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Abstract 

The current COVID-19 pandemic continues to spread and devastate in the absence of effective 

treatments, warranting global concern and action. Despite progress in vaccine development, the rise of 

novel, increasingly infectious SARS-CoV-2 variants makes it clear that our response to the virus must 

continue to evolve along with it. The use of immunoinformatics provides an opportunity to rapidly and 

efficiently expand the tools at our disposal to combat the current pandemic and prepare for future 

outbreaks through epitope-based vaccine design. In this study, we validated and compared the 

currently available epitope prediction tools, and then used the best tools to predict T cell epitopes from 

SARS-CoV-2 spike and nucleocapsid proteins for use in an epitope-based vaccine. We combined the 

mouse MHC affinity predictor and clinical predictors such as HLA affinity, immunogenicity, antigenicity, 

allergenicity, toxicity and stability to select the highest quality CD8 and CD4 T cell epitopes for the 

common SARS-CoV-2 variants of concern suitable for further preclinical studies. We also identified 

variant-specific epitopes to more precisely target the Alpha, Beta, Gamma, Delta, Cluster 5 and US 

variants. We then modeled the 3D structures of our top 4 N and S epitopes to investigate the molecular 

interaction between peptide-MHC and peptide-MHC-TCR complexes. Following in vitro and in vivo 

validation, the epitopes identified by this study may be used in an epitope-based vaccine to protect 

across all current variants, as well as in variant-specific booster shots to target variants of concern. 

Immunoinformatics tools allowed us to efficiently predict epitopes in silico most likely to prove effective 

in vivo, providing a more streamlined process for vaccine development in the context of a rapidly 

evolving pandemic. 
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Introduction 

In late 2019, a novel coronavirus was detected in patients in Wuhan, China, and was later 

classified as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The disease caused 

by SARS-CoV-2 infection, Coronavirus Disease 2019 (COVID-19), was declared a pandemic by the 

WHO in March 2020 and has since rapidly spread across the globe. The effects of this pandemic have 

been devastating, causing over 218 million infections and 4.5 million deaths worldwide as of September 

2, 2021 [1], and these numbers continue to grow. While treatment options remain limited, the 

development of effective vaccines is crucial to curbing the spread of SARS-CoV-2 and combating the 

COVID-19 pandemic. The FDA has provided Emergency Use Authorizations for two vaccines as well 

as full approval for one vaccine, all of which are helping to lessen the toll of COVID-19 [2,3,4]. 

However, the rise of new, increasingly infectious variants along with a lack of global vaccine access 

means that the devastating effects of COVID-19 continue to be felt worldwide. It is therefore necessary 

to continue development of new vaccines that can combat current variants, as well as establishing a 

streamlined process for the rapid development of effective vaccines against novel variants. We believe 

that a viral epitope-based vaccine could fulfill this need as an alternative to the current vaccines. An 

epitope-based vaccine may be able to more precisely target certain mutations of variants of concern, as 

well as allowing for swift development of new vaccines through immunoinformatics as novel variants 

emerge in the future. 

 Immunoinformatics provides a more rapid, efficient, and reliable approach to vaccine design, 

critical to increase the speed of vaccine development in the context of a swiftly spreading pandemic. 

Specifically, immunoinformatics offers a cost- and time-effective strategy for designing epitope-based 

vaccines, which have several advantages over conventional types of vaccines. They are more specific, 

able to generate long-lasting immunity, and can minimize adverse reactions [5]. Given these 

advantages and the urgency of the current COVID-19 pandemic, we sought to predict immunogenic T 

cell epitopes of SARS-CoV-2 for an epitope-based vaccine candidate against the common SARS-CoV-

2 variants, including the variants of concern (VOC). 

 T cell epitopes are recognized by Major Histocompatibility Complex (MHC) molecules on the 

surface of particular cells, which display the antigen to T cells, necessary for inducing an immune 

response. Several tools have been developed for the prediction of T cell epitopes, many of which are 

available on the freely available Immune Epitope Database [6]. However, the accuracy of these tools in 

predicting immunogenic epitopes is widely variable [7]. Therefore, to ensure that the prediction tool 

used in our analysis was the most accurate available on IEDB.org, we systematically analyzed the 

available T cell epitope prediction tools by comparing their match rate with experimentally determined 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.11.459907doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.11.459907
http://creativecommons.org/licenses/by-nc-nd/4.0/


immunogenic SARS-CoV-2 epitopes. This allowed us to determine the best performing epitope 

prediction tool for our own analysis. In addition, our analysis also validates the epitope prediction tools 

available on IEDB for use in predicting SARS-CoV-2 epitopes and provides guidance on how to use 

this resource to predict high quality SARS-CoV-2 epitopes. There are two classes of MHC molecules, 

MHC class I, which are expressed on all nucleated cells and activate cytotoxic T cell lymphocytes 

(CD8+ T cells), and MHC class II, which are expressed on antigen presenting cells and activate helper 

T cell lymphocytes (CD4+ T cells). To ensure our vaccine would induce both a CD8+ and CD4+ T cell 

response, we included epitopes that can be recognized by both MHC-I and MHC-II molecules. This is 

necessary to confer long-term protective immunity by inducing cytotoxic T cells and neutralizing 

antibodies [8]. Therefore, we used the best performing epitope prediction tools to predict epitopes of the 

SARS-CoV-2 Nucleocapsid (N) and Spike (S) proteins predicted to bind both MHC class I and class II. 

We predicted epitopes from the SARS-CoV-2 structural proteins, namely N and S protein, for our HLA 

peptide-based vaccine design due to their role as major antigens of SARS-CoV-2, likely to be 

immunogenic. In convalescent COVID-19 patients, a robust T-cell immunity against the N protein has 

been detected and N protein epitopes have been found to induce responses in T cells derived from 

recovered patients [9]. The spike (S) glycoprotein has been reported to be a crucial surface protein of 

SARS-CoV-2 that facilitates viral entry into the host cell. This makes it a key target for antiviral efforts, 

and all current COVID-19 vaccines contain the S protein. DNA vaccines containing the S gene derived 

from SARS-CoV-1 have also been shown to induce T-cell responses in mice [10,11]. These proteins 

therefore provide ideal candidates for sources of immunogenic epitopes needed for an effective 

vaccine. 

While the currently approved vaccines have been shown to offer effective protection against the original 

SARS-CoV-2 strain in clinical trials [12,13,14], multiple variants that differ from those present during 

clinical trials are now spreading worldwide and continue to emerge. Of current concern is the Delta 

(B.1.617.2) variant of SARS-CoV-2. Even countries with high vaccination rates against COVID-19, such 

as Israel, have seen increases in new COVID-19 cases as the variant spreads [15]. Data from Israel’s 

health ministry suggests that the Pfizer-BioNTech vaccine is much less effective at preventing infection 

by the Delta SARS-CoV-2 variant than previous strains, reporting a 39% efficacy rate compared with 

95% against the original strain [15]. This raise concerns that the current vaccines, designed for 

previous strains, may be less effective against current and future variants. We believe it is necessary to 

develop vaccines that can target the mutations of variants of concern, potentially for use as variant-

specific booster shots. Therefore, we sought to aid in designing these epitope-based booster vaccines 

that target certain variants by identifying epitopes specific to the mutations of variants of concern.  
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In this study, we combined careful analysis of the available epitope prediction tools, epitope prediction 

across multiple SARS-CoV-2 antigens, MHC binding properties, and variants, as well as HLA 

population coverage analysis to find immunogenic CD8 and CD4 T cell epitopes for all SARS-CoV-2 

variants of concern. This epitope combination presents a candidate for use in an effective epitope-

based vaccine that, following experimental validation, could aid in the fight against the COVID-19 

pandemic. The variant-specific epitopes identified could also be useful in designing booster shots to 

target particular variants. This streamlined process may prove an efficient and reliable approach to 

vaccine development in fighting new outbreaks as new variants arise. 

