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Abstract 16 

Exploring and clearly defining the level of taxonomic identification and quantification approaches for 17 

diversity and biomonitoring studies are essential, given its potential influence on the assessment and 18 

interpretation of ecological outcomes. In this study, we evaluated the response of benthic 19 

macroinvertebrate communities to the restoration or construction of gravel bars conducted in the dam-20 

impacted Trinity River, with the non-dam influenced tributaries serving as the reference sites. We aim to 21 

evaluate the performance of different taxonomic and numerical (i.e., abundance vs. presence/absence 22 

data) resolutions of DNA metabarcoding with consequent comparison to morphology-based 23 

identification and how it affects assessment outcomes. DNA metabarcoding detected 93% of the 24 

morphologically identified individuals and provided finer taxonomic resolution. We also detected 25 

significant correlations between morphological sample abundance, biomass, and DNA metabarcoding 26 

read abundance. We observed a relatively high and significant congruence in macroinvertebrate 27 

community structure and composition between different taxonomic and numerical resolutions of both 28 

methods, indicating a satisfactory surrogacy between the two approaches and their varying identification 29 

levels and data transformation. Additionally, the community-environmental association were significant 30 

for all datasets but showed varying significant associations against the physicochemical parameters. 31 

Furthermore, both methods identified Simulium spp. as significant indicators of the dam-impacted gravel 32 

bars. Still, only DNA metabarcoding showed significant false discovery rate proving the method's 33 

robustness compared to morphology-based identification. Our observations imply that coarser 34 

taxonomic resolution could be highly advantageous to DNA metabarcoding-based applications in 35 

situations where the lack of taxonomic information, e.g., poor reference database, might severely affect 36 

the quality of biological assessments. 37 

Keywords 38 

benthic macroinvertebrates, DNA metabarcoding, gravel bars, numerical resolution, river restoration, 39 

taxonomic resolution40 
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INTRODUCTION 41 

Benthic macroinvertebrates are the most commonly used focal groups for the ecological survey of 42 

freshwater ecosystems since they serve as valuable indicators of ecosystem health due to their high 43 

diversity and different sensitivity to a range of natural and anthropogenic disturbances (Menezes et al., 44 

2010), which have been used to develop biotic indices for extensive monitoring programs (Bush et al., 45 

2019). The accuracy of identification is a key point for macroinvertebrate community-based 46 

biomonitoring and assessment. Baird and Hajibabaei (2012) pointed out several constraints that have 47 

severely limited the utility of morphology-based macroinvertebrate metrics in broad-scale biomonitoring 48 

programs over the last fifty years, e.g., the extensive time required for field sample processing, the 49 

identification difficulties for finer taxonomic resolution, the potential identification bias amongst experts, 50 

and the general lack of verification of morphology-based identifications. 51 

DNA metabarcoding is a transformative approach to biomonitoring, biodiversity discovery, and 52 

ecosystem health assessments in freshwater ecosystems (Cordier et al. 2017; Elbrecht et al. 2017; 53 

Serrana et al. 2019), providing solutions to various morphology-based constraints and has been tested 54 

and used to study different freshwater habitats and taxonomic groups (e.g., Serrana et al., 2018; Bailet 55 

et al., 2019; Ficetola et al., 2020). However, although the method has been reported to identify taxa with 56 

finer taxonomic resolution, some argue that this advantage is not necessarily valuable when taxa cannot 57 

be linked to a binomial taxonomic name (Bush et al., 2019), which may emerge from incomplete 58 

reference DNA libraries (Curry et al., 2018), and mixed template PCR-based challenges, e.g., 59 

inadequacy of high performance primers to amplify all relevant taxa (Taberlet et al., 2018).   60 

Taxonomic resolution has substantial effects on ecological study outcomes (Cordier et al., 2017; 61 

Pawlowski et al., 2018), but taxonomic details are often set without explicit justification and are usually 62 

based on the subjective criteria of sample-processing costs or times (Jones, 2008). Increased taxonomic 63 

resolution may increase information and observed variation among communities. This implies that 64 

depending on the specificity of the community response to environmental stress, finer taxonomic 65 

resolution may either enable better or worse detection of the environmental stress (Bailey, Norris & 66 

Reynoldson, 2001). Exploring and clearly defining the community representatives' taxonomic resolution 67 
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from diversity and biomonitoring studies is important for understanding the trade-offs associated with 68 

different taxonomic levels (Bailey, Norris & Reynoldson, 2001) that is vital for improving the comparability 69 

between biogeographically separate programs (Bailet et al., 2019). In particular, the difference in 70 

ecological surveys and their employed levels of taxonomic resolution creates potential discrepancies in 71 

the results and in the conclusions drawn when comparing the performance of separate programs and 72 

procedures (Herbst & Silldorff, 2006). Taxonomic sufficiency – the pragmatic concept of balancing the 73 

trade-off between the level of identification against feasibility in ecological studies (Ferrero & Cole, 1992) 74 

needs revisiting and discussion, given that species-level identification, which is considered the gold 75 

standard in environmental biomonitoring and assessment is not always achievable (Pawlowski et al., 76 

2018), even for DNA metabarcoding-based identifications (Staats et al., 2016; Hleap et al., 2021). 77 

Although previous studies have assessed the influence of taxonomic resolution on DNA metabarcoding-78 

based assessments (e.g., Laini et al., 2020), the evaluation of different taxonomic level for identifying 79 

taxa without losing significant ecological detail is still largely unexplored.  80 

Furthermore, the numerical resolution of data, i.e., qualitative - presence/absence vs. 81 

quantitative – relative or absolute abundance, may influence the outcome of ecological analyses 82 

(Mueller, Pander & Geist, 2013; Heino, 2014; Pires et al., 2021). Previous DNA metabarcoding-based 83 

macroinvertebrate biomonitoring studies had contrasting reports on numerical resolution. Some suggest 84 

the use of presence/absence data (Buchner et al., 2019; Zizka, Geiger & Leese, 2020) since it leads to 85 

similar assessment results compared to abundance-based data, while some presented that the 86 

quantification of relative species abundance based on read depth information provides better 87 

assessment efficiency instead of presence/absence data (Aylagas et al., 2018; Serrana et al., 2019; 88 

Meyer et al., 2020).  89 

Sediment deficit downstream reaches due to sediment loading in reservoirs (Petts & Gurnell, 90 

2005) leads to reduced habitat complexity and decreased biodiversity in downstream ecosystems (Graf, 91 

2006). As a resolve, some restoration programs on dam-fragmented rivers employ the construction of 92 

gravel bars by gravel augmentation and channel rehabilitation (Ock et al., 2015). Gravel bars provide 93 

areas of increased biogeochemical activities due to the enforced hydrodynamic exchange (Sackett et 94 

al., 2019), retaining organic matter filtered from surface waters in the hyporheic zone (i.e., the interface 95 
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between surface and groundwater) for the utilization of river biota, and enhances nutrient cycling with 96 

consequent benefits to ecosystem metabolism (Mendoza-Lera & Datry, 2017). Additionally, the wet and 97 

dry processes in gravel bars due to water level changes alternately offers terrestrial and aquatic habitats, 98 

increasing environmental heterogeneity to provide diverse habitats for different organisms, e.g., fishes 99 

