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A longstanding goal of biology is to identify the key genes and species that criti-6

cally impact evolution, ecology, and health. Yet biological interactions between7

genes (1, 2), species (3–6), and different environmental contexts (7–9) change8

the individual effects due to non-additive interactions, known as epistasis. In9

the fitness landscape concept, each gene/organism/environment is modeled as10

a separate biological dimension (10), yielding a high dimensional landscape,11

with epistasis adding local peaks and valleys to the landscape. Massive efforts12

have defined dense epistasis networks on a genome-wide scale (2), but these13
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have mostly been limited to pairwise, or two-dimensional, interactions (11).14

Here we develop a new mathematical formalism that allows us to quantify in-15

teractions at high dimensionality in genetics and the microbiome. We then16

generate and also reanalyze combinatorically complete datasets (two genetic,17

two microbiome). In higher dimensions, we find that key genes (e.g. pykF) and18

species (e.g. Lactobacillus plantarum) distort the fitness landscape, changing19

the interactions for many other genes/species. These distortions can fracture a20

“smooth” landscape with one optimal fitness peak into a landscape with many21

local optima, regulating evolutionary or ecological diversification (12), which22

may explain how a probiotic bacterium can stabilize the gut microbiome.23

1 Introduction24

A fitness landscape depicts biological fitness as a function of its many underlying parts, namely25

genes, each as a separate dimension (10, 13, 14). Interactions between genes can change their26

individual impacts on fitness in a non-additive way (15), adding local peaks and valleys to27

the fitness landscape, which affects the evolutionary paths through the landscape (16). The28

mathematical frameworks to quantify biological interactions, namely epistasis, determine the29

degree of non-additivity, and the concept has been applied to genetics (1, 2), microbiomes (3),30

and ecology (4–6). In two dimensions, epistasis calculates interactions between e.g. two genes31

as the degree to which a double mutant phenotype can be predicted by measuring the two single32

mutants independently. Applying epistasis to genome-wide measurement of pairwise (17, 18)33

and three-way (2) genetic interactions has revealed biochemical pathways composed of discrete34

sets of genes as well as complex traits, such as human height, that are affected by almost every35

gene in the genome (19, 20). New techniques allow epistasis to be applied to broader data36

types (21).37
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Epistatic interactions can arise due to mutations (13,14,22) or when sex, recombination, and38

horizontal gene transfer bring groups of genes together (1,23–26), making multiple dimensions39

interact simultaneously. Interactions between bacteria in the microbiome also have functional40

consequences (3, 27–31) and are prevalent in higher-dimensions (3, 31), where community as-41

sembly may introduce groups of species in different combinations e.g. in a fecal transplant.42

Interactions in higher dimensions could change the topography of the fitness landscape (31),43

and their relative importance is unknown. To various extents, current approaches are limited in44

their ability to discern the topography of interaction landscapes in high dimensions due to (i)45

sign epistasis, which does not generalize well to more than two dimensions, (ii) a narrow ability46

to account for genomic context, and (iii) statistical considerations of the false discovery rate due47

to multiple testing (32, 33). Several different concepts of epistasis exist in the literature (34).48

However, standard epistasis frameworks often rely on parameter fitting, which brings along49

additional constraints (35). “Circuits”, which can describe all possible epistatic interactions50

(33, 36), introduce false discovery rate challenges.51

Here we develop a new formulation of the fitness cube concept (10,13,14), where each bio-52

logical entity (gene, organism, environmental factor) is a separate dimension (Fig. 1a). Because53

the biological entities are discrete (i.e., either a bacterium is there or it is not), our framework is54

discrete too. The cubes represent the landscape for interactions and can be composed of many55

dimensions as n-dimensional hypercubes. We then develop epistatic filtrations to locate the56

epistasis on this fitness landscape. Our approach solves problems of context and sign while57

reducing multiple testing concerns, all in a parameter-free form that is consistent across many58