 

Methods 

Retrieval of SARS-CoV-2 sequence 

The SARS-CoV-2 reference N and S protein sequences (accession numbers YP_009724397 and 

YP_009724390 respectively) [16] were downloaded from the NCBI GenBank. The lineage-defining N 

and S protein mutations for the common variants: alpha variant (VOC-202012/01, B.1.1.7, UK variant), 

Beta variant (VOC-202012/02, B.1.351, South-African variant), Gamma variant (VOC 202101/02, P.1, 

Brazil-Japan variant) [17], US variants (N [18] and S [19] protein mutations), Delta variant (VUI B.1.617, 

Indian variant) [20] and Cluster 5 mink variant [21] were used to create the variant specific N and S 

lineage-defining protein sequences.  

Retrieval of N protein SARS-CoV-2 experimentally determined epitopes 

CD8 experimental epitopes 

An experimental epitope is selected if its immunogenicity has been experimentally determined and its 

length is between 8 and 14 amino acids [22]. We selected 67 epitopes from various papers [23-31], 6 

from RCSB.org (7KGT, 7LG2, 7LG3, 7LFZ, 7KGR and 7KGS) and 15 epitopes from IEDB.org and 

ViPR.org with positive T cell assay and 100% match with the SARS-CoV-2 N reference sequence, for a 

total of 88 high quality epitopes with experimentally determined immunogenicity (Supplementary 

Material 1). 

CD4 experimental epitopes 

To find experimentally determined epitopes, we searched for SARS-CoV-2 N protein epitopes whose 

immunogenicity had been validated experimentally. We selected 28 epitopes from previous papers that 

had been found to be immunogenic in convalescent COVID-19 patients [27, 31-33] and 20 epitopes 
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from ViPR with positive assay and 100% match with the SARS-CoV-2 N protein reference sequence. 

We also searched the RCSB Protein Data Bank for known SARS-CoV-2 N protein epitopes binding to 

MHC class II, which returned no results. This provided a total of 48 high quality epitopes with 

experimentally determined immunogenicity (Supplementary Material 1). 

Choosing the best tool 

The 5 common CD8 T cell epitope prediction tools available on IEDB: ANN 4.0 [34-39], IEDB 

consensus [40], IEDB recommended for proteasome-TAP-MHC1 binding combined predictor (IEDB 

Prot-TAP-MHC) [41,42], NetMHCpan EL 4.1 (IEDB recommended 2020.09) and NetMHCpan BA 4.1 

[43-47] and the 4 common CD4 T cell epitope prediction tools available on IEDB: IEDB recommended 

2.22, IEDB consensus 2.22 [48,49], NetMHCIIpan EL 4.0 and NetMHCIIpan BA 4.0 [50,51] were used 

to predict SARS-CoV-2 N protein epitopes. Only MHC alleles with a frequency > 1% were selected. For 

MHCII epitope prediction, the default size of 15 amino acids per epitope was selected. 

The duplicate-free peptides were first ordered according to each of the available attributes in each tool, 

then matched to the experimental epitopes according to 3 stringency levels: lenient, intermediate and 

stringent (Supplementary Material 1). Receiver operating characteristic (ROC) analysis was used to 

assess the quality of select peptide prediction tools. ROC evaluates binary data as positive and 

negative values, which was achieved by having defined thresholds based on the predicted peptides’ 

binding affinity. It is important to note that the measure of binding affinity (rank, IC50, score, or 

percentile rank) varied amongst prediction tools, which was an additional consideration when 

determining the best tool. The positive and negative experiment test set was obtained by assessing 

each tool based on the matches of predicted epitopes to experimentally determined epitopes. More 

specifically, a match between a predicted and experimental epitope based on the Lenient, Intermediate, 

or Stringent method was a positive (1), while a non-match was a negative (0). 

To determine the quality of each prediction tool, specificity and sensitivity calculations were needed for 

the construction of the ROC curves. The tool that maximizes both specificity and sensitivity would be 

regarded as the best tool. This is more easily quantified by measuring the area under the curve (AUC), 

where an area of 0.5 indicates an entirely random prediction and an area of 1.0 indicates a perfect 

prediction. All analysis and data visualizations were constructed from R scripts. The pROC package 

was used for ROC and AUC calculations. 

Epitope prediction 
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Using the best tool-attribute combination, we predicted CD8 and CD4 T cell epitopes for both N and S 

proteins for each variant. 

 

MHCI epitope immunogenicity prediction 

Immunogenicity scores for the top 300 epitopes from each variant were calculated using the MHC I 

immunogenicity tool in IEDB.org [52]. Only CD8 common epitopes with an immunogenicity score > 0 

and CD8 variant-specific epitopes with an immunogenicity score > - 0.5 were selected for further 

analysis.  

MHCII epitope antigenicity prediction 

Vaxijen 2.0 [53-55] was used to select the best CD4 epitopes due to the lack of a reliable 

immunogenicity prediction tool on IEDB.org. 

Toxicity prediction 

Using ToxinPred [56], CD8 and CD4 peptides were found to be either toxic or non-toxic. Only non-toxic 

epitopes were selected for further studies. 

Allergenicity prediction 

AllerTop 2.0 [57,58] was used to predict allergenicity of both CD8 and CD4 epitopes. Only “probable 

non-allergenic” epitopes were selected.  

Instability index prediction 

ProtParam [59] was used to predict the instability index [60] to determine whether an epitope was 

stable or unstable in vivo. 

Mouse MHC affinity prediction 

NetH2pan 4.0 [61,62] was used to predict mouse MHC affinity of CD8 epitopes using MHCI alleles of 

the most commonly used mouse strains to study COVID-19 vaccines: C57BL/6 and BALB/c rodents. 

Only Weak Binding and Strong Binding epitopes were selected for potential further preclinical studies. 

Population coverage analysis 

The population coverage analysis tool available on IEDB.org [63] was used to predict the percentage of 

the world population predicted to present the epitopes with known MHC restrictions. 
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p-MHC 3D structure prediction 

The tertiary structure of the selected epitopes was predicted using PEPstrMOD [64,65]. The 3D 

structures of MHC molecules were downloaded from Protein Database Bank on RCSB.org and 

processed on PyMOL to remove the epitope. The predicted epitope along with the empty MHC 

molecule were energy minimized using Swiss-PdbViewer [66]. The two molecules were then docked 

using FlexPepDock online server [67,68]. 

Results 

Choosing the best tool 

For the prediction of common SARS-CoV-2 CD8 epitopes for both N and S proteins, the results 

suggested the use of IEDB recommended (NetMHCpan EL 4.1) ordered according to “rank”, as 

opposed to “score” as recommended by IEDB. However, this difference was not statistically significant. 

IEDB recommended ranked first in AUC at 0.7423 and 0.9192 for the Lenient and Stringent method, 

respectively (Figure 2). For the prediction of common SARS-CoV-2 CD4 epitopes, there was no 

statistically significant difference between the tools, so we decided to use the IEDB recommended 

ordered according to “rank,” since it was a top performer with AUC of 0.6969, 0.7078 and 0.767 for the 

Lenient, Intermediate and Stringent methods respectively (Figure 3).  

CD8 epitope prediction 

Using NetMHCpan EL 4.1, MHCI immunogenicity predictor, ToxinPred, AllerTop 2.0, we only selected 

CD8 epitopes that were immunogenic, non-toxic and non-allergenic. We obtained 31 common N and 31 

common S protein epitopes across all variants (Supplementary Table S1), 1 N and 2 S epitopes 

specific for the beta variant, 2 N and 4 S epitopes specific for the gamma variant, 2 N and 4 S epitopes 

specific for the alpha variant, 3 N epitopes specific for the US-Australian variants, 2 S epitopes specific 

for the US variant, 2 S epitopes specific for the Cluster 5 variant and 5 S epitopes specific for the delta 

variant and 1 S epitope specific for both the delta and US variants (Supplementary Table S3 and 

Supplementary Material 2).  

Adding the stability filter, we obtained 15 N and 21 S CD8 epitopes in total (Supplementary Table S2), 1 

N epitope specific for the alpha variant, 1 S epitope specific for the beta variant, 3 S epitopes specific 

for the gamma variant, 4 S epitopes specific for the alpha variant, 2 S epitopes specific for the US 

variant, 2 S epitopes specific for the Cluster 5 variant, 1 S epitope specific for the delta variant and 1 S 

epitope specific for both the US and delta variants (Table 2). 
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CD4 epitope prediction 

Using IEDB recommended 2.22, Vaxijen 2.0, ToxinPred and AllerTop 2.0, we only selected the 

antigenic non-toxic and non-allergenic CD4 epitopes. We obtained 5 common N and 11 common S 

protein epitopes across all variants (Supplementary Table S4), 1 S epitope specific for the beta variant, 

3 N and 8 S epitopes specific for the gamma variant, 4 S epitopes specific for the alpha variant, 1 N 

epitopes specific for the US-Australia variant, 5 S epitopes specific for the US variant, 3 N and 7 S 

epitopes specific for the delta variant, 1 S epitope common to the delta and US variants, and 3 S 

epitopes specific for the Cluster 5 variant (Supplementary Table S5 and Supplementary Material 3). 

With stability prediction, we obtained 1 common N and 7 common S epitopes (Table 3), 1 S epitope 

specific for the beta variant, 7 S epitopes specific for the gamma variant, 1 S epitope specific for the 

alpha variant, 4 S epitopes specific for the US variant, 3 N and 3 S epitopes specific for the delta 

variant, 1 S epitope common to the delta and US variants, and 3 S epitopes specific for the Cluster 5 

variant (Table 4). 

Population coverage analysis 

The 31 N and 31 S CD8 epitopes cover 98.46% and 92.02% of the world population respectively. 

However, since epitope-based vaccine constructs usually contain fewer epitopes, we also found the 

regional and world coverage of our top 11 N and top 15 S CD8 epitopes to be 97.87% and 89.92% 

respectively (Table 1, Figure 4 and Supplementary Material 4). These 23 highly immunogenic, non-

toxic and non-allergenic peptides are predicted to elicit a protective immune response in 98.42% of the 

world population. After adding the instability index prediction and filtering out the unstable epitopes, the 

population coverage decreased to 78.28% and 87.13% for N and S protein epitopes respectively 

(Supplementary Table S2). 

The 5 N and 11 S CD4 epitopes have world population coverages of 45.40% and 97.11% respectively 

(Supplementary Table S4). After adding the stability prediction, the top 1 N and top 7 S CD4 epitopes 

cover 34.55% and 95.13% of the world population respectively (Table 3 and Figure 4). Together, the 

top 8 N and S CD4 epitopes cover 96.81% of the world.  

p-MHC 3D structure prediction 

Next, 3 N (NTASWFTAL, TPSGTWLTY and LPNNTASWF) and 1 S (VVFLHVTYV) immunogenic, non-

toxic, non-allergenic common CD8 epitopes with significant affinity to at least one mouse MHC 

haplotype were selected for 3D modeling. These epitopes were docked with their respective predicted 

HLA alleles: NTASWFTAL-HLA-A*68, TPSGTWLTY-HLA-A*01:01, LPNNTASWF-HLA-B*07:02 and 
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VVFLHVTYV-HLA-A*02:01 (Figure 5). Furthermore, the VVFLHVTYV-HLA-A*02:01 complex was 

superimposed with the 7N1E RCSB structure to get an insight into the interaction between the p-MHC 

complex and the pRLQ3 TCR molecule (Figure 5 and Supplementary Figure S1). To avoid clash the p-

MHC-pRLQ3 TCR complex was visually analyzed, and energy-minimized with the SANDER module of 

AMBER [69]. 

Discussion 

Immunoinformatics provides an efficient and reliable strategy for designing epitope-based 

vaccines to combat the evolving COVID-19 pandemic, especially as new SARS-CoV-2 variants emerge 

and spread. However, with the ever-increasing number of machine learning tools in the field of 

immunoinformatics, the selection of epitope prediction tools is becoming increasingly arbitrary. It is 

necessary to validate the performance of a given tool before its predictions can be utilized with 

confidence. Our analysis of the performance of multiple epitope prediction tools against experimentally 

validated SARS-CoV-2 epitopes allowed us to identify the best IEDB tool for prediction of SARS-CoV-2 

epitopes. We showed that among the commonly used IEDB prediction tools, NetMHCpan EL 4.1 and 

CD4 IEDB recommended 2.22 are ordered according to “rank”, are the most reliable combinations to 

predict SARS-CoV-2 CD8 and CD4 epitopes, respectively. More studies are needed to calculate a rank 

threshold for the epitope prediction tools to prevent the arbitrary selection of thresholds for high affinity 

epitope selection. 

Next, we used immunoinformatics tools to predict immunogenic T cell epitopes of SARS-CoV-2 

for use in a multi-epitope vaccine against the common SARS-CoV-2 variants, including the variants of 

concern (VOC). Our study identified 31 common N and 31 common S CD8 epitopes (Supplementary 

Table S1), and 5 common N and 11 common S CD4 epitopes (Supplementary Table S4), all of which 

are predicted to be immunogenic (or antigenic for CD4 epitopes), non-toxic and non-allergenic. 

Epitopes showed a world population coverage of 97.87% for the selected top 11 N, 89.92% for the 

selected top 15 S CD8 epitopes (Table 1), 34.55% for the selected top 1 N CD4 epitope and 95.13%% 

for the selected top 7 S CD4 epitopes (Table 3). These epitopes present ideal candidates for use in a 

candidate vaccine that could provide protection across current SARS-CoV-2 variants. B cell epitopes 

will also need to be identified to complete the vaccine formulation. Additionally, we identified variant-

specific immunogenic, non-toxic, non-allergenic, and stable CD8 (Table 2) and CD4 (Table 4) epitopes 

that can more pointedly target the mutations particular to each variant of concern. Given the rise of 

increasingly infectious variants, as well as concerns of decreasing vaccine efficacy against new 

variants, these epitopes may be useful in developing variant-specific booster shots to provide stronger 

protection against variants.  
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Despite the success of current vaccines, it remains necessary to expand the tools at our 

disposal to combat the current COVID-19 pandemic and prepare for future variants and outbreaks. 

Specifically, epitope-based vaccines present a useful tool with advantages over the current mRNA 

vaccines. Firstly, epitope-based vaccines may be able to confer immunity that lasts longer than natural 

immunity or immunity induced by current vaccines. Natural immunity from previous infection has been 

shown to be unreliable in older individuals [70] and fades relatively quickly with a half-life of 200 days 

for T cells [71], making it ineffective in providing long term immunity against reinfection, with T cell 

immunity fading faster than B cell immunity [72]. Epitope-based vaccines can be designed to target 

every aspect of the immune system by including epitopes that activate both CD8 and CD4 T cells as 

well as B cells, all of which are necessary to confer long-term immunity. While all current COVID-19 

vaccines only include the spike protein of SARS-CoV-2, it has been shown that only N protein T cell 

epitopes for SARS-CoV lasted at least 17 years, making them the most long-lasting epitopes [32]. This 

suggests an opportunity to generate longer lasting immunity by making use of the longevity of N protein 

epitopes in vaccines. Multi-epitope vaccines can include epitopes of both the S and N proteins of 

SARS-CoV-2, such as those suggested by our study, to provide the most effective and long-lasting 

protection against SARS-CoV-2. More studies are also needed to investigate how to prolong T cell 

immunity in a potentially universal coronavirus vaccine.  

Another advantage of epitope-based vaccines is their specificity, which provides them with a 

unique ability to precisely target certain areas of a protein of interest. This ability is especially important 

in the context of an evolving virus such as SARS-CoV-2 as novel, increasingly infectious variants are 

spreading and continue to emerge. Epitope-based vaccines can be designed to target certain variants 

by including epitopes containing variant-specific mutations, such as those identified by our study. This 

feature may be of particular use in booster shots designed to target specific variants against which the 

current vaccines may be less effective [73]. T cells, IgG and IgM antibodies have been shown to 

decrease substantially 6 months after administering the 2nd dose of the “low-dose” Moderna vaccine 

[74], suggesting that booster shots may be necessary to confer long-lasting immunity by reactivating 

cellular and humoral immunity. Of particular concern currently is the Delta variant that is spreading 

globally, as recent data suggests that both the AstraZeneca and Pfizer vaccines are slightly less 

effective against this variant in preventing COVID-19 related symptoms compared to the Alpha variant 

[75]. A recent large-scale study of Delta infections in the UK found that the protection offered against 

the variant by the AstraZeneca and Pfizer vaccines wanes with time, further supporting the need for 

variant-specific vaccines to boost immunity against variants of concern [76]. Despite global vaccination 

efforts, the rise in COVID-19 cases around the world as the Delta variant of SARS-CoV-2 spreads 

implies that variant-specific booster shots may be needed to combat emerging variants. Our study 
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identified high-quality epitopes specific to current variants of concern that can be included in epitope-

based vaccines to target most variants of concern. 

The specificity of epitope-based vaccines also provides a potential method for preventing 

Original Antigenic Sin (OAS). According to this theory, the development of immunity against a pathogen 

is shaped by first exposure to that pathogen, limiting the flexibility of the immune system [77]. Upon 

subsequent infection with a novel strain of the pathogen, the immune system produces antibodies to 

the original strain it was first exposed to rather than mounting a response to novel antigens of the new 

strain. This phenomenon has been seen in response to influenza vaccines, demonstrating how OAS 

can allow novel influenza strains to evade the immune system despite vaccination [78]. OAS has also 

been seen in T cells, impairing the ability of cytotoxic T lymphocytes to respond effectively to variant 

viruses [79]. OAS is an important consideration in developing vaccines against SARS-CoV-2, as it 

suggests that immunity developed in response to infection or vaccination with one strain may not 

protect against all novel variants. Additionally, a booster vaccine that includes epitopes from the original 

reference sequence, such as using a variant of the SARS-CoV-2 spike protein, will likely reactivate B 

and T cells against the original epitopes without mounting a variant-specific immune response.  For 

booster vaccines to induce a variant-specific immune response that can confer additional immunity 

against novel variants, they must be carefully formulated to avoid inducing an immune response 

against the original strain, a technique which requires great specificity. While some methods have been 

suggested to alleviate OAS [80], we hereby hypothesize a new method of preventing OAS through the 

use of epitope-based booster vaccines. We suggest that the specificity of epitope-based booster 

vaccines may allow them to prevent OAS and better activate variant-specific immune cells, thus 

providing stronger immunity against novel SARS-CoV-2 variants. 

Conclusion 

In this study, we identified the best epitope prediction tools available on IEDB for predicting CD8 

and CD4 binding epitopes of SARS-CoV-2. We then used these tools to predict SARS-CoV-2 N and S 

protein T cell epitopes. Prioritizing epitopes that were found to be common across the current SARS-

CoV-2 variants, predicted to be immunogenic, non-toxic, non-allergenic, with high cell penetrability and 

with a high population coverage based on HLA alleles allowed us to identify high-quality T cell epitopes. 

We recommend these epitopes for a multi-epitope vaccine against the common SARS-CoV-2 variants, 

including variants of concern. We also present variant-specific immunogenic CD8 and CD4 T cell 

epitopes that can more precisely target variants of concern. Given the rise of increasingly infectious 

variants with the potential to evade natural immunity and current vaccines, these epitopes may prove 

useful in developing variant-specific booster shots to combat the most concerning variants. Together, 
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these predicted epitopes may provide both broad protection against common SARS-CoV-2 variants, as 

well as more targeted protection against specific variants. While other studies have attempted to use 

immunoinformatics to design epitope-based vaccines against SARS-CoV-2, our comparison of 

available epitope prediction tools to experimentally validated SARS-CoV-2 epitopes validates that our 

predicted epitopes come from the most accurate available tool on IEDB.org. Additionally, our 

comparison of predicted epitopes across all current variants increases confidence that the effectiveness 

of our designed vaccine will not be undermined by the mutations of certain variants. Our epitope 

prediction together with our mouse MHC affinity prediction warrant further preclinical studies to validate 

their efficacy for use in designing epitope-based vaccines against SARS-CoV-2. While this 

experimental validation remains necessary, immunoinformatics has allowed us to predict epitopes in 

silico that are most likely to prove effective in vitro and in vivo. This will greatly reduce the cost and time 

of traditional vaccine development as it is urgent to develop new therapeutics and vaccines to combat 

this rapidly evolving pandemic as efficiently as possible.  

 

Acknowledgements 

We wish to acknowledge for the support by Lombardi Comprehensive Cancer Center, Georgetown 

University Medical Center. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.11.459907doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.11.459907
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

1. WHO Coronavirus (COVID-19) Dashboard. Accessed Sept 2, 2021. https://covid19.who.int 

2. Commissioner O of the. FDA Takes Additional Action in Fight Against COVID-19 By Issuing 

Emergency Use Authorization for Second COVID-19 Vaccine. FDA. Published December 21, 2020. 

Accessed June 22, 2021. https://www.fda.gov/news-events/press-announcements/fda-takes-additional-

action-fight-against-covid-19-issuing-emergency-use-authorization-second-covid 

3. Commissioner O of the. FDA Issues Emergency Use Authorization for Third COVID-19 Vaccine. 

FDA. Published March 2, 2021. Accessed June 22, 2021. https://www.fda.gov/news-events/press-

announcements/fda-issues-emergency-use-authorization-third-covid-19-vaccine 

4. Commissioner O of the. FDA Approves FIrst COVID-19 Vaccine. FDA.Published August 23, 2021. 

Accessed August 31, 2021. https://www.fda.gov/news-events/press-announcements/fda-approves-first-

covid-19-vaccine  

5. Ahmad TA, Eweida AE, Sheweita SA. B-cell epitope mapping for the design of vaccines and 

effective diagnostics. Trials in Vaccinology. 2016;5:71-83. Accessed July 10, 2021. 

doi:https://doi.org/10.1016/j.trivac.2016.04.003 

6. Vita R, Mahajan S, Overton JA, et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic 

Acids Res. 2019;47(D1):D339-D343. Accessed July 10, 2021. doi:10.1093/nar/gky1006 

7. Parvizpour S, Pourseif MM, Razmara J, Rafi MA, Omidi Y. Epitope-based vaccine design: a 

comprehensive overview of bioinformatics approaches. Drug Discovery Today. 2020;25(6):1034-1042. 

Accessed June 22, 2021. doi:https://doi.org/10.1016/j.drudis.2020.03.006 

8. Rosa DS, Ribeiro SP, Cunha-Neto E. CD4+ T Cell Epitope Discovery and Rational Vaccine Design. 

Arch Immunol Ther Exp. 2010;58(2):121-130. Accessed June 22, 2021. doi:10.1007/s00005-010-0067-

0 

9. Le Bert N, Tan AT, Kunasegaran K, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-

19 and SARS, and uninfected controls. Nature. 2020;584(7821):457-462. Accessed July 20, 2021. 

doi:10.1038/s41586-020-2550-z 

10. Zhao K, Yang B, Xu Y, Wu C. CD8+ T cell response in HLA-A*0201 transgenic mice is elicited by 

epitopes from SARS-CoV S protein. Vaccine. 2010;28(41):6666-6674. Accessed July 20, 2021. 

doi:10.1016/j.vaccine.2010.08.013 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.11.459907doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.11.459907
http://creativecommons.org/licenses/by-nc-nd/4.0/


11. Huang J, Ma R, Wu C. Immunization with SARS-CoV S DNA vaccine generates memory CD4+ and 

CD8+ T cell immune responses. Vaccine. 2006;24(23):4905-4913. Accessed July 20, 2021. 

doi:10.1016/j.vaccine.2006.03.058 

 

12. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 

Vaccine. N Engl J Med. 2020;383(27):2603-2615. Accessed July 18, 2021. 

doi:10.1056/NEJMoa2034577 

13. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 

Vaccine. N Engl J Med. 2021;384(5):403-416. Accessed July 18, 2021. doi:10.1056/NEJMoa2035389 

14. Sadoff J, Gray G, Vandebosch A, et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine 

against Covid-19. N Engl J Med. 2021; 384:2187-2201. Accessed July 18, 2021. 

doi:10.1056/NEJMoa2101544 

15. Israel Ministry of Health. Coronavirus in Israel - General Situation. Accessed July 8, 2021. 

https://datadashboard.health.gov.il/COVID-19/general 

16. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in china. 

Nature. 2020;579(7798):265-269. Accessed Apr 24, 2021. doi: 10.1038/s41586-020-2008-3. 

17. Investigation of novel SARS-CoV-2 variant, Variant of Concern 202012/01, Technical Briefing 5. 

Public Public Health England. Announced 13th February, 2021. 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/9594

26/Variant_of_Concern_VOC_202012_01_Technical_Briefing_5.pdf 

18. Vahed M, Calcagno TM, Quinonez E, Mirsaeidi M. Impacts of 203/204: RG>KR mutation in the N 

protein of SARS-CoV-2. bioRxiv. 2021:2021.01.14.426726. 

http://biorxiv.org/content/early/2021/01/14/2021.01.14.426726.abstract. doi: 

10.1101/2021.01.14.426726. 

19. Tchesnokova V, Kulakesara H, Larson L, et al. Acquisition of the L452R mutation in the ACE2-

binding interface of spike protein triggers recent massive expansion of SARS-cov-2 variants. bioRxiv. 

2021:2021.02.22.432189. http://biorxiv.org/content/early/2021/03/11/2021.02.22.432189.abstract. doi: 

10.1101/2021.02.22.432189. 

20. Yadav PD, Sapkal GN, Abraham P, et al. Neutralization of variant under investigation B.1.617 with 

sera of BBV152 vaccinees. bioRxiv. 2021:2021.04.23.441101. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.11.459907doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.11.459907
http://creativecommons.org/licenses/by-nc-nd/4.0/


http://biorxiv.org/content/early/2021/04/23/2021.04.23.441101.abstract. doi: 

10.1101/2021.04.23.441101. 

21. Lassaunière R, Fonager J, Rasmussen M, et al. Working paper on SARS-CoV-2 spike mutations 

arising in Danish mink, their 2 spread to humans and neutralization data. Announced 5th November, 

2020.  https://files.ssi.dk/Mink-cluster-5-short-report_AFO2, accessed 23rd February 2021 

22. Schumacher TN, De Bruijn ML, Vernie LN, et al. Peptide selection by MHC class I molecules. 

Nature. 1991;350(6320):703-706. Accessed Apr 21, 2021. doi: 10.1038/350703a0. 

23. Quadeer A. A., Ahmed S. F., Mckay M. R. Epitopes targeted by T cells in convalescent COVID-19 

patients. bioRxiv. 2020. https://www.mckayspcb.com/SARS2TcellEpitopes/. 

24 Prachar M, Justesen S, Steen-Jensen DB, et al. Identification and validation of 174 COVID-19 

vaccine candidate epitopes reveals low performance of common epitope prediction tools. Scientific 

Reports. 2020;10(1):1-8. https://www.nature.com/articles/s41598-020-77466-4. Accessed Apr 21, 2021. 

doi: 10.1038/s41598-020-77466-4. 

25. Sohail MS, Ahmed SF, Quadeer AA, McKay MR. In silico T cell epitope identification for SARS-

CoV-2: Progress and perspectives. Adv Drug Deliv Rev. 2021;171:29-47. Accessed Apr 21, 2021. doi: 

10.1016/j.addr.2021.01.007. 

26. Schulien I, Kemming J, Oberhardt V, et al. Characterization of pre-existing and induced SARS-CoV-

2-specific CD8 + T cells. Nature Medicine. 2021;27(1):78-85. https://www.nature.com/articles/s41591-

020-01143-2. Accessed Apr 21, 2021. doi: 10.1038/s41591-020-01143-2. 

27. Nelde A, Bilich T, Heitmann JS, et al. SARS-CoV-2-derived peptides define heterologous and 

COVID-19-induced T cell recognition. Nature immunology. 2021;22(1):74-85. 

https://www.ncbi.nlm.nih.gov/pubmed/32999467. doi: 10.1038/s41590-020-00808-x. 

28. Kared H, Redd AD, Bloch EM, et al. CD8+ T cell responses in convalescent COVID-19 individuals 

target epitopes from the entire SARS-CoV-2 proteome and show kinetics of early differentiation. 

bioRxiv : the preprint server for biology. 2020. http://europepmc.org/abstract/MED/33052343 

https://doi.org/10.1101/2020.10.08.330688 https://europepmc.org/articles/PMC7553170 

https://europepmc.org/articles/PMC7553170?pdf=render. doi: 10.1101/2020.10.08.330688. 

29. Saini SK, Hersby DS, Tamhane T, et al. SARS-CoV-2 genome-wide mapping of CD8 T cell 

recognition reveals strong immunodominance and substantial CD8 T cell activation in COVID-19 

patients. bioRxiv. 2020:2020.10.19.344911. 

http://biorxiv.org/content/early/2020/10/19/2020.10.19.344911.abstract. doi: 

10.1101/2020.10.19.344911. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.11.459907doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.11.459907
http://creativecommons.org/licenses/by-nc-nd/4.0/


30. Tarke A, Sidney J, Kidd CK, et al. Comprehensive analysis of T cell immunodominance and 

immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. bioRxiv. 2020. Accessed Apr 25, 

2021. doi: 10.1101/2020.12.08.416750. 

31. Tarke A, Sidney J, Kidd CK, et al. Comprehensive analysis of t cell immunodominance and 

immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. Cell Rep Med. 2021;2(2):100204. 

Accessed Apr 21, 2021. doi: 10.1016/j.xcrm.2021.100204. 

32. Le Bert N, Tan AT, Kunasegaran K, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-

19 and SARS, and uninfected controls. Nature. 2020;584(7821):457-462. Accessed Apr 25, 2021. doi: 

10.1038/s41586-020-2550-z. 

33. Peng Y, Mentzer AJ, Liu G, et al. Broad and strong memory CD4.sup.+ and CD8.sup.+ T cells 

induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nature immunology. 

2020;21(11):1336. https://www.nature.com/articles/s41590-020-0782-6. doi: 10.1038/s41590-020-

0782-6. 

34. Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural networks: Application to 

the MHC class I system. Bioinformatics. 2016;32(4):511-517. Accessed Jun 13, 2021. doi: 

10.1093/bioinformatics/btv639. 

35. Buus S, Lauemøller SL, Worning P, et al. Sensitive quantitative predictions of peptide-MHC binding 

by a 'query by committee' artificial neural network approach. Tissue Antigens. 2003;62(5):378-384. 

Accessed Jun 13, 2021. doi: 10.1034/j.1399-0039.2003.00112.x. 

36. Lundegaard C, Nielsen M, Lund O. The validity of predicted T-cell epitopes. Trends Biotechnol. 

2006;24(12):537-538. Accessed Jun 13, 2021. doi: 10.1016/j.tibtech.2006.10.001. 

37. Lundegaard C, Lund O, Nielsen M. Accurate approximation method for prediction of class I MHC 

affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics. 

2008;24(11):1397-1398. Accessed Jun 13, 2021. doi: 10.1093/bioinformatics/btn128. 

38. Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. NetMHC-3.0: Accurate web 

accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. 

Nucleic Acids Res. 2008;36(Web Server issue):509. Accessed Jun 13, 2021. doi: 10.1093/nar/gkn202. 

39. Nielsen M, Lundegaard C, Worning P, et al. Reliable prediction of T-cell epitopes using neural 

networks with novel sequence representations. Protein Sci. 2003;12(5):1007-1017. Accessed Jun 13, 

2021. doi: 10.1110/ps.0239403. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.11.459907doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.11.459907
http://creativecommons.org/licenses/by-nc-nd/4.0/


40. Moutaftsi M, Peters B, Pasquetto V, et al. A consensus epitope prediction approach identifies the 

breadth of murine T(CD8+)-cell responses to vaccinia virus. Nat Biotechnol. 2006;24(7):817-819. 

Accessed Jun 13, 2021. doi: 10.1038/nbt1215. 

41. Peters B, Bulik S, Tampe R, Van Endert PM, Holzhütter H. Identifying MHC class I epitopes by 

predicting the TAP transport efficiency of epitope precursors. J Immunol. 2003;171(4):1741-1749. 

Accessed Jun 13, 2021. doi: 10.4049/jimmunol.171.4.1741. 

42. Tenzer S, Peters B, Bulik S, et al. Modeling the MHC class I pathway by combining predictions of 

proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol Life Sci. 2005;62(9):1025-

1037. Accessed Jun 13, 2021. doi: 10.1007/s00018-005-4528-2. 

43. Hoof I, Peters B, Sidney J, et al. NetMHCpan, a method for MHC class I binding prediction beyond 

humans. Immunogenetics. 2009;61(1):1-13. Accessed Jun 13, 2021. doi: 10.1007/s00251-008-0341-z. 

44. Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0: Improved peptide-

MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J 

Immunol. 2017;199(9):3360-3368. Accessed Jun 13, 2021. doi: 10.4049/jimmunol.1700893. 

45. Nielsen M, Lundegaard C, Blicher T, et al. NetMHCpan, a method for quantitative predictions of 

peptide binding to any HLA-A and -B locus protein of known sequence. PLoS One. 2007;2(8):e796. 

Accessed Jun 13, 2021. doi: 10.1371/journal.pone.0000796. 

46. Nielsen M, Andreatta M. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules 

integrating information from multiple receptor and peptide length datasets. Genome Med. 2016;8(1):33. 

Accessed Jun 13, 2021. doi: 10.1186/s13073-016-0288-x. 

47. Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: 

Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of 

MS MHC eluted ligand data. Nucleic Acids Res. 2020;48(W1):W449-W454. Accessed Jun 13, 2021. 

doi: 10.1093/nar/gkaa379. 

48. Wang P, Sidney J, Dow C, Mothé B, Sette A, Peters B. A systematic assessment of MHC class II 

peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol. 

2008;4(4):e1000048. Accessed Jun 16, 2021. doi: 10.1371/journal.pcbi.1000048. 

49. Wang P, Sidney J, Kim Y, et al. Peptide binding predictions for HLA DR, DP and DQ molecules. 

BMC Bioinformatics. 2010;11:568. Accessed Jun 16, 2021. doi: 10.1186/1471-2105-11-568. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.11.459907doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.11.459907
http://creativecommons.org/licenses/by-nc-nd/4.0/


50. Andreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M. Accurate pan-specific 

prediction of peptide-MHC class II binding affinity with improved binding core identification. 

Immunogenetics. 2015;67(11-12):641-650. Accessed Jun 16, 2021. doi: 10.1007/s00251-015-0873-y. 

51. Jensen KK, Andreatta M, Marcatili P, et al. Improved methods for predicting peptide binding affinity 

to MHC class II molecules. Immunology. 2018;154(3):394-406. Accessed Jun 16, 2021. doi: 

10.1111/imm.12889. 

52. Calis JJA, Maybeno M, Greenbaum JA, et al. Properties of MHC class I presented peptides that 

enhance immunogenicity. PLoS Comput Biol. 2013;9(10):e1003266. Accessed Jun 13, 2021. doi: 

10.1371/journal.pcbi.1003266. 

53. Doytchinova Irini A, Flower Darren R. Bioinformatic approach for identifying parasite and fungal 

candidate subunit vaccines. Open Vaccines Journal. 2008;1:22-26. 

54. Doytchinova IA, Flower DR. Identifying candidate subunit vaccines using an alignment-independent 

method based on principal amino acid properties. Vaccine. 2007;25(5):856-866. Accessed Jul 30, 

2021. doi: 10.1016/j.vaccine.2006.09.032. 

55. Doytchinova IA, Flower DR. VaxiJen: A server for prediction of protective antigens, tumour antigens 

and subunit vaccines. BMC Bioinformatics. 2007;8:4. Accessed Jul 30, 2021. doi: 10.1186/1471-2105-

8-4. 

56. Gupta S, Kapoor P, Chaudhary K, et al. In silico approach for predicting toxicity of peptides and 

proteins. PLOS ONE. 2013;8(9):e73957. 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073957. Accessed Jul 10, 2021. doi: 

10.1371/journal.pone.0073957. 

57. Dimitrov I, Flower DR, Doytchinova I. AllerTOP - a server for in silico prediction of allergens. BMC 

Bioinformatics. 2013;14(Suppl 6):S4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633022/. 

Accessed Jul 11, 2021. doi: 10.1186/1471-2105-14-S6-S4. 

58. Dimitrov I, Bangov I, Flower DR, Doytchinova I. AllerTOP v.2--a server for in silico prediction of 

allergens. J Mol Model. 2014;20(6):2278. Accessed Jul 11, 2021. doi: 10.1007/s00894-014-2278-5. 

59. Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and analysis tools on the ExPASy 

server. In: John M. Walker, ed. The proteomics protocols handbook. Totowa, N.J: Humana Press; 

2005:571-607. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.11.459907doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.11.459907
http://creativecommons.org/licenses/by-nc-nd/4.0/


60. Guruprasad K, Reddy BV, Pandit MW. Correlation between stability of a protein and its dipeptide 

composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. 

Protein Eng. 1990;4(2):155-161. Accessed Jul 29, 2021. doi: 10.1093/protein/4.2.155. 

61. DeVette CI, Andreatta M, Bardet W, et al. NetH2pan: A computational tool to guide MHC peptide 

prediction on murine tumors. Cancer Immunol Res. 2018;6(6):636-644. Accessed Jul 15, 2021. doi: 

10.1158/2326-6066.CIR-17-0298. 

62. Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0: Improved peptide-

MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J 

Immunol. 2017;199(9):3360-3368. Accessed Jul 15, 2021. doi: 10.4049/jimmunol.1700893. 

63. Bui H, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A. Predicting population coverage of T-

cell epitope-based diagnostics and vaccines. BMC Bioinformatics. 2006;7:153. Accessed Jun 13, 2021. 

doi: 10.1186/1471-2105-7-153. 

64. Kaur H, Garg A, Raghava GPS. PEPstr: A de novo method for tertiary structure prediction of small 

bioactive peptides. Protein Pept Lett. 2007;14(7):626-631. Accessed Aug 9, 2021. doi: 

10.2174/092986607781483859. 

65. Singh S, Singh H, Tuknait A, et al. PEPstrMOD: Structure prediction of peptides containing natural, 

non-natural and modified residues. Biol Direct. 2015;10:73. Accessed Aug 9, 2021. doi: 

10.1186/s13062-015-0103-4. 

66. Guex N, Peitsch MC. SWISS-MODEL and the swiss-PdbViewer: An environment for comparative 

protein modeling. Electrophoresis. 1997;18(15):2714-2723. Accessed Jun 14, 2021. doi: 

10.1002/elps.1150181505. 

67. London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O. Rosetta FlexPepDock web server--

high resolution modeling of peptide-protein interactions. Nucleic Acids Res. 2011;39(Web Server 

issue):249. Accessed Jul 4, 2021. doi: 10.1093/nar/gkr431. 

68. Raveh B, London N, Schueler-Furman O. Sub-angstrom modeling of complexes between flexible 

peptides and globular proteins. Proteins. 2010;78(9):2029-2040. Accessed Jul 4, 2021. doi: 

10.1002/prot.22716. 

69. D.A. Case, H.M. Aktulga, K. Belfon, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E. Cheatham, III, 

G.A. Cisneros, V.W.D. Cruzeiro, T.A. Darden, R.E. Duke, G. Giambasu, M.K. Gilson, H. Gohlke, A.W. 

Goetz, R. Harris, S. Izadi, S.A. Izmailov, C. Jin, K. Kasavajhala, M.C. Kaymak, E. King, A. Kovalenko, 

T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, M. Machado, V. Man, M. 

Manathunga, K.M. Merz, Y. Miao, O. Mikhailovskii, G. Monard, H. Nguyen, K.A. O’Hearn, A. Onufriev, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.11.459907doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.11.459907
http://creativecommons.org/licenses/by-nc-nd/4.0/


F. Pan, S. Pantano, R. Qi, A. Rahnamoun, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. 

Shen, C.L. Simmerling, N.R. Skrynnikov, J. Smith, J. Swails, R.C. Walker, J. Wang, H. Wei, R.M. Wolf, 

X. Wu, Y. Xue, D.M. York, S. Zhao, and P.A. Kollman (2021), Amber 2021, University of California, San 

Francisco. 

70. Hansen CH, Michlmayr D, Gubbels SM, Mølbak K, Ethelberg S. Assessment of protection against 

reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in denmark in 2020: A population-

level observational study. Lancet. 2021;397(10280):1204-1212. Accessed Jun 22, 2021. doi: 

10.1016/S0140-6736(21)00575-4. 

71. Cohen KW, Linderman SL, Moodie Z, et al. Longitudinal analysis shows durable and broad immune 

memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells. 

medRxiv. 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8095229/. Accessed Jul 22, 2021. doi: 

10.1101/2021.04.19.21255739. 

72. Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 

months after infection. Science. 2021;371(6529):eabf4063. Accessed Jun 22, 2021. doi: 

10.1126/science.abf4063. 

73. Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of Covid-19 Vaccines against the 

B.1.617.2 (Delta) Variant. N Engl J Med. 2021; 385:585-594. Accessed Aug 20, 2021. 

doi:10.1056/NEJMoa2108891 

74. Mateus J, Dan JM, Zhang Z, et al. Low dose mRNA-1273 COVID-19 vaccine generates durable T 

cell memory and antibodies enhanced by pre-existing crossreactive T cell memory. medRxiv. 

2021:2021.06.30.21259787. 

http://medrxiv.org/content/early/2021/07/05/2021.06.30.21259787.abstract. doi: 

10.1101/2021.06.30.21259787. 

75. Stowe J, Andrews N, Gower, C, et al. Effectiveness of COVID-19 Vaccines Against Hospital 

Admission with the Delta (B.1.617.2) Variant. Public Health England. Preprint published online June 14, 

2021. Accessed Aug 27, 2021. https://go.nature.com/3gnqwxr 

76. Pouwels KB, Pritchard E, Matthews PC, et al. Impact of Delta on viral burden and vaccine 

effectiveness against new SARS-CoV-2 infections in the UK. medRxiv. Preprint published online 

August 24, 2021. Accessed Aug 27, 2021. doi:10.1101/2021.08.18.21262237 

77. Francis T. On the Doctrine of Original Antigenic Sin. Proceedings of the American Philosophical 

Society. 1960;104(6):572-578. Accessed Jul 22, 2021 from http://www.jstor.org/stable/985534 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.11.459907doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.11.459907
http://creativecommons.org/licenses/by-nc-nd/4.0/


78. Kim JH, Skountzou I, Compans R, Jacob J. Original antigenic sin responses to influenza viruses. J 

Immunol. 2009;183(5):3294-3301. Accessed Aug 20, 2021. doi:10.4049/jimmunol.0900398 

79. Klenerman P, Zinkernagel RM. Original antigenic sin impairs cytotoxic T lymphocyte responses to 

viruses bearing variant epitopes. Nature. 1998;394(6692):482-485. Accessed Aug 20, 2021. 

doi:10.1038/28860 

80. Kim JH, Davis WG, Sambhara S, Jacob J. Strategies to alleviate original antigenic sin responses to 

influenza viruses. Proc Natl Acad Sci U S A. 2012;109(34):13751-13756. Accessed Aug 20, 2021. 

doi:10.1073/pnas.0912458109 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.11.459907doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.11.459907
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures and Tables 

 

 

 

Figure 1. Schematic flow chart diagram of the in silico peptide prediction process. (A) Selection of the 

best MHC-I and -II binding epitope prediction tools based on its classification performance. (B) In silico 

identification and evaluation of novel CD4 and CD8 peptides for vaccine design.  
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Figure 2. Comparison of MHC class I binding epitope prediction tools’ binary classification 

performance. (A, C, E) ROC curves with AUC values were shown for each tool-attribute combination 

that was evaluated for its experimental epitope prediction power. Cutoff thresholds for classification 

were established through the attribute, ordered from highest to lowest binding affinity, for each tool. (B, 

D, F) Boxplots show the upper and lower 95% confidence interval boundaries of each tool-attribute’s 

AUC values. 
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Figure 3. Comparison of MHC class II binding epitope prediction tools’ binary classification 

performance. (A, C, E) ROC curves with AUC values were shown for each tool-attribute combination 

that was evaluated for its experimental epitope prediction power. Cutoff thresholds for classification 

were established through the attribute, ordered from highest to lowest binding affinity, for each tool. (B, 
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D, F) Boxplots show the upper and lower 95% confidence interval boundaries of each tool-attribute’s 

AUC values. 

 

Protein Population 

Coverage 

Epitopes Common HLA restriction Mouse MHC 

restriction 

N 97.87% LSPRWYFYY HLA-A*01:01, HLA-A*30:02, HLA-

B*57:01 

H-2-Dd 

SPRWYFYYL HLA-B*07:02, HLA-B*08:01 H-2-Ld 

TPSGTWLTY HLA-B*35:01, HLA-B*53:01, HLA-

A*26:01, HLA-A*01:01 

H-2-Ld 

NTASWFTAL HLA-A*68:02, HLA-A*26:01, HLA-

A*02:06 

H-2-Kb, H-2-Dd 

YYRRATRRI HLA-A*24:02, HLA-A*23:01 H-2-Kd 

TGPEAGLPY HLA-B*35:01 H-2-Dd 

LPNNTASWF HLA-B*53:01, HLA-B*35:01, HLA-

B*07:02 

H-2-Ld 

KDLSPRWYF HLA-B*44:02, HLA-A*32:01, HLA-

B*44:03 

H-2-Ld 

GMSRIGMEV HLA-A*02:03, HLA-A*02:01 Not available 

KTFPPTEPK HLA-A*11:01, HLA-A*03:01, HLA-

A*30:01, HLA-A*31:01, HLA-

A*68:01, HLA-A*32:01 

Not available 

ELIRQGTDY HLA-A*26:01, HLA-B*15:01 Not available 

S 89.92% AEIRASANL HLA-B*40:01, HLA-B*44:03, HLA-

B*44:02 

H-2-Dd 

DAVRDPQTL HLA-B*51:01 H-2-Db, H-2-Dd, H-

2-Kd 

FTISVTTEI HLA-A*68:02, HLA-A*02:06 H-2-Db 

GEVFNATRF HLA-B*44:03, HLA-B*44:02 H-2-Db 

INITRFQTL HLA-B*08:01 H-2-Db, H-2-Kb, H-

2-Dd, H-2-Kd, H-2-
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Ld 

LAGTITSGW HLA-B*58:01, HLA-B*57:01, HLA-

B*53:01 

H-2-Ld 

LPFNDGVYF HLA-B*35:01, HLA-B*53:01, HLA-

B*51:01 

H-2-Ld 

VVFLHVTYV HLA-A*02:03, HLA-A*02:06, HLA-

A*68:02, HLA-A*02:01 

H-2-Db, H-2-Kb, H-

2-Dd 

YQPYRVVVL HLA-B*08:01 H-2-Dd 

LPIGINITRF HLA-B*53:01, HLA-B*35:01 H2-Ld 

NFTISVTTEI HLA-A*68:02 H2-Kd 

VLPFNDGVYF HLA-B*53:01 H2-Db 

HWFVTQRNF HLA-A*23:01, HLA-A*24:02 Not available 

WTAGAAAYY HLA-A*26:01, HLA-A*01:01 Not available 

QLTPTWRVY HLA-A*30:02, HLA-B*15:01 Not available 

 Table 1. Top 11 N and top 15 S protein CD8 epitopes that are most immunogenic, non-toxic, non-

allergenic and common across all studied SARS-CoV-2 variants with their world population coverage 

and their mouse MHC haplotype when available. 

 

Protein Variant Epitope Human HLA restriction Mouse MHC 

restriction 

N Alpha  SLNGPQNQR HLA-A*31:01, HLA-A*03:01, HLA-

A*33:01, HLA-A*68:01, HLA-A*11:01 

Not available 

S Beta TPINLVRGL HLA-B*07:02 H-2-Ld 

Gamma GQTGTIADY HLA-B*15:01 Not available 

ASANLAAIK HLA-A*11:01 Not available 

GTIADYNYK HLA-A*11:01 Not available 

Alpha  VLNDILARL HLA-A*02:03, HLA-A*02:01, HLA-

A*02:06 

H-2-Kb, H-2-Dd 

SVLNDILARL HLA-A*02:03 H-2-Kb 

QIITTHNTF HLA-B*15:01 H-2-Db, H-2-Dd, H-
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2-Kd, H-2-Ld 

SVLNDILAR HLA-A*11:01 Not available 

US YNYRYRLFR HLA-A*33:01 Not available 

LPLVSIQCV HLA-B*51:01 H-2-Ld 

Cluster 5 YNYLFRLFR HLA-A*33:01 Not available 

NYNYLFRLFR HLA-A*33:01 Not available 

Delta TYVPAHEKNF HLA-A*24:02, HLA-A*23:01 H-2-Kd 

US and 

delta 

KVGGNYNYR HLA-A*31:01 Not available 

Table 2. All immunogenic non-toxic non-allergenic stable CD8 variant-specific epitopes for each SARS-

CoV-2 variant N and S protein, with the variant-specific mutations written in red (see Supplementary 

Table S3 for full list of immunogenic non-toxic non-allergenic variant-specific CD8 epitopes). 

 

Protein Population 

coverage 

Epitopes  Common HLA restriction 

N 34.55% GTRNPANNAAIVLQL HLA-DQA1*01:02, HLA-DQB1*06:02 

S 95.13% YRVVVLSFELLHAPA HLA-DPA1*03:01, HLA-DPB1*04:02, HLA-

DPA1*02:01, HLA-DPB1*01:01, HLA-DPA1*01:03, 

HLA-DPB1*02:01 

VVVLSFELLHAPATV HLA-DRB1*01:01 

VVLSFELLHAPATVC HLA-DRB1*01:01 

VLSFELLHAPATVCG HLA-DRB1*01:01 

RVVVLSFELLHAPAT HLA-DRB1*01:01 

QSLLIVNNATNVVIK HLA-DRB1*13:02, HLA-DRB3*02:02 

GWTFGAGAALQIPFA HLA-DRB1*09:01 

 Table 3. All common N and S CD4 antigenic non-toxic non-allergenic stable epitopes across all 

studied SARS-CoV-2 variants and their world population coverage. 

 

Protein Variant Epitope HLA restriction 

N Delta  KKKKAYETQALPQRQ HLA-DPA1*02:01, HLA-DPB1*14:01 
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DKKKKAYETQALPQR HLA-DPA1*02:01, HLA-DPB1*01:01 

KKKAYETQALPQRQK HLA-DPA1*02:01, HLA-DPB1*01:01 

S Beta HTPINLVRGLPQGFS HLA-DRB4*01:01, HLA-DRB1*11:01, HLA-DRB1*08:02, 

HLA-DRB1*04:05 

Gamma LVLLPLVSSQCVNFT HLA-DRB4*01:01, HLA-DRB1*08:02, HLA-DRB1*04:01, 

HLA-DRB1*15:01, HLA-DRB1*12:01, HLA-DRB1*04:05 

FLVLLPLVSSQCVNF HLA-DRB1*01:01, HLA-DRB4*01:01, HLA-DRB1*08:02, 

HLA-DRB1*11:01, HLA-DRB1*12:01, HLA-DRB1*04:05, 

HLA-DRB1*15:01, HLA-DRB5*01:01, HLA-DRB1*04:01 

VLLPLVSSQCVNFTN HLA-DRB4*01:01, HLA-DRB1*04:05 

LLPLVSSQCVNFTNR HLA-DRB4*01:01 

LPLVSSQCVNFTNRT HLA-DRB4*01:01 

EYVNNSYECDIPIGA HLA-DQA1*01:01, HLA-DQB1*05:01, HLA-DRB3*01:01 

GAEYVNNSYECDIPI HLA-DQA1*01:01, HLA-DQB1*05:01 

Alpha  AIPINFTISVTTEIL HLA-DRB1*07:01, HLA-DRB1*09:01, HLA-DRB3*02:02, 

HLA-DQA1*03:01, HLA-DQB1*03:02, HLA-DRB1*04:01, 

HLA-DRB1*13:02, HLA-DQA1*04:01, HLA-DQB1*04:02, 

HLA-DQA1*05:01, HLA-DQB1*02:01, HLA-DRB1*04:05, 

HLA-DRB3*01:01 

US FVFLVLLPLVSIQCV HLA-DRB1*01:01, HLA-DPA1*03:01, HLA-DPB1*04:02, 

HLA-DRB1*11:01, HLA-DPA1*02:01, HLA-DPB1*01:01, 

HLA-DRB5*01:01, HLA-DRB1*04:01, HLA-DRB1*15:01 

MFVFLVLLPLVSIQC HLA-DRB1*01:01, HLA-DPA1*03:01, HLA-DPB1*04:02, 

HLA-DRB1*11:01, HLA-DPA1*02:01, HLA-DPB1*01:01, 

HLA-DRB5*01:01, HLA-DRB1*04:01, HLA-DRB1*15:01, 

HLA-DPA1*01:03, HLA-DPB1*02:01 

VLLPLVSIQCVNLTT HLA-DRB4*01:01 

LVLLPLVSIQCVNLT HLA-DRB4*01:01 

Cluster 

5 

IWLGFIAGLIAIVIV HLA-DQA1*05:01, HLA-DQB1*03:01, HLA-DRB1*01:01, 

HLA-DRB1*12:01, HLA-DQA1*01:01, HLA-DQB1*05:01, 

HLA-DRB1*09:01, HLA-DPA1*03:01, HLA-DPB1*04:02 

YIWLGFIAGLIAIVI HLA-DQA1*05:01, HLA-DQB1*03:01, HLA-DQA1*01:01, 
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HLA-DQB1*05:01, HLA-DRB1*01:01, HLA-DRB1*12:01, 

HLA-DRB1*09:01, HLA-DPA1*03:01, HLA-DPB1*04:02 

GFIAGLIAIVIVTIM HLA-DQA1*05:01, HLA-DQB1*03:01, HLA-DPA1*03:01, 

HLA-DPB1*04:02, HLA-DQA1*01:02, HLA-DQB1*06:02, 

HLA-DRB1*01:01, HLA-DRB1*12:01 

Delta  NTSNQVAVLYQGVNC HLA-DQA1*01:02, HLA-DQB1*06:02 

GVVFLHVTYVPAHEK HLA-DRB1*04:05 

VVFLHVTYVPAHEKN HLA-DRB1*04:05 

US and 

delta 

YNYRYRLFRKSNLKP HLA-DRB1*11:01, HLA-DPA1*02:01, HLA-DPB1*05:01 

Table 4. All antigenic non-toxic non-allergenic and stable CD4 epitopes per mutation for each SARS-

CoV-2 variant N and S protein, with the variant-specific mutations written in red. 

 

Figure 4. Regional population coverage of the top 11 N CD8 epitopes, top 15 S CD8 epitopes, top 1 N 

CD4 epitope and top 7 S CD4 epitopes. 
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Figure 5. Close-up shots of the predicted 3D structure for the interaction of 3 SARS-CoV-2 N epito

(red) with their selected MHC I molecules (yellow): NTASWFTAL-HLA-A*68 (A), TPSGTWLTY-H

A*01:01 (B), LPNNTASWF-HLA-B*07:02 (C) and 1 SARS-CoV-2 S epitope (red) with its selected M

(yellow) and TCR molecule (green): VVFLHVTYV-HLA-A*02:01-pRLQ3 TCR (D). 
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 MHC 
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