(Beechie et al., 2005), microorganisms (Boano et al., 2014), and macroinvertebrates (Merz et al., 2005). 100 

Macroinvertebrates have been used as indicators of restoration or enhancement of habitat complexity 101 

from gravel bar structures (Lepori et al., 2005; Dunbar et al., 2010) and gravel-bed rivers (Rice & 102 

Greenwood, 2001). However, knowledge on the influence of gravel bars on benthic macroinvertebrate 103 

communities with specific consideration of the river (i.e., dam fragmented vs. non-dam fragmented river) 104 

and reach (gravel bars vs. non-gravel bars) scales are less explored and needs further assessment. 105 

In this study, we aim to evaluate the performance of different taxonomic and numerical 106 

resolutions in DNA metabarcoding in comparison to the traditional morphology-based identification and 107 

how this would affect the inference of benthic macroinvertebrate responses to river restoration, 108 

specifically the monitoring and assessment outcomes on the influence of gravel bar construction or 109 

rehabilitation in the dam-impacted Trinity River in California. We hypothesize that different taxonomic 110 

levels (i.e., family, genus, species, or haplotype level) and numerical resolution (i.e., absolute abundance 111 

or presence/absence data) from both morphology-based and DNA metabarcoding identifications affect 112 

the outcome of ecological assessments, i.e., multivariate community pattern, diversity measures, and 113 

environmental associations at different spatial scales (i.e., river and reach). Particularly, we expect that 114 

the increased information from genus, species, or haplotype-level data relative to a coarser taxonomic 115 

level, i.e., family, provides better discrimination in community composition and structure to differentiate 116 

test and reference sites at the river (i.e., dam fragmented vs. non-dam fragmented river) and reach (i.e., 117 

gravel bars vs. non-gravel bars) scales. We also performed indicator taxa analysis on the datasets of 118 

both methods to identify specific genera or species that can be used as indicators of restoration in the 119 

gravel bars of the dam-impacted Trinity River in comparison to the reference sites. 120 
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MATERIALS AND METHODS  121 

Study design and sampling 122 

The Trinity River is a large gravel-bed river located in northwest California, impounded by the Trinity 123 

Dam (164 m a.b.l and 3,020 million m3 storage) and the smaller Lewiston Dam (28 m a.b.l and 18 million 124 

m3 storage) located downstream of the Trinity Dam since 1964. The river is under current dam operating 125 

guidelines with a mean annual flood of approximately 180 m3/s (Gaeuman et al., 2017). The Trinity River 126 

Restoration Program, a multi-agency partnership, manages and implements these releases alongside 127 

gravel augmentations and mechanical rehabilitations downstream of the Lewiston Dam with the aims of 128 

restoring salmonid habitat and dynamic channel processes in the river (USDOI, 2000 as cited in Ock et 129 

al., 2015). 130 

The field survey was conducted in the Trinity River along a 60-km river length downstream of 131 

the Lewiston Dam in August 2017 to assess the influence of dam-impoundment and gravel bars on 132 

benthic macroinvertebrate communities. We performed a paired sampling scheme with two spatial 133 

hierarchical scales: i.e., river scale [2 groups: dam-influenced (Trinity River, DAM+) vs. non-dam 134 

influenced (tributaries, DAM-)], and reach scale [(2 groups: with gravel bar (GB+) vs. non-gravel bar 135 

(GB-)], and their combinations river × reach (4 groups: DAM+GB+, DAM+GB-, DAM-GB+, and DAM-136 

GB-). Six gravel bars and two non-gravel bar reaches of the Trinity River were selected as test sites, 137 

while two gravel bars and two non-gravel bar reaches from two non-dam impounded tributaries, i.e., the 138 

Rush Creek and the Canyon Creek were sampled as reference sites (Figure 1). We sampled each 139 

gravel bar site at the bar head (down-welling zone) and bar tail (up-welling zone), while the non-gravel 140 

bar segments were sampled at the up- and downstream points approximately 15-m in distance (relative 141 

to the average length of the gravel bars). In total, we have 24 sampling points in this study. 142 

Physico-chemical characteristics were measured from all sampling points (Table S1). Water 143 

samples for water quality analysis were collected following the procedures instructed by the United 144 

States Environmental Protection Agency (USEPA), kept in an icebox, and sent to the PHYSIS 145 

Environmental Laboratories, Inc. (Anaheim, CA, USA) for water quality analysis, i.e., ammonium 146 

nitrogen (NH4-N), nitrate nitrogen (NO3-N), ash-free dry mass (AFDM), and total suspended solids (TSS). 147 
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pH and electric conductivity (EC) was measured via the LAQUAtwin COND (Model Y071L, Horiba) and 148 

pH meters (Model Y017, Horiba). Water temperature and dissolved oxygen were measured with a DO 149 

meter (Model OM-51, Horiba, Ltd., Kyoto, Japan). 150 

Benthic macroinvertebrates were collected using a Surber net (30 cm × 30 cm, mesh size 500 151 

μm) at three random locations to cover most habitats (e.g., riffles and pools) at each sampling point. The 152 

Surber replicates were pooled together and directly preserved in 99% ethanol in the field. In the 153 

laboratory, the collected macroinvertebrates were sorted from debris, e.g., substrate and non-target 154 

organic matters, and morphologically identified at the lowest taxonomic level when possible (usually 155 

genus or family) under a stereomicroscope using the taxonomic keys for the identification of aquatic 156 

insects in North America (Merritt, Cummins & Berg, 2008). Sorted and morphologically identified 157 

samples were then kept in new ethanol and stored at 4°C before processing for molecular analysis. 158 

DNA extraction, amplicon library construction, and sequencing 159 

The morphologically identified and sorted samples from each point were dried overnight at room 160 

temperature in sterile Petri dishes to remove the remaining ethanol. The dry biomass of each taxon was 161 

measured on a Sartorius RC 210D semi-microbalance. Individuals from each taxon were then pooled 162 

as a bulk sample and homogenized by grinding in several 2-mL tubes. Genomic DNA was extracted 163 

using the DNeasy Blood & Tissue Kit (Qiagen, Inc.) following manufacturer instructions. DNA 164 

concentrations were quantified with the QuantiFluor dsDNA system (Promega, Madison, WI, USA) on 165 

the Quantus Fluorometer (Promega, Madison, WI, USA) and normalized to 50 ng/μL DNA for PCR.  166 

A two-step PCR protocol following the procedures of Elbrecht and Steinke (2019) was applied 167 

for PCR amplification and tagging. For the first PCR step, we amplified the target fragment using the 168 

BF2+BR2 primer set designed explicitly for benthic macroinvertebrates and evaluated using both mock 169 

and kick-net samples (Elbrecht & Leese, 2017). The PCR master mix consists of 0.25 μl Phusion, 0.75 170 