dimensions (Fig. 1, Box 1).59
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Figure 1: Filtrations describe epistatic topography. (a) Interacting biological entities, e.g. genes in a cell
or bacterial strains in a microbiome, can be depicted as orthogonal dimensions in a unit cube, where vertices
represent different genotypes or combinations of strains. (b) With 3 dimensions, the triangulation (14) of the
fitness landscape produces 3D simplices (labeled A-F) of the genotypes, and 4D simplices of the fitness landscape
(not shown) give the epistasis. (c) To map the global connectivity of the landscape, we merge adjacent simplices in
a dual graph of the 3-cube triangulation, where nodes A-F are the simplices from (d) and the edges are the volumes
of the bipyramids from the merges of neighboring simplices. The smallest bipyramid, edge 5, is formed first,
followed by the next larger and so forth on up to the largest bipyramid, edge 1. The data set is from Esherichia
coli mutations in topA, spoT, and pykF from (37). (c legend) Each dual edge has two parameters: its epistatic
weight (indicated by shade) and its p-value (indicated by color). Black indices in (c) label the critical dual edges
of S(h), where critical indicates that loss of the edge leaves nodes unconnected to the graph. (d) The sequence
of merges between adjacent simplices (reading from top to bottom) shown in the dual graph is depicted by the
epistatic filtration. Epistasis of the merged simplex is indicated by the thin, black vertical hatch mark on the far left
bar of each row. Total width of the bars is fixed. Note the non-critical C+E merge is not depicted in the filtration
because those simplices are already merged with B, A, and F.
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2 Results60

2.1 Defining the shapes of fitness landscapes61

We first decompose the fitness cube into its most elementary parts through a triangulation (Box

1, Fig. 1b). Triangulations are used e.g. in computer vision to decompose a surface, such as

a human face, into discrete parts, which are triangles. Generalizing to higher dimensions, the

triangles connecting genotypes are simplices (Fig. 1b). The volume of each simplex connotes

the local steepness of the landscape (Box 1). To establish the global topography of the landscape

we merge adjacent simplices in a stepwise manner such that flattest parts of the landscape are

merged first and the steepest parts last (Fig. 1c). Each adjacent pair of merged simplices, s and

t, forms a bipyramid, (s, t) through their shared face. The epistatic weight of (s, t) is

eh(s, t) :=
∣∣detEh(s, t)

∣∣ · nvol(s ∩ t)
nvol (s) · nvol (t) . (1)

where Eh(s, t) is the matrix specifying the vertices with their corresponding fitness phenotypes

and nvol denotes the dimensionally normalized volume of the genotypes (Box 1; Appendix

B1-B6). We use the notation

{v(1)}+ {v(2), . . . , v(n+1)}+ {v(n+2)} (2)

for the bipyramid (s, t), where the first and last vertices are the apices and the middle set forms62

the shared face. The n+2 genotypes of the bipyramid form a non-linear interaction of dimension63

n when eh(s, t) > 0.64

We visualize the topography of the epistatic landscape by forming a dual graph of S(h),65

where the nodes are the maximal simplices and adjacent simplices form the dual edges. Blue66

edges indicate epistasis (Fig. 1c). The epistatic filtration of h (Fig. 1d) depicts the path from67

lowest to highest epistasis by merging adjacent simplices to form a connected cluster c.f. (38).68

In this sense, epistatic filtrations encode a global notion of epistasis in higher dimensions by69

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 12, 2021. ; https://doi.org/10.1101/2021.09.11.459926doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.11.459926


connecting adjacent bipyramids. This method has many advantages over parameter fitting,70

including that it does not depend on the statistical constraints of determining a best fit.71

Filtrations are also not constrained by the sign of epistasis, which depends on which geno-72

type is considered wildtype, a somewhat arbitrary decision given varied ancestries (see Ap-73

pendix B1). Studying adjacent simplices and their neighboring relationships, as we propose74

below, allows reconstruction of the fitness landscape and its epistatic properties in high dimen-75

sions. This process rests on the mathematical theory of linear optimization, convex polyhedra,76

and regular subdivisions (38).77

We note that bipyramids account for the majority of genomic contexts (38), c.f. Table S1.78

Furthermore, the location(s) of inferred epistasis is robust to the choice of triangulation S(h)79

(38).80

2.2 An evolutionary genetics example of epistatic filtrations81

To illustrate our approach, we examined an existing data set from Lenski’s (39) classic experi-82

mental evolution of Esherichia coli, in a set of strains with each combination of five beneficial83

mutations (37) (Fig. 2a). We first examine n = 3 loci, corresponding to biallelic mutations in84

topA, spoT, and pykF (Fig. 1c,d). Epistasis was generally low in magnitude (37,40), and occurs85

in two ways: (i) either from merging groups of groups of simplices (c.f. BC + AFE in line #286

of Fig. 1d), which indicates a complex interaction, or (ii) from merging a single simplex, c.f. D,87

with the aggregated rest of the simplices (c.f. line #1 of Fig. 1d), much like a dominant effect in88

the NK model (14). This second way is consistent with a fitness landscape distortion, which oc-89

curs when certain mutations influence the interactions of many other genes (41). Geometrically,90

such a distortion constitutes a vertex split (42). We next add a fourth biallelic mutation, in the91

glmUS locus (Fig. 2b,c), encoding peptidoglycan availability, which is an essential component92

of the cell wall.93
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Figure 2: E. coli evolution is guided by epistatic landscape distortions. (a) (i) E. coli mutants examined (37),
(ii) their geometric relationships, and (iii) experimental approach to measure fitness. (b) Edge labeled dual graph
and (c) epistatic filtration restricted to n = 4 mutations in topA (locus 2), spoT (locus 3), glmUS (locus 4) and pykF
(locus 5). Locus 1, rbs, is fixed 0 (wildtype). Note that the left edge of the bars in (c) indicates there is very little
epistatic weight added to the filtration except for the final merge, where the single genotype 00001 gives weight to
the entire filtration. This final interaction corresponds to the vertices {00001}+ {00000, 01001, 00101, 00011}+
{00010}. (d) Dual graph for the complete Khan data set. Black indices in (b) label the critical dual edges of
S(h). (e) In the parallel filtration, for 1 ∗ ∗ ∗ ∗, where the rbs mutation is present, the landscape is disorted by a
concentrated area of higher epistasis. Inset: graph in (b) recolored with weights from (e).

The filtration reveals a smooth, additive landscape with one dominant cell where epistasis94

arises only in the final merge of the filtration (Fig. 2c), meaning the epistatic topography of the95

entire landscape (Fig. 2d) rests upon the single vertex, 00001, pykF. While the previous analysis96

detected a significant, marginal effect of pykF (37), filtrations reveal the geometric structure97

in terms of which specific combinations of loci are responsible for the effect (Fig. 2e): the98

interaction between the glmUS, {00001}, and pykF, {00010}, genes requires the context of four99

loci, {00000, 01001, 00101, 00011}, yet it involves only up to double mutants, suggesting high100

dimensional epistasis that arises from lower dimensional interactions (Fig. 2c). This conclusion101
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is consistent with recent genome-wide work on trans-gene interactions (19), suggesting that102

complex traits may arise from genome-wide epistasis, where each mutation’s contribution to103

the trait depends on the context of other mutations.104

We introduced parallel transport (38, §6.6) to give a geometric measure of context-dependence105

for the same set of loci with different bystanders (e.g. species or genes) (see Fig. S1), previously106

examined by conditional or marginal epistasis (43). Examining the Khan data with and with-107

out the pykF mutation (37) (Fig. S2) showed increased significance in 9 out of 20 of the dual108

edges (Fig. S2), when pykF was mutated. Examining the restoration of pykF (Fig. S3), only109

3 of 22 edges changed significance and just one critical edge lost significance, indicating that110

the epistasis in this case occurs because the mutation causes new interactions. Thus, the pykF111

mutation appears to enable further evolution during the Lenski experiment (39) by distorting112

the epistatic landscape. rbs also generates distortions (Fig. 2e), which can be visualized as a113

concentrated region of epistasis on the dual graph (Fig. 2e Inset). We found similar features in114

another genetic data set for the β-lactamase enzyme (44) (Appendix B7). Filtrations can thus115

reveal the specific geometric structure of both the interactions and the context they rely upon.116

2.3 Lactobacilli produce microbiome distortions117

Up to this point, we have focused on genetic epistasis, but our framework is generalizable to118

interactions of environmental parameters, including the gut microbiome, for which a framework119

to identify complex interactions is greatly needed. Like the genome, which is composed of120

many genes that interact to determine organismal fitness, the microbiome is also composed of121

many smaller units (bacterial species in this case) that affect host fitness. Hosts are known to122

select and maintain a certain core set of microbes (45,46); the interactions of these bacteria can123

affect host fitness (3); and it is debated to what extent these interactions are of higher-order,124

c.f. (28). While vertebrates have a gut taxonomic diversity of ≈ 1000 species, precluding study125
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of all possible combinations, the laboratory fruit fly, Drosophila melanogaster, has naturally126

low diversity of ≈ 5 stably associated species (47).127

We made gnotobiotic flies inoculated with each combination of a set of n = 5 bacteria (25 =128

32 combinations) that were isolated from a single wild-caught D. melanogaster, consisting of129

two members of the Lactobacillus genus (L. plantarum and L. brevis) and three members of130

the Acetobacter genus (Fig. 3a). We measured fly lifespan, which we previously identified as a131

reproducible phenotype that is changed by the microbiome (3). Overall a reduction of microbial132

diversity (number of species) led to an increase in fly lifespan as with a taxonomically similar133

set of bacteria we examined previously, which came from multiple hosts (3).134
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Figure 3: Loss of lactobacilli causes global distortion of the microbiome epistastic landscape. (a) Experimental
design for Eble and Gould (3) microbiome manipulations in flies. (b) Full graph of ∗∗∗∗∗ for the Eble data. (c)
Filtration of S(h) for the 4-face, 1∗∗∗∗, of Eble data, where L. plantarum is present, indicates epistasis where two
clusters of maximal cells merge. (d) Parallel filtration with L. plantarum removed shows a landscape distortion. (e)
Filtration for ∗1∗∗∗, where L. brevis is present has similar structure to 1∗∗∗∗. (f) Parallel filtration with L. brevis
removed shows a landscape distortion.

Epistasis was concentrated at the center of the dual graph (Fig. 3b,c), with significant, non-135
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critical edges distributed throughout the graph (Fig. 3c). Examining the parallel transport, we136

found that the Lactobacilli drive changes in the global structure (Fig 3d,e). In 46 out of 128137

(36%) interactions, significance changed due to adding or removing a Lactobacillus (Fig 3c-138

f, S7, S8). These changes in significance primarily derive from non-significant interactions139

when L. brevis is present that become significant when it is removed and vice versa, indicating140

L. brevis suppresses epistatic interactions that affect fly lifespan.141

Microbiome abundances could drive the effects on host lifespan, however, comparing the142

epistatic landscapes for CFUs and lifespan, we found that only 2 of 99 dual edges were sig-143

nificant for both the bacterial abundance and fly lifespan data sets (Fig. S9, S10, S11, S12,144

Tables S2, S3, S4, S5), and there was a lack of correlation between the epistatic weights of the145

bipyramids (Spearman rank correlations: p = 0.7, p = 0.5, p = 0.3, and p = 0.3 respectively).146

This discord between the epistatic landscapes for microbiome fitness and host fitness could e.g.147

diminish the rate of co-evolution.148

2.4 Interactions are sparse in higher-dimensions149

We used epistatic filtrations to systematically evaluate the prevalence of higher-order interac-150

tions as a function of the number of dimensions. Critical, significant, higher-order interactions151

were less frequent than pairwise interactions (p < 10−6, Z-test) for each of the Khan, Eble,152

and Gould data sets, with a decreasing probability as a function of the face dimension (Table153

1). This occurs for three primary reasons. First, the degrees of freedom increase in higher154

dimensions. Second, the probability of selecting a significant interaction from the set of all pos-155

sible interactions decreases because the total number of interactions increases with increasing156

dimensions. Finally, the absolute number of significant interactions decreases in higher dimen-157

sions (Table 1), meaning they are biologically less prevalent. Overall, ≈ 10% of possible dual158

edges were significant at higher order, with ≈ 1% significant for n = 5 dimensions (Table 1),159
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suggesting limits to the dimensions of biological complexity.160

We note that these fewer interactions in high dimensions can and do impact fitness. For ex-161

ample, the two top 4-dimensional interactions in the Eble microbiome data produce a combined162

9% effect on fitness (see edges 1 and 2 in (Fig. 3)) with the largest maximal cell accounting for163

≈ 5%. The relative sparsity makes for a tractable number of these interactions, where we may164

eventually determine the mechanisms, and filtrations provide a way to identify these.165

Table 1: Prevalence of interactions at different levels of complexity in genetics and microbiome data sets. Signifi-
cant versus all critical dual edges (p < 0.05).

Dataset: Dataset: Dataset:
Interaction dimension Khan Eble Gould

2: 20/80 (25%) 24/80 (30%) 22/80 (28%)
all higher order: 29/508 (5.7%) 58/540 (10%) 21/520 (4.0%)

3: 21/194 (11%) 35/199 (17%) 14/194 (7.2%)
4: 7/214 (3.2%) 22/226 (10%) 6/216 (2.7%)
5: 1/100 (1.0%) 1/115 (0.8%) 1/110 (0.9%)

total: 49/588 (8.3%) 82/620 (13%) 43/600 (7.1%)

2.5 Higher-order interactions can arise from lower-order interactions166

Non-linearities of lower-order interactions can produce interactions in higher dimensions (40).167

In examining the higher-order epistasis present in our data sets, we noted that the clusters where168

significant epistatic weights occur are often preceded by clusters with nearly significant epistatic169

weights in lower dimensions (Fig. S4). We developed a graphical approach to distinguish these170

interactions from those that arise de novo (Fig. S20b,c; Appendix B11).171

Several higher-order interactions in the Gould and Khan data could not be attributed to172

lower-order effects (Table S6). In particular, they could not be detected from pairwise inter-173

actions between loci, (c.f. Fig. S20c). As we noted, the 4-dimensional interaction in the E.174

coli evolution experiment involved loci with two genes (Fig. 2), whereas in the microbiome,175
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interactions involved loci with four species, indicating different underlying geometries at these176

different scales of biology (Table S6).177

3 Discussion and Conclusions178

From an evolutionary perspective, the Red Queen’s hypothesis emphasizes how conflicts with179

other organisms can drive continuous genetic innovation (48). We find that epistasis in higher180

dimensions generates fitness landscape distortions, which could continuously change the fitness181

landscape to fuel new genomic innovation even in a static environment. This could partially182

explain the observation of continuous diversification in long term evolution experiments (49).183

In higher dimensions, we lack simple terminology to describe the many types of interactions184

that may occur, whether between quadruples and singles, pairs and triples, or different genetic185

backgrounds. We found that biologically-significant interactions in four and five dimensions are186

sparse and often rooted in lower order, meaning that a limited number of such interactions exist.187

This extends to higher dimensions the trend that 3-way interactions are often predicted from 2-188

way interactions (2, 3, 28). However, our finding that key genes and species cause distortions189

emphasizes the need to identify the significant higher-order interactions from the vast number190

of possible ones, a task that epistatic filtrations enable.191

This geometric approach could be extended, e.g. to GWAS (15, 19, 50), ecosystems (4, 5),192

or neuronal networks (51), to discover non-additive higher-order structures at different scales.193

It should be noted that the polyhedral geometry methods for analyzing epistasis deserve to be194

developed further from the mathematical point of view. We believe that concepts of curvature195

for piecewise linear manifolds will be useful (52).196
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A Materials and Methods404

A.1 Fly husbandry405

Flies were reared germ-free and inoculated with one combination of bacteria on day 5 after eclo-406

sion. N≥100 flies were assayed for lifespan in n≥5 independent vials per bacterial combination407

for a total of 3200 individual flies. Food was 10% autoclaved fresh yeast, 5% filter-sterilized408

glucose, 1.2% agar, and 0.42% propionic acid, pH 4.5. Complete methods are described in409

Gould et al (3).410

A.2 Bacterial cultures411

Bacteria were cultured on MRS or MYPL, washed in PBS, standardized to a density of 107412

CFU/mL and 50 µL was inoculated onto the fly food. Strains are indicated in Table S7. See413

Gould et al (3) for complete methods.414

A.3 Genetics data415

Existing genetics data sets were gotten from Sailer and Harms 2017 (40) github repository416

(https://github.com/harmslab/epistasis) or from Tan et al (44).417

For the Khan data in Fig. 2, the fitness function h is defined for (b) by assigning the follow-418

ing normalized values to the 16 genotypes:419

00000 7→ 0.1524 01000 7→ 0.1745 00100 7→ 0.1689 00010 7→ 0.1569
00001 7→ 0.1528 01100 7→ 0.1842 01010 7→ 0.1756 01001 7→ 0.1823
00110 7→ 0.1718 00101 7→ 0.1810 00011 7→ 0.1642 01110 7→ 0.1836
01101 7→ 0.1956 01011 7→ 0.1858 00111 7→ 0.1813 01111 7→ 0.1987 .

420

The Tan data set is different from the other fitness values in that only median and mean421

values are given, meaning we cannot compute p-values to assess the statistical significance. The422

fitness values are minimum inhibitory concentrations of antibiotics from a well-standardized423

assay with little experimental variation. Thus, the measurements and our analysis are believed to424
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be robust. We note that the regular subdivision resulting from the corresponding height function425

of [0, 1]5 is degenerate in the sense that it is not a triangulation. This degeneracy arises because426

the data are discrete antibiotic concentrations with 24 possible values. The repetition of exact427

values in several cases means a triangulation does not occur. We extended our methods to this428

degenerate case by restricting the analysis to the faces that do have a triangulation, broadening429

the application of our approach. We focused on the piperacillin with clavanulate data from (44)430

as it is the better behaved.431

A.4 Computational analysis432

The filtrations code is available as a polymake (53) package (cf. https://github.433

com/holgereble/EpistaticFiltration) and the analysis pipeline is available as a434

jupyter notebook.435

B Terminology436

Loci (singular locus) refer to individual sites in the genome where a mutation may occur, or in437

the microbiome sense, a locus is a particular bacterial species. We write [n] := {1, . . . , n} for438

the set of all loci.439

Genotypes, v = (v1, . . . , vn), are vectors of loci with 0/1-coordinates that form points in440

some fixed Euclidean space Rn, where n is the number of genetic loci or bacterial species441

considered. In this article we focus on biallelic n-locus systems, i.e. genotype sets of the form442

V = {0, 1}n where n is the number of loci and each locus is either 0, absent, or 1, present.443

For instance, v = (1, 0, 1) denotes a genotype in a 3-locus system R3, where the first and third444

loci are mutant and the second is wild type. The set of all genotypes will be denoted by V .445

The convex hull P := conv(V ) of all genotypes is called the genotope. In our setting P is the446

n-dimensional unit cube [0, 1]n (c.f. (Fig. S21) for a 2D projection of [0, 1]5).447
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A fitness function (also called height function) associates to each genotype v ∈ V a quan-448

tified phenotype describing the impact of the genotype on the organism. For example, if the449

measured phenotype is fitness, h encodes the reproductive output of the genotype.450

The fitness landscape is the pair (V, h), which defines the fitness h(v) for each genotype451

v ∈ V . Let v = (v1, . . . , vn) ∈ V be a genotype. Then its lift is given by (v, h(v)) =452

(v1, . . . , vn, h(v)) ∈ Rn+1.453

A set of points W = {w(1), . . . , w(`)} is affinely independent if for all real scalars λi454

satisfying
∑`

i=1 λi = 0 the condition
∑`

i=1 λiw
(i) = 0 forces λi = 0 for all i ∈ {1, . . . , `}.455

Otherwise W is affinely dependent.456

An interaction with respect to a fitness function h occurs between a collection of k + 2457

affinely dependent genotypes v(1), . . . , v(k+2) ∈ V ⊂ Rn, for k ≤ n, whose lifts are affinely458

independent points in Rn+1. This is in line with the standard concept of additive epistasis. The459

number k is the dimension of the interaction; throughout we assume that k ≥ 2.460

Let U = {v(1), . . . , v(`)} be a set of genotypes. Its support is the set

supp(U) :=
{
k ∈ [n]

∣∣∣ there are distinct 1 ≤ i, j ≤ ` with v(i)k 6= v
(j)
k

}
.

That is, the support is the set of loci where at least two of the given genotypes differ. For461

example, if n = 3 and U = {(0, 0, 0), (1, 0, 1), (1, 0, 0)} then supp(U) = {1, 3}.462

The number of loci that vary (0 vs 1) in the support is called the order of an interac-463

tion; this definition agrees with, c.f., (54): “We designate interactions among any subset of464

k mutations as kth-order epistasis.”. We give two examples: First, let n = 2 and U =465

{(0, 0), (0, 1), (1, 0), (1, 1)} = V such that U is an interaction with respect to some fitness466

function. Then U is an interaction of dimension 2 and order 2. Second, let n = 3 and467

U = {(0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)} such that, again, U is an interaction with respect to468

some height function. Then the dimension is 2 and the order is 3. In general, the order is at least469
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as large as the dimension, but the two quantities may differ. We say that genes (corresponding470

to loci) interact if they form the support set of an interaction of genotypes.471

Remark. The dimension k of an interaction v(1), . . . , v(k+2) with respect to some fitness func-472

tion agrees with the dimension of the affine span of the given points in Rn. This can be seen473

as follows. By definition the lifted points (v(1), h(v(1))), . . . , (v(k+2), h(v(k+2))) are affinely in-474

dependent in Rn+1. So their affine span has dimension k + 1. As v(1), . . . , v(k+2) are affinely475

dependent, the dimension of their affine span is at most k. Now the affine dimension can only476

increase by at most one if one coordinate is appended.477

B.1 A primer on epistatic filtrations478

We first explain the biallelic case with n ≥ 2 loci. In the geometric framework (33), two in-479

teracting loci give rise to four possible genotypes, which form the vertices of a square and may480

be written as vectors of zeros and ones, indicating the absence (0, wildtype) or the presence (1,481

mutant) of each locus respectively (Fig. 1b) (33,38). The measured phenotypes lift the genotype482

vertices into 3-space, and there is epistasis corresponding to the volume of the simplex enclosed483

by the lifted points (see blue simplex in Fig. 1b). Geometrically, the four genotypes involved484

are fully symmetric, meaning that the sign of the epistasis for n = 2 is relative to the choice of485

a coordinate system. Thus, the sign of epistasis depends on which genotype is considered wild-486

type. By considering the simplex volume rather than the fold of the upper shell of the simplex,487

epistatic filtrations do not specify a sign and thus avoid this caveat. However, directionality is488

considered by parallel transport (see later section). Returning to our explanation, by taking the489

upper convex hull of all 2n lifted points and projecting back onto the genotope [0, 1]n we induce490

a subdivision S(h); cf. (38,55, §2.1), into maximal cells (Fig. 1b). Generically, every maximal491

cell of S(h) is an n-dimensional simplex, which is the convex hull of (n+ 1) affinely indepen-492

dent genotypes (Fig. 1c). Importantly, these n-dimensional simplices are the most elementary493
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parts into which a fitness landscape can naturally be decomposed.494

Our framework generalizes to higher dimensions through a geometric shape called a bipyra-

mid, where two satellite vertices, each the apex of one pyramid, are joined to a common set of

base vertices. The satellites correspond in the 2D example (Fig. 1b) to 00 and 11 and the base to

10 and 01. This is naturally associated with S(h), set up by the ridge (Fig. 1b). For an ordered

sequence of n+ 2 genotypes (v(1), v(2), . . . , v(n+2)) we let

s = conv{v(1), . . . , v(n+1)} and t = conv{v(2), . . . , v(n+2)} .

In other words, s and t form convex hulls. We call such a pair (s, t) a bipyramid with vertices

v(1), v(2), . . . , v(n+2). Then we can find the volume of the lifted bipyramid by forming the (n+

2)×(n+ 2)-matrix

Eh(s, t) :=


1 v1,1 v1,2 . . . v1,n h(v(1))
1 v2,1 v2,2 . . . v2,n h(v(2))
...

...
...

...
...

...
1 vn+2,1 vn+2,2 . . . vn+2,n h(v(n+2))

 , (3)

where vi,1, vi,2, . . . , vi,n are the coordinates of v(i) ∈ Rn. The epistatic weight of the bipyramid

(s, t) is

eh(s, t) :=
∣∣detEh(s, t)

∣∣ · nvol(s ∩ t)
nvol (s) · nvol (t) . (4)

Here nvol denotes the dimensionally normalized volume. The quantity nvol(s∩t) is the relative

(n−1)-dimensional normalized volume of the ridge of the bipyramid, given by the intersection

s ∩ t = conv(v(2), . . . , v(n+1)). We use the notation

{v(1)}+ {v(2), . . . , