavaScript library, BINANA.js, has the same functionality as the Python version 
but can be easily accessed from web apps running in any modern web browser. The BINANA 
download includes a Jupyter notebook and a simple HTML example file showing how to use 
BINANA.js.  

BINANA browser app 
To help non-computationalists better engage with the library, we integrated BINANA.js into a 

user-friendly browser-based application that detects and visualizes protein/ligand interactions. 

Designing and compiling the browser-app user interface 
The BINANA browser app provides an interactive graphical user interface (GUI). We 
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designed the BINANA GUI using the same approach described elsewhere [18, 19]. In brief, the 
GUI was written in the TypeScript programming language, which compiles to JavaScript. We 
used Vue.js, an open-source web application framework, to compose reusable GUI components 
(e.g., text fields, buttons, etc.), and the BootstrapVue library to style all GUI components 
consistently according to the Bootstrap4 framework. We also used a custom molecular-
visualization Vue.js component that leverages the 3Dmol.js JavaScript library [20] to display 
macromolecular and small-molecule structures in the browser, as required for visualizing 
BINANA-predicted protein/ligand interactions. 

To compile these components and the BINANA.js library itself into a single web app, we 
used Webpack, an open-source module bundler, to manage the organization and composition 
of our source libraries and files. Webpack copies required files, combines files where possible, 
removes unneeded code, etc. The build process also used Google’s Closure Compiler to 
optimize the file size and performance of the TypeScript-compiled JavaScript code. 

 
Figure 1. The BINANA web-app interface. (A) The “Advanced Parameters” button allows users to 
specify custom BINANA parameters. (B) The “Input Files” panel allows users to load their protein/ligand 
structures into the browser’s memory. (C) The “Molecular “Viewer” panel shows the detected interactions. 
(D) The “Save” button saves the results to the user’s disk. 

Browser-app Usage 
Advanced parameters. The “Advanced Parameters” button appears at the top of the 

BINANA browser-app interface (Figure 1A). When clicked, a series of text fields appears that 
allows the user to modify the BINANA-library parameters. These fields initially contain the 
default values used by the BINANA command-line tool and Python library. We expect most 
users will wish to leave them unchanged, so they are hidden by default. 

Input files. The “Input Files” section allows users to load a ligand or receptor PDBQT or 
PDB file into their browser’s memory (Figure 1B). The structures are never uploaded to any 
third-party server, helping to ensure data privacy. Users can also run BINANA using build-in 
example ligand and receptor files by clicking the “Use Example Files” button.  
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Molecular viewer. The protein/ligand complex appears in the “Molecular Viewer” section of 
the browser app (Figure 1C), which also presents three general categories of interactions: 
“Common,” “Contacts,” and “Aromatic.” Clicking on the corresponding button opens a drop-
down menu so users can choose which specific interaction to visualize. Under “Common,” users 
can select “Hydrogen Bonds,” “Hydrophobic,” or “Salt Bridge” interactions; under “Contacts,” 
users can select “Close” or “Closest” interactions; and under “Aromatic,” users can select “π-π 
Stacking,” “T Shaped,” or “Cation-π” interactions. 

Interaction viewer. Once the user selects a specific interaction, semi-transparent red and 
yellow spheres highlight the participating protein and 
ligand atoms, respectively. We call this visualization 
scheme “By Molecule.” Clicking the corresponding 
button (Figure 1D) toggles on the alternate “By 
Interaction” scheme, in which hydrogen-bond 
donors and acceptors are highlighted in yellow and 
red, respectively, and salt-bridge positive and 
negative moieties are highlighted in blue and red, 
respectively. Clicking on the “Interactions” button 
further toggles the display of lines that connect the 
relevant protein and ligand atoms (Figure 1D). For 
hydrogen bonds, the line is a solid arrow that points 
from the hydrogen-bond donor to the acceptor. 
Otherwise, the line is dashed. The browser app also 
provides a “Save” button (Figure 1D) that allows 
users to save a zip file containing a copy of their 
protein/ligand files, as well as a thorough description 
of all BINANA.js-detected interactions in the JSON 
format, which is both human and machine readable. 

Examples of use 
To test the web version of BINANA, we selected 

two receptor/ligand complexes and visualized them 
in the browser.  

M2 muscarinic acetylcholine receptor 
Muscarinic acetylcholine receptors (mACHhRs) 

are G protein-coupled receptors (GPCRs) activated 
by acetylcholine [21]. As of 2017, ~34% of FDA-
approved drugs targeted GPCRs [22], so studying 
GPCR/ligand complexes is useful for structure-
based drug discovery and design [22]. Despite 
sharing between 64 and 82% sequence similarity, 
the five mACHhR subtypes differ in tissue 
distribution and GTP-binding protein partners [21]. 
The M2 muscarinic receptor, for example, is 
expressed in peripheral tissues and regulates heart 

Figure 2. The muscarinic acetylcholine 
receptor M2 bound to LY2119620, an 
allosteric ligand. (A) A schematic of the 
ligand, created using MarvinSketch 18.24.0, 
ChemAxon (https://www.chemaxon.com). (B) 
The ligand forms a hydrogen bond with 
TYR80. (C) The ligand also participates in π-
stacking interactions with TRP422 and 
TYR177.  
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rate [21]. Clinically approved small-molecule drugs that modulate M2 activity can effectively treat 
bradycardia (e.g., atropine [23]), urinary incontinence (e.g., tolterodine [23]), etc. 

We used the BINANA web app to visualize a structure of M2 bound to LY2119620, a small-
molecule, positive allosteric M2 modulator (Figure 2A). Allosteric muscarinic-receptor ligands are 
significant because they may enable improved receptor selectivity. All muscarinic receptors bind 
acetylcholine, so their orthosteric (primary) binding pockets are in many ways chemically similar. 
Identifying orthosteric ligands that bind to only one receptor subtype is thus challenging. In 
contrast, allosteric pockets may be more varied. Although LY2119620 also binds M4 muscarinic 
receptors and so is not strictly receptor specific [24], in principle allostery enables the design of 
ligands with improved specificity. We downloaded a PDB file of the receptor/ligand complex 
(PDB 6OIK [21]), added hydrogen atoms to the structure and ligand using MolProbity [25-27], 
and loaded the resulting model into the BINANA web app.  

BINANA visualization revealed a hydrogen bond between an LY2119620 carbonyl oxygen 
atom and the side-chain hydroxyl group of TYR80 (Figure 2B, black arrow). The aromatic 
LY2119620 bicyclic moiety also forms π-π stacking interactions with TRP422 and TYR177 
(Figure 2C, black dotted lines). 

Pseudomonas aeruginosa peptidyl-tRNA 
hydrolase 

Peptidyl tRNA hydrolase (Pth) is a potential 
drug target found in multiple species of bacteria, 
including Escherichia coli, Mycobacterium 
tuberculosis, Mycobacterium smegmatis, and 
Pseudomonas aeruginosa. The process of mRNA 
translation produces a peptidyl-tRNA intermediate, 
but ribosomes often release this intermediate 
when mRNA translation stalls. Pth separates 
peptidyl-tRNA into free tRNA and peptide by 
cleaving the ester bond between the C-terminus of 
the peptide and the 2’ or 3’ hydroxyl group at the 3’ 
end of the tRNA [28]. This cleavage frees the 
tRNA and peptide for reuse. In the absence of Pth 
activity, peptidyl-tRNAs cannot be recycled, 
ultimately resulting in bacterial death [28]. Small-
molecule Pth inhibitors thus have potential as 
antibacterial therapeutics. 

To demonstrate the BINANA web app applied 
to docked (predicted) ligand poses, we performed 
a virtual screen targeting the Pth active site. In 
brief, we prepared a model of the Pth receptor 
from Pseudomonas aeruginosa based on the 
4QBK crystal structure [29]. We used PDB2PQR 
[30-32] to add hydrogens atoms to the protein, 
OpenBabel [33] to convert the PQR file to PDB, 
and MGLTools [34] to convert the PDB file to 

Figure 3. The peptidyl-tRNA hydrolase 
bound to a predicted ligand identified in a 
virtual screen. (A) A schematic of the ligand, 
created using MarvinSketch 18.24.0, 
ChemAxon (https://www.chemaxon.com). B) 
The ligand is predicted to form multiple 
hydrogen bonds with ASN116. (C) The ligand 
also participates in a π-stacking interaction with 
TYR68.  
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PDBQT. Because Pth binds peptide-based compounds, we also prepared a virtual library of 
approximately 60,000 easy-to-synthesize dipeptides provided by the Distributed Drug Discovery 
(D3) program [35-39]. We used Gypsum-DL to generate 3D models of these compounds and to 
enumerate alternate protonation, chiral, and tautomeric states [39]. The dipeptide files were also 
converted to the PDBQT format using OpenBabel and MGLTools. 

We performed an initial docking run using Webina [18], a browser-app version of the 
docking program AutoDock Vina [40]. We used this initial run to determine appropriate 
coordinates and dimensions for the docking box and to confirm that our docking protocol could 
generally recapture the crystallographic pose of a known ligand (PDB 4QBK [29]). Having 
identified acceptable parameters, we docked all ~60,000 compounds using command-line Vina 
running on resources provided by the University of Pittsburgh’s Center for Research Computing 
(default parameters). 

The two best-scoring compounds both had Vina scores of -9.0 kcal/mol. We loaded one of 
these, (2S)‐2‐[(2R)‐2‐amino‐3‐(anthracen‐9‐yl)propanamido]‐3‐(quinolin‐2‐yl)propanoic acid, 
into the BINANA web app (Figure 3A). The visualization suggests that the ligand participates in 
three hydrogen bonds with the receptor, each with ASN116 (Figure 3B, black arrows), as well 
as a π-stacking interaction with TYR68 (Figure 3C, dotted lines).  

Related programs 
Several free desktop tools can also characterize receptor/ligand complexes (e.g., Visual 

Molecular Dynamics, PyMOL, and UCSF Chimera). Similar commercial tools include MOE 
(chemcomp.com), Discovery Studio (accelrys.com), SAMSON (samson-connect.net), and Small 
Molecule Drug Discovery Suite (schrodinger.com). Though powerful, these tools require 
separate download and installation. Some are also expensive, and even the free programs 
impose restrictions on commercial use in some cases. Furthermore, none of these desktop 
programs provides a JavaScript API that enables easy integration into user-friendly browser 
apps. In contrast, BINANA 2.0 includes a JavaScript implementation called BINANA.js, which 
we used to build a web app that can be freely accessed by simply visiting a website. We also 
release BINANA 2.0 under the terms of the open-source Apache License, Version 2.0, which 
permits incorporation into any program, commercial or otherwise. 

nAPOLI [41] and PLIP [42] are examples of free online tools for characterizing 
receptor/ligand complexes. Both include convenient web-based interfaces, and PLIP also works 
as a command-line program. BINANA.js-powered browser apps have several advantages over 
these useful server apps. For example, BINANA.js allows apps to detect intermolecular 
interactions in the browser itself, without requiring users to upload their (possibly proprietary) 
structures to a third-party system. Instead, a simple web server sends the BINANA.js library to 
users’ browsers to detect interactions locally on their own machines. Consequently, BINANA.js-
powered browser apps do not require an extensive remote computing infrastructure where 
calculations take place “in the cloud.”  

Broad compatibility 
We have tested the BINANA Python and JavaScript libraries on the operating systems, 

Python versions, and browsers listed in Table 1. The software depends on no external Python 
or JavaScript libraries, so we do not anticipate compatibility issues on other, untested setups. 
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Operating System Python Browser (JavaScript) 
Ubuntu (Linux) 20.04.2 LTS Python 3.9.1 Chromium 92.0.4515.159 
  Firefox 91.0 
macOS Mojave 10.14.6 Python 3.6.7 Chrome 93.0.4577.42 
  Firefox 91.0.1 
  Safari 14.1.2 
Microsoft Windows 10 Home Python 3.8.8 Chrome 92.0.4515.159 
  Firefox 91.0.1 
  Edge 92.0.902.73 
Android 11 N/A Chrome 92.0.4515.131 
  Firefox 90.1.1 
iOS 14.7.1 N/A Safari 14.1 
Table 1. Operating system, Python, and web-browser compatibility. 

Conclusion 
BINANA 2.0 retains the core functionality of the original version in that it can run as a stand-

alone, command-line program. But it now also serves as a Python library that others can 
incorporate into their Python-based computational-biology tools. We also ported the BINANA 
library to JavaScript, enabling use in the web browser. To demonstrate how to incorporate 
BINANA.js into browser-based applications, we created the BINANA browser app. This app can 
be accessed online, enabling easy access and visualization without requiring command-line 
use.  

Data software and availability 
Users can download the BINANA 2.0 source code—including the Python3/JavaScript 

libraries and the web-app graphical user interface—free of charge from 
http://durrantlab.com/binana-download/. We release BINANA 2.0 under the terms of the open-
source Apache License, Version 2.0. Users can also freely access the BINANA browser app at 
http://durrantlab.com/binana/, and the API documentation at 
http://durrantlab.com/apps/binana/docs/. 

Supporting information 
The “SMILES.csv” file includes the names and SMILES strings of the ligands depicted in 

Figures 2 and 3. 
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