μl Dimethyl sulfoxide (DMSO), 1 μl dNTPs, 1.25 μl each of the forward and reverse primers (10 μM), 171 

five μl HF Buffer (New England Biolabs), and 15.5 μl of PCR-grade water. PCR cycling conditions were 172 

30 seconds of initial denaturation at 98°C, followed by 25 cycles of 10 seconds denaturation at 98°C, 30 173 

seconds annealing at 55°C, 30 seconds extension at 72 °C, and a final extension step of 5 minutes at 174 
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72°C. For the second PCR, we used fusion primers, which include inline tags and Illumina sequencing 175 

tails. One μl of the first PCR was used as the template. PCR master mix and conditions are the same 176 

as the first PCR step, but the cycles were adjusted to 15×. The second PCR products were purified by 177 

QIAquick PCR Purification Kit (QIAGEN, Inc., Valencia, CA), and the DNA concentration was quantified 178 

with qPCR via the KAPPA Illumina Library qPCR Quantification kit (Kappa Biosystems, Wilmington, MA, 179 

USA) and qualified with the High-Sensitivity DNA chip (Agilent BioAnalyzer, Palo Alto, CA, USA) for 180 

amplicon library assessment. PCR water was used as a negative control to monitor contamination from 181 

DNA extraction and library construction to post-amplification library quantity and quality verification, and 182 

no quantifiable amplicon was detected for further analysis. The 72 amplicon libraries of the 24 samples 183 

with triplicates were then normalized to 4 nM and pooled. Finally, 600 μl of a 6 pM denatured pooled 184 

library with PhiX (final concentration 15%; Illumina, Inc.) was prepared, and a 300-bp paired-end 185 

sequencing was performed using the MiSeq Reagent Kit v3 (Illumina, Inc.). 186 

The generated raw sequence data were deposited into the National Center for Biotechnology 187 

Information (NCBI) Sequence Read Archive (SRA) under the accession number SRR12620160. 188 

Bioinformatics and data processing 189 

The raw Illumina paired-end reads were demultiplexed according to sample tags via the R package 190 

JAMP v.0.67 (http://github.com/VascoElbrecht/JAMP) (Elbrecht et al., 2018) and were quality-checked 191 

with FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The primer sequences were 192 

trimmed using Cutadapt v.2.1 (Martin, 2011), and the subsequent read processing steps, i.e., quality 193 

filtering, merging, and inference of amplicon sequence variants (ASVs) were performed following the 194 

denoising pipeline of the DADA2 v.1.12 package (Callahan et al., 2016) in R v.3.6.2 (R Core Team, 195 

2019). The forward and reverse reads were trimmed at a minimum length of 220 and quality filtered 196 

using a maximum expected error (-maxee) of 3 and 5. The remaining sequences were denoised, and 197 

the forward and reverse sequences were merged. ASVs were inferred from the sequence data while 198 

subsequently removing chimeric sequences and singletons.  199 

For the taxonomic assignment, the ASV sequences were matched to the Barcode of Life 200 

Database (BOLD, Barcode of Life Data System, http://www.boldsystems.org/; accessed at September 201 
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1, 2020) using the python program BOLDigger (https://github.com/DominikBuchner/BOLDigger) 202 

(Buchner & Leese, 2020). The best-fitting hit option from the JAMP pipeline was performed, wherein 203 

different thresholds, i.e., 98% for species level, 95% for the genus, 90% for family, 85% for order level, 204 

and <85% for class level, were used as a best-fitting hit parameter. An interactive Krona chart was used 205 

to visualize the total individual count and absolute read abundances within the complex hierarchies of 206 

the taxonomic assignments (Ondov et al., 2011). 207 

Statistical analysis 208 

Pearson’s pairwise correlation test was performed to assess the relationship between morphologically-209 

identified sample abundance and biomass per taxa against the number of reads in the metabarcoding 210 

data. The shared and unique taxonomic assignment and ASVs at the river × reach scale was visualized 211 

with UpSetR plots (Lex et al., 2014). The read counts per ASV and sample data, along with the 212 

taxonomic identifications and sample descriptors were merged into phyloseq objects using the phyloseq 213 

v.1.32.0 package (McMurdie and Holmes 2011). For the subsequent analysis, the DNA metabarcoding 214 

reads and the morphologically-identified individual counts in each sample were normalized using median 215 

depth. Median normalization was performed as recommended in Pereira et al. (2018) since it provides 216 

a robust alternative to total count that is less affected by highly abundant samples. Four datasets with 217 

different taxonomic resolutions were created from the DNA metabarcoding dataset, i.e., family, genus, 218 

species, and ASV-level, while there were the family and genus-level for the morphological dataset. 219 

Absolute abundance and presence/absence datasets were also created from these four DNA 220 

metabarcoding and two morphological datasets. 221 

Alpha diversity metrics, i.e., Chao1 richness, Shannon diversity, Pielou's J evenness, Berger-222 

Parker dominance, and the rare abundance index were calculated and visualized to identify the changes 223 

in community structure between each scale using the plot_alpha_diversities function 224 

(microbiomeutilities; Shetty & Lahti, 2018). Statistical differences of the alpha diversity metrics among 225 

each scale were tested using ANOVA and pairwise comparisons via multiple t-tests. Pearson correlation 226 

coefficients between the alpha diversity metrics of each taxonomic level and methods were calculated 227 

using the rcorr function in the Hmisc package. Additionally, a meta-regression analysis was performed 228 
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to explore the simultaneous effects of all seven environmental variables (log-transformed) with the 229 

richness estimate (i.e., Chao1) as the dependent variable using the lm function of the stats package. 230 

The plot_models function of the sjPlot package was then used to plot and compare regression 231 

coefficients with confidence intervals of multiple regression models in one plot. 232 

To observe the spatial differences between the communities, beta diversity was estimated 233 

based on Bray-Curtis distances and assayed by non-metric multidimensional scaling (NMDS) using the 234 

plot_ordination function from the phyloseq package. Permutational multivariate analysis of variance 235 

(PERMANOVA) (vegan; Oksanen et al., 2013) was performed among the scales to test the statistical 236 

significance of the between-group distances based on the NMDS ordination via the adonis2 function in 237 

the vegan package. Procrustes tests were employed via the protest function with 9,999 permutations to 238 

test if different taxonomic or numeric resolutions provided similar community structure. A canonical 239 

correspondence analysis (CCA) was performed to visualize and determine the environmental variables 240 

responsible for explaining community composition variation amongst sampling points with significance. 241 

Before the analysis, the seven environmental variables were evaluated for multi-collinearity via variance 242 

inflation factors (VIF) for constraining parameters (VIF <5) using the usdm package (Naimi 2015). 243 

Additionally, a homogeneity of multivariate dispersion (PERMDISP) analysis was employed to assess if 244 

differences in heterogeneity in environmental parameters existed among the samples based on the river, 245 

reach, and river × reach scales. 246 

Indicator taxa analysis was performed to the genus-level morphology and metabarcoding 247 

datasets to identify and compare the indicator taxa between the two methods based on the river × reach 248 

category using the multipatt function implemented in the indicspecies package in R with 9,999 249 

permutations (De Caceres et al., 2016). The associations were further assessed using a false discovery 250 

rate estimation by adjusting the p-values for multiple testing using the Benjamini-Hochberg procedure 251 

(p.adjust function in R) (Strimmer, 2008). Furthermore, the linear discriminant analysis effect size 252 

(LEfSe) test was conducted using the Galaxy implementation of LEfSe (http://huttenhower.org/galaxy) 253 

(Segata et al., 2011) [parameters: p < 0.05, q < 0.05, LDA > 2.0, multi-class analysis strategy set to one-254 

against-all (less strict)] to identify which indicator taxa significantly explained differences in community 255 
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composition between the river × reach category. All the data visualization and statistical analyses were 256 

performed in R v.3.6.2 (R Core Team, 2019). 257 

RESULTS 258 

Taxonomic identification based on morphology and DNA metabarcoding 259 

We collected a total of 4,053 macroinvertebrates and morphologically identified 39 multi-level taxa from 260 

2 phyla, 3 classes, 9 orders, 31 families, 25 genera, and 2 species. Almost all samples had family level 261 

assignments (31 families), except for the individuals identified as order Haplotaxida (Oligochaeta). Only 262 

68% (2,737 individuals) were assigned at the genus level, from which 99 and 37 individuals had species-263 

level assignments, i.e., Calineuria californica and Pteronarcys californica. A total of 7,399,885 paired-264 

end reads were demultiplexed from the raw sequence data. After read processing, i.e., quality filtering, 265 

denoising, and paired-end merging, 4,098,620 non-chimeric reads (~421-bp) were retained and 266 

assigned to 1,210 ASVs. From this, 4,083,001 reads from 1,112 ASVs were assigned to 267 

macroinvertebrate taxa. ASVs assigned as bacteria, fungi, and plants (17 ASVs; 11,703 reads) and 268 

ASVs without taxonomic identifications (79 ASVs; 3,916 reads) were discarded from the dataset. Out of 269 

the total taxonomically assigned reads, 91% (3,701,486 reads) had a family level assignment, while 87% 270 

(3,561,696 reads) and 65% (2,640,658) had genera and species level assignment. The sample, read 271 

abundance, and ASV count were summarized in detail in Table 1. Interactive Krona charts were 272 

provided as an additional file to visualize the total individual count and absolute read abundances of the 273 

taxonomic assignments from the two methods. 274 

From the morphology-based identification, the most abundant order was Diptera (35%), followed 275 

by the EPT orders: Ephemeroptera (33%), Plecoptera (17%), and Trichoptera (11%). However, DNA 276 

metabarcoding detected Plecoptera (39%) as the order with the most reads, followed by Ephemeroptera 277 

(33%), Trichoptera (11%), and Diptera (8%). See Figure S1 for the relative abundance of order-level 278 

assignment of the two identification methods per sampling site. DNA metabarcoding detected 93% 279 

(3,767 individuals) of the morphologically identified taxa, accounting for 83% of the reads (Figure 2a to 280 

2c). Only 7% (286 individuals) were false negatives, representing three genera, i.e., Mataeopsephus 281 
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(Coleoptera), Nemoura (Plecoptera), and Rhitrogena (Ephemeroptera). The reads related to these 282 

genera were possibly assigned to coarser taxonomic levels, given that some ASVs have unclassified 283 

class, order, and family identifications. The remaining 17% (696,709 reads) consists of 44 taxa, i.e., 13 284 

species, 12 genera, and 18 unclassified ranks unique to the DNA metabarcoding dataset which are 285 

considered false positive detections. We found significant positive linear correlations between sample 286 

abundance, sample biomass, and read abundance among the 36 taxa commonly found in the 287 

morphological and DNA metabarcoding datasets presented in Figure 2d to 2f. 288 

Richness and diversity measures 289 

The shared and unique taxa at the river × reach category for the different taxonomic resolution datasets 290 

of both methods were presented in Figure 3. Thirteen morphologically identified families and fourteen 291 

DNA metabarcoding families were shared by all the river × reach groups, i.e., DAM+GB+, DAM+GB-, 292 

DAM-GB+, and DAM-GB-. Both methods identified fourteen genera present in all groups, while 20 293 

species were shared between the groups from the DNA metabarcoding dataset. The pairwise correlation 294 

of the alpha diversity estimates of the morphological and DNA metabarcoding datasets at different 295 

taxonomic resolutions was presented in Figure 4. The pairwise correlations between the datasets with 296 

the different taxonomic and numerical resolutions (absolute abundance or presence/absence) were 297 

significantly positive in 47 pairs (taxonomic: 20; numerical: 27) for Chao1 richness, 42 pairs (taxonomic: 298 

18; numerical: 24) for Shannon diversity, 18 pairs (taxonomic: 12; numerical: 6) for Berger-Parker 299 

dominance index, and 25 pairs (taxonomic: 11; numerical: 14) for rare taxa abundance index out of 66 300 

pairs. We observed varying statistical differences of the alpha diversity metrics among the scales (i.e., 301 

river, reach, or river × reach) at different taxonomic and numerical resolutions presented in Table S1. 302 

Remarkably, we observed no significant difference in all the datasets for the mean alpha diversity values 303 

at the reach scale. Another notable observation was that only the family and species-level absolute 304 

abundance DNA metabarcoding datasets showed a significant difference between the river × reach 305 

scale.  306 
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Community structure and composition, and environmental relationship  307 

To assess whether different taxonomic and numerical resolution interferes in the homogeneity of 308 

multivariate dispersion within each scale, the community structure and composition of the identified 309 

benthic macroinvertebrates were assessed with NMDS based on Bray-Curtis distance. Ordination plots 310 

were relatively similar for all the taxonomic levels, and numerical resolution on both methods, wherein 311 

the communities of the samples from the dam-impacted sites (from the Trinity River) with and without 312 

gravel bars were closely clustered in the ordination space, and the non-dam impacted samples clustered 313 

together (Figure 4). The visual similarity between the NMDS ordinations between both methods’ 314 

different taxonomic and numerical datasets was further supported by the Procrustes analyses, which 315 

revealed significant positive correlations (Figure S2). However, relatively few comparisons had high 316 

correlation coefficient values (from 0.90 to 0.98). 317 

The PERMANOVA analyses revealed that community structure and composition at the river 318 

scale, dam-influenced rivers, significantly differed against the non-dam influenced rivers (PERMANOVA, 319 

p = 0.001) for all the different taxonomic and numerical resolution datasets of both methods (Table 2). 320 

Almost all datasets showed a significant difference between the communities at the reach scale 321 

(PERMANOVA, p < 0.05), except for the ASV-level datasets and the family-level morphology-based 322 

presence/absence dataset. These results indicate the strong influence of dams and gravel bars on the 323 

benthic macroinvertebrates' community structure. However, no significant difference between the 324 

community composition at the river × reach scale was found. 325 

Environmental and water quality parameters were assessed for all twenty-four sampling sites 326 

(Table S2). Figure S3a to S3c presents the distribution of each environmental variable per scale. 327 

However, a PERMDISP2 analysis (Table S3) only revealed two of the seven environmental variables 328 

significantly different amongst the scales, i.e., electric conductivity (EC) significantly different for both 329 

river and river × reach, and total suspended solids (TSS) significant different for reach and river × reach. 330 

The variation in the correlations of the different datasets in relation to the seven environmental variables 331 

is also shown in Figures S3d and S3e. The CCA analysis models to test the influence of environmental 332 

variables on community composition were significant for all the different taxonomic and numerical 333 
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datasets of both methods, with R2 values ranging from 0.32 to 0.46. Figure S4 presents the CCA biplots. 334 

However, the different datasets showed a difference in significant associations against the seven 335 

physicochemical parameters tested (Table 3). For example, pH significantly influenced the benthic 336 

macroinvertebrate community composition for the metabarcoding family (presence/absence only), 337 

species, and ASV-level datasets. EC was significant for the morphology-based family and 338 

metabarcoding family and genus-level datasets. Notably, total suspended solids (TSS) were only 339 

significant at the morphology-based family-level absolute abundance dataset. 340 

Indicator taxa analysis 341 

We compared the indicator genera identified between the morphology-based and DNA metabarcoding 342 

methods based on the genus-level datasets. Three genera, i.e., Rhyacophila, Simulium, and Nemoura 343 

were identified as indicators with a p-value significant at 0.05 from the morphology-based dataset, while 344 

thirteen were identified from the DNA metabarcoding dataset, with Wormaldia, Hydropsyche, Antocha, 345 

Attenella, Haemaphylis, Ordobrevia, and Simulium having significant p-values at 0.05, and false 346 

discovery rate adjusted p-values less than 0.10. See Table S4 for the group associations of the 347 

aforementioned indicator taxa at the river × reach scale. Only Simulium (Diptera) was reported for both 348 

methods, notably an indicator of the dam-impacted Trinity River's gravel bar sites (DAM+GB+).  349 

Moreover, an additional LEfSe analysis was performed at the multi-taxa dataset (i.e., all ASVs 350 

with varying taxonomic assignment) of both methods. Thirteen and 59 significantly discriminative 351 

features (i.e., taxa) with an LDA score of > 2.0 out of the 13 and 105 before internal Wilcoxon were 352 

selected from the morphology-based and DNA metabarcoding datasets. See Supplementary Figures 353 

S5 and S6 for the taxa identified that significantly explained differences in community compositions 354 

between the river × reach scales. Notably, LEfSe analyses identified genus Simulium as an indicator of 355 

the dam-impacted Trinity River's gravel bar sites (DAM+GB+) for both methods. However, DNA 356 

metabarcoding provided species-level assignments and identified S. vittatum alongside Dicosmoecus 357 

gilvipes, Hesperoperla pacifica, and Sialis californica as indicator species of the dam-impacted rivers 358 

with gravel bars (DAM+GB+). 359 
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DISCUSSION 360 

The main objective of this study is to evaluate the influence of the construction or rehabilitation of gravel 361 

bars in the dam-impacted Trinity River at the river (i.e., dam fragmented vs. non-dam fragmented river) 362 

and reach (i.e., gravel bars vs. non-gravel bars) scales by performing DNA metabarcoding and 363 

morphology-based identifications of benthic macroinvertebrate communities of different taxonomic 364 

levels, i.e., family, genus, species, and haplotype (ASV-level), and numerical resolutions, i.e., absolute 365 

abundance or presence/absence data. 366 

Congruence between DNA metabarcoding and morphology-based identifications 367 

We confirm the effectiveness of DNA metabarcoding as an alternative method to overcome certain 368 

limitations of the conventional morphology-based identification. DNA metabarcoding detected most of 369 

the morphologically identified taxa and provided finer taxonomic resolution, up to species and haplotype-370 

level information. This advantage was previously demonstrated in macroinvertebrate taxa studies (e.g., 371 

Baird & Hajibabaei, 2012; Elbrecht et al., 2017; Emilson et al., 2017; Serrana et al., 2019). The false 372 

positive detection between the two methods could be due to the lack of reference sequences and 373 

misclassifications in the database or primer bias effects (Carew et al., 2017; Laini et al., 2020). 374 

Regardless, we report a significant correlation between morphological abundance and sequence read 375 

abundance, between morphological abundance and biomass, and between sequence read abundance 376 

and biomass. These results were consistent with previous DNA metabarcoding studies, which reported 377 

a positive correlation between species abundance and biomass (Elbrecht & Leese, 2015) and between 378 

species abundance and relative or absolute sequence read abundance (Elbrecht et al., 2017). Our 379 

results validate and reinforce the use of sequence abundance information for diversity analyses and 380 

interpretation of our DNA metabarcoding data to be used with greater confidence. 381 

Different taxonomic and numerical resolutions on diversity, community structure and composition 382 

In contrast to our hypothesis that different taxonomic levels and numerical resolution from both methods 383 

lead to varying multivariate community patterns, we report similar spatial patterns of community structure 384 
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and composition based on the outcomes of ordination techniques (NMDS ordinations and Procrustes 385 

tests). Moreover, high Procrustes coefficients were found for comparisons between different numerical 386 

resolutions rather than the different taxonomic levels. This contrasts with a previous report by Pires et 387 

al. (2021), where comparisons between different taxonomic resolutions have higher coefficients than 388 

numerical resolution from invertebrate communities. Still, we detected relatively high and significant 389 

congruence between the ordinations performed for all the taxonomic and numerical resolutions of both 390 

methods and indicate a satisfactory surrogacy between the two methods and their varying identification 391 

levels. Our results are similar to previous studies that reported strong congruence between different 392 

taxonomic levels from freshwater macroinvertebrate samples (e.g., Brito et al., 2018; Godoy et al., 2019; 393 

Caradima, Reichert & Schuwirth, 2020). Similar community distribution patterns may be due to parallel 394 

responses to environmental gradients and similar dispersal abilities among taxonomically or 395 

evolutionary close taxa, leading to a strong community congruence at different taxonomic resolutions 396 

(Heino & Soininen, 2007; Landeiro et al., 2012). 397 

We observed significant differences in the community structure and composition at the river 398 

scale between the dam-impacted Trinity River and its pristine tributaries. This observation corroborates 399 

with previous studies that comprehensively studied and reported the negative impacts of reservoir and 400 

dam construction on macroinvertebrate diversity and community composition (e.g., Monaghan et al., 401 

2005; Serrana et al., 2018; Wang et al., 2020). Interestingly, although all datasets have significant 402 

positive correlations based on Procrustes tests, the percentage of the variance explained (R2) by the 403 

river scale groups at the family level was higher than at finer taxonomic resolutions (i.e., genus, species, 404 

and ASV-levels) for both absolute abundance and presence/absence data. This implies that even if 405 

different taxonomic and numerical resolutions are correlated and commonly showed significant 406 

differences at the river scale, family-level datasets provided relatively higher variance explained by the 407 

dam-impact, and the percentage of variance explained decreased as the taxonomic resolution became 408 

finer, i.e., order from family, to genus, to species, and to the ASV-levels. 409 

Likewise, Godoy et al. (2019) reported that family-level identification reduced the unexplained 410 

portion of variance compared with genus-level identification of aquatic insect community samples. 411 

Family-level identifications have been proposed as surrogates in freshwater macroinvertebrate 412 
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assemblages for ecological monitoring and conservation management (Chessman, Williams & Besley, 413 

2007; Brito et al., 2018). Here, we reported that DNA metabarcoding and morphology-based family-level 414 

data of both numerical resolutions are enough to reveal the damming impacts on the differences of the 415 

macroinvertebrate community structure and composition. 416 

Furthermore, significant differences in the community structure and composition were also 417 

reported for most of the morphology and DNA metabarcoding datasets of varying taxonomic and 418 

numerical resolutions at the reach scale, except for both the ASV levels and the morphology-based 419 

family-level (presence/absence) datasets. The non-significant difference from the ASV dataset for both 420 

absolute abundance and presence/absence composition indicates that the increased taxonomic 421 

resolution, i.e., intraspecific diversity (haplotypes), was not robust enough for community-based 422 

analyses and resulted in the insignificant difference of macroinvertebrate community composition at the 423 

reach scale. Moreover, the observed non-significant difference on the morphology-based family level 424 

presence/absence dataset can be accounted for by the turnover of rare families at the reach scale. The 425 

analysis based on presence/absence tends to increase the influence on the spatial distributions of rare 426 

taxa in the dataset (Bailey, Norris & Reynoldson, 2001). However, for this dataset, 25 out of the 31 427 

identified families were shared by the gravel bars and non-gravel bar reaches, with only three unique 428 

families on each category. Among-reach scale differences in community composition were not 429 

significantly observed because most of the families were distributed across these reaches. 430 

For each of the alpha diversity metrics, we found significant and strong correlations between 431 

most of the numerical resolution datasets of the Chao1 richness and Shannon diversity index, with a 432 

majority of correlations exceeding the 0.7 threshold of congruence suggested by Heino (2010). This 433 

suggests a relatively congruent estimation of these alpha diversity metrics at varying taxonomic levels, 434 

regardless of numerical resolution. On the other hand, the Berger-Parker dominance and rare taxa 435 

abundance indices showed mostly non-significant, even negative correlation between most of the DNA 436 

metabarcoding and morphology-based datasets because the former method introduces more taxa 437 

undetected from the latter approach, specifically rare taxa, thus, the different patterns in dominance and 438 

rarity indices (Gibson et al., 2015). 439 
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Community and environmental relationships at different taxonomic and numerical resolutions 440 

We found the significant influence of environmental variables on community composition for all the 441 

different taxonomic and numerical resolution datasets of both methods, but each dataset showed varying 442 

sets of associated physicochemical parameters. In particular, the DNA metabarcoding genus, species, 443 

and ASV-level datasets showed non-significant associations with some of the environmental variables 444 

that were significant for the morphology-based family and genus-level datasets. Some environmental 445 

parameters, e.g., electric conductivity, dissolved oxygen and ash-free dry mass, influenced both family-446 

level datasets, while pH only showed significant associations with the DNA metabarcoding species and 447 

ASV-level datasets. Finer resolution in taxonomic information introduces more unique or rare taxa which 448 

could be attributed to more sensitive response to certain environmental gradients, while coarser 449 

taxonomic resolutions detect a lower number of rare taxa (Emilson et al., 2017) which may lead to biased, 450 

and a more limited range of environmental factors detected for their influence on the macroinvertebrate 451 

communities. 452 

Previous DNA metabarcoding-based macroinvertebrate biomonitoring studies documented 453 

stronger discriminatory power due to the finer taxonomic resolution of the method (e.g., Gibson et al., 454 

2015). However, our environmental association analyses presented coarser taxonomic resolution of 455 

DNA metabarcoding was more congruent with the morphology-based datasets. Our observation 456 

corresponds with former studies. For example, Emilson et al. (2017) reported that increased statistical 457 

power from finer resolution to detect the influence of environmental gradients could be study-specific. 458 

Bailey, Norris, and Reynoldson’s (2001) reported that additional information from finer taxonomic 459 

resolutions may introduce undesirable ecological noise (i.e., a more comprehensive description of the 460 

benthic macroinvertebrate community) unless the impacts of environmental disturbances are more 461 

evident with finer-level identification than coarser taxonomic resolution. Other studies also reported that 462 

using coarser taxonomic resolution showed small or inconspicuous loss of information compared to 463 

species-level identifications for the estimation of the relationships between communities and 464 

environmental conditions (e.g., Heino & Soininen, 2007; de Oliveira et al., 2020), with some even 465 

reporting lower efficiency of finer taxonomic resolution for the environmental associations due to the 466 

ecological noise (e.g., Heino, 2014). 467 
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For the relationship between richness and the environmental variables, we present that the 468 

explanatory power of most of the environmental variables was relatively higher for the morphology-469 

based datasets, but both showed a decrease in explanatory power from finer to coarser taxonomic 470 

resolution. Alpha diversity measures such as richness can potentially be strongly underestimated at 471 

coarser taxonomic resolution (Maurer, 2000; Mueller, Pander & Geist, 2013), specifically for 472 

morphology-based identifications (Emilson et al., 2017), which could be the reason for this decrease in 473 

explanatory power. Heino (2014) observed similar patterns for richness-environment relationships 474 

where the explanatory power of environmental variables decreased from fine to coarser taxonomic 475 

resolution. 476 

Implications for DNA metabarcoding-based biomonitoring and restoration assessment 477 

The primary goal of ecological assessments or biomonitoring is to precisely detect biological response 478 

to environmental change and impact based on community structure and composition rather than a 479 

comprehensive and detailed description of the community (Bailey, Norris & Reynoldson, 2001). The 480 

identification of a coarser taxonomic resolution could be advantageous for DNA metabarcoding-based 481 

applications in situations where the lack of taxonomic information, e.g., poor reference database, might 482 

severely affect the quality of biological assessments for all major taxonomic groups. Nonetheless, it 483 

should be noted that the convenience of using coarser taxonomic levels should be based on the 484 

redundant and in parallel environmental responses of the multiple finer taxa, e.g., species or populations, 485 

in the same coarser taxonomic group (Balmford, Lyon & Lang, 2000). 486 

Different ecological patterns and processes are scale-dependent (Bracken et al., 2017; de 487 

Oliveira et al., 2020). In this study, most of the datasets revealed similar patterns of community 488 

composition and structure to differentiate both at river and reach scales but failed to differentiate at river 489 

× reach scale. We expected to observe difference in the community composition of the restored gravel 490 

bars along the dam-influenced river against the gravel bars in its tributaries since most of the gravel bars 491 

in the dam-influenced river were constructed via fluvial deposition of locally added sediments or by 492 

mechanical construction of gravel islands and bars, whereas the tributaries assessed have naturally 493 
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created gravel bars (Gaeuman, 2014). However, the different datasets did not present significant 494 

differentiation of the community structure and composition. 495 

To differentiate the gravel bar communities in the dam-influenced river against the gravel bars 496 

in the tributaries, and the communities from non-gravel bar sites, we performed indicator taxa analysis 497 

and successfully determined genera and species-level taxa in distinguishing the four groups within the 498 

river × reach scale (i.e., DAM+GB+, DAM+GB-, DAM-GB+, and DAM-GB-). Both methods identified 499 

Simulium as a significant indicator genera of the dam-impacted Trinity River's gravel bar sites. However, 500 

only the DNA metabarcoding dataset showed significant adjusted p-values after a false discovery rate 501 

(FDR) estimation proving the method's robustness compared to the morphology-based identification.  502 

Simulium is a genus of blackflies from the family Simuliidae (Diptera). DNA metabarcoding 503 

identified nine Simulium species, i.e., S. vittatum, S. vittatum complex, S. saxoxum, S. defoliarti, S. 504 

tuberosum complex, S. canadense, S. bracteatum, S. arcticum complex, and S. annulitarse, whereas 505 

morphological identifications were only made up to the genus-level. Additionally, the LEfSe analysis on 506 

the DNA metabarcoding dataset identified S. vittatum alongside Dicosmoecus gilvipes, Hesperoperla 507 

pacifica, and Sialis californica as indicator species of the dam-impacted reaches with gravel bars. 508 

Blackfly larvae are dominant suspension feeders in most lotic ecosystems (Zhang et al., 1998) and are 509 

considered efficient and opportunistic colonizers and filterers with an important association with 510 

suspended particles and predators. They inhabit fast-flowing environments that assure high amounts of 511 

transported materials (Lock, Adriaens, & Goethals, 2014). Simuliid communities reflect environmental 512 

conditions and have been used as indicators of ecological restoration or degradation, given that their 513 

composition is closely related to physicochemical variables and morphological characteristics of running 514 

water environments (Kazanci, 2006). The recovery of Simulium spp. and these other taxa indicate the 515 

restoration effect of gravel bar constructions in the dam-fragmented Trinity river. 516 

CONCLUSION 517 

Information on the influence of different taxonomic and numerical resolutions of benthic 518 

macroinvertebrate community composition and structure on their responses to environmental 519 
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disturbance or management, e.g., river restoration, may relieve certain limitations or challenges in the 520 

aim for finer taxonomic resolution, i.e., species or haplotype-level assignment from DNA metabarcoding-521 

based assessments. Here we compared the performance of different taxonomic and numerical 522 

resolutions of DNA metabarcoding with consequent comparison to traditional morphology-based 523 

identification and how it affects assessment outcomes on the response of benthic macroinvertebrate 524 

communities to the restoration or construction of gravel bars conducted in the dam-impacted Trinity 525 

River, with the non-dam influenced tributaries serving as the reference sites. DNA metabarcoding 526 

detected 93% of the taxa identified with morphological identification and provided finer taxonomic 527 

resolution to the species and haplotype (ASV) levels. We also reported significant correlations between 528 

morphological sample abundance, biomass, and DNA metabarcoding read abundance, validating and 529 

reinforcing the reliability of using sequence abundance for downstream diversity analyses. This also 530 

supports the potential of DNA metabarcoding’s application for quantitative analyses. Moreover, we 531 

observed a relatively high and significant congruence in macroinvertebrate community structure and 532 

composition of different taxonomic and numerical resolutions of both methods, indicating a satisfactory 533 

surrogacy between the two approaches and their varying identification levels and data transformation. 534 

Although the community-environmental association were significant for all datasets but showed varying 535 

significant associations against the physicochemical parameters, our observations still imply that 536 

coarser taxonomic resolution could be advantageous for DNA metabarcoding-based applications in 537 

situations where the lack of taxonomic information, e.g., poor reference database, might severely affect 538 

the quality of biological assessments. 539 
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Tables 727 

TABLE 1 Absolute abundance and presence/absence count of morphologically identified samples and 728 
DNA metabarcoding reads.  729 

Sample 

Absolute Abundance  Presence/Absence 

Morphological  Metabarcoding  Morphological  Metabarcoding 

Family Genera  Family Genera Species ASV  Family Genera  Family Genera Species ASV 

D
A

M
+G

B
+ 

B1DZ 129 89  130,170 121,928 70,793 156,643  9 6  12 22 14 89 
B1UZ 183 116  187,318 180,510 61,294 187,564  10 7  11 14 12 86 
B2DZ 329 237  185,850 185,850 106,759 185,850  11 8  9 15 11 107 
B2UZ 135 84  156,758 153,952 140,890 159,088  15 9  11 12 10 50 
B3DZ 74 56  128,926 127,191 125,937 130,073  14 11  11 16 11 59 
B3UZ 106 102  268,978 268,490 182,477 268,978  10 9  11 12 14 40 
B4DZ 257 180  114,254 111,005 99,196 119,038  18 12  16 19 17 64 
B4UZ 84 71  169,180 168,532 118,521 191,302  13 11  11 12 11 62 
B5DZ 230 145  139,844 136,449 95,521 150,309  15 11  13 23 17 96 
B5UZ 292 220  113,537 111,297 63,714 118,528  16 11  12 17 15 95 
B6DZ 133 103  39,554 38,653 21,468 39,739  19 12  15 18 13 57 
B6UZ 158 104  159,904 154,852 78,772 162,097  20 12  19 24 19 113 

D
A

M
-G

B
+ B7DZ 152 81  207,708 200,217 164,470 219,310  21 14  19 23 21 111 

B7UZ 124 81  356,340 349,293 255,165 397,134  23 15  27 37 30 156 
B8DZ 100 63  135,175 133,045 119,928 144,216  12 8  13 15 12 61 
B8UZ 229 128  243,003 235,338 228,201 265,259  17 12  15 20 19 95 

D
A

M
-G

B
- F1US 131 80  79,175 61,883 54,355 106,961  15 10  16 24 22 104 

F1DS 177 101  69,670 61,046 52,307 91,510  23 15  21 29 23 101 
F2US 203 78  79,142 67,585 58,874 90,348  15 8  18 18 15 57 
F2DS 148 101  79,634 56,727 53,885 133,737  17 11  13 17 12 54 

D
A

M
+G

B
- F3US 162 126  343,289 335,230 255,603 350,837  12 7  15 22 14 90 

F3DS 255 173  125,479 121,543 101,993 128,327  16 9  14 19 14 82 
F4US 130 107  116,511 110,710 83,680 159,527  13 10  10 12 12 65 
F4DS 132 111  72,087 70,370 46,855 126,626  17 13  10 10 9 61 

Total 4,053 2,737  3,701,486 3,561,696 2,640,658 4,083,001  31 25  42 80 69 1,114 
Sampling site abbreviations: “DAM-GB-” stands for Reference Non-gravel bar reach; “DAM-GB+” stands for Reference Gravel 
Bars; “DAM+GB-” stands for Trinity Non-gravel bar reach; “DAM+GB+” stands for Trinity Gravel Bars; “DZ” represents the down-
welling and “UZ” up-welling zones of a gravel bar (B);  “US” represents the up-stream and “DS” down-stream points of collection 
for the non-gravel bar reaches of the rivers (F) (approx. 20-m length). 
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TABLE 2 Permutational analysis of variance (PERMANOVA) results for each scale. 731 

Taxonomic Rank 
River   Reach   River × Reach 

F.Model R2 Pr(>F)   F.Model R2 Pr(>F)   F.Model R2 Pr(>F) 

Ab
so

lu
te

 A
bu

nd
an

ce
 

M
or

p Family   6.15   0.21   0.001      2.21   0.07   0.038      1.46   0.05   0.171  
Genus   4.44   0.16   0.001      2.42   0.09   0.015      1.22   0.04   0.282  

M
et

a 

Family   6.15   0.21   0.001     2.25   0.08   0.031     1.32   0.04   0.241  
Genus   5.65   0.20   0.001     2.16   0.07   0.027     1.01   0.04   0.398  
Species   3.95   0.15   0.001     2.02   0.07   0.022     1.21   0.04   0.284  
ASV   2.51   0.10   0.001      1.19   0.05   0.142      1.23   0.05   0.122  

Pr
es

en
ce

/A
bs

en
ce

 

M
or

p Family   7.25   0.24   0.001      1.97   0.06   0.074      1.39   0.05   0.239  
Genus   3.15   0.12   0.008      2.31   0.09   0.035      1.35   0.05   0.276  

M
et

a 

Family   7.31   0.23   0.001     2.87   0.09   0.016     1.03   0.03   0.442  
Genus   6.18   0.21   0.001     2.73   0.09   0.011     0.84   0.03   0.579  
Species   4.65   0.16   0.001     2.54   0.09   0.014     1.18   0.04   0.319  
ASV   2.47   0.10   0.001      1.23   0.05   0.101      1.20   0.05   0.148  

Significant values are indicated in highlight (<0.05) and bold print (<0.01). “Morp” indicates morphologically identified; “Meta” 
for DNA metabarcoding. 

TABLE 3 Canonical correspondence analysis (CCA) of the environmental variables. 732 

Taxonomic Rank CCA Model  Physico-chemical Parameters 
F Pr(>F) R2 Adj. R2  pH EC DO NH4 AFDM TSS NO3 

Ab
so

lu
te

 A
bu

nd
an

ce
 

M
or

p Family 1.95 0.00 0.46 0.22  0.31 0.03 0.01 0.01 0.01 0.04 0.01 
Genus 1.81 0.00 0.44 0.20  0.37 0.07 0.01 0.01 0.01 0.12 0.03 

M
et

a 

Family 1.61 0.00 0.41 0.16  0.13 0.01 0.02 0.09 0.01 0.39 0.06 
Genus 1.48 0.00 0.39 0.13  0.18 0.01 0.08 0.06 0.01 0.21 0.03 
Species 1.35 0.01 0.37 0.10  0.02 0.30 0.09 0.20 0.04 0.36 0.05 
ASV 1.07 0.02 0.32 0.02  0.00 0.13 0.59 0.28 0.06 0.55 0.32 

Pr
es

en
ce

/A
bs

en
ce

 

M
or

p Family 1.86 0.00 0.45 0.21  0.18 0.05 0.01 0.01 0.00 0.06 0.01 
Genus 1.78 0.00 0.44 0.19  0.14 0.10 0.00 0.01 0.03 0.15 0.01 

M
et

a 

Family 1.55 0.00 0.40 0.14  0.04 0.03 0.03 0.04 0.05 0.67 0.06 
Genus 1.37 0.00 0.38 0.10  0.12 0.01 0.13 0.06 0.02 0.37 0.03 
Species 1.31 0.00 0.36 0.09  0.02 0.52 0.09 0.16 0.07 0.46 0.04 
ASV 1.06 0.05 0.32 0.02  0.00 0.24 0.69 0.29 0.09 0.53 0.36 

ANOVA results (R2- and p-values). Significant values are indicated in highlight (<0.05) and bold print (<0.01). “Morp” indicates 
morphologically identified; “Meta” for DNA metabarcoding. 
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Figures 734 

 735 

FIGURE 1 Sampling location. The Trinity River and its tributaries impounded by the Trinity Dam and the 736 
Lewiston Dam in California, USA (a). Gravel bars were sampled at the head (down-welling zone; DZ) 737 
and tail (up-welling zone; UZ) points (b). Non-gravel bar sites were assessed, and samples were 738 
collected on up- (US) and downstream (DS) points (c). In total, eight gravel bars and four non-gravel bar 739 
sites were assessed in the study; gravel bars B1 and B4 drone photos shown as examples (d). Parts of 740 
the map was generated from Google Earth Pro (version 7.3.2.5776; https://www.google.com/earth/).741 
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 742 

FIGURE 2 Venn diagram showing the shared and unique taxa between the morphological (“Morp”) and 743 
metabarcoding (“Meta”) methods (a). The pie charts present the number of morphologically identified 744 
individuals (b) and their corresponding read abundance (c) detected in metabarcoding. Pearson 745 
correlations between the sample abundance (i.e., individual count), biomass (i.e., dry biomass in grams), 746 
and metabarcoding read abundance (i.e., absolute sequence count). Showing the analysis excluding 747 
(d-f), and including (g-i) false positive detections. Data were log-transformed prior to analysis. 748 
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 749 

FIGURE 3 Number of taxa shared between River × Reach scale for the morphology-based (a-b) and 750 
metabarcoding (c-f) data. 751 
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 752 

FIGURE 4 Pairwise Pearson’s correlation of alpha diversity estimates. Chao1 richness (a), Shannon 753 
diversity (b), Berger-Parker dominance index (c), and rare taxa abundance (d). Correlation boxes with 754 
Xs are not significant at p = 0.05. “morp” indicates morphologically identified; “meta” for DNA 755 
metabarcoding; “gen” for genus-level identification; “fam” for family-level; “spe” for species–level; “asv” 756 
for the amplicon sequence variant (ASV) level dataset. 757 
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 758 

FIGURE 5 Non-metric multidimensional scaling (NMDS) plot on Axes 1 (x-axis) and 2 (y-axis) based on 759 
Bray-Curtis dissimilarity for absolute abundance (a-f) and presence/absence (g-l) data of the 760 
macroinvertebrates detected by morphological (“Morp”) and DNA metabarcoding-based (“Meta”) 761 
methods.  762 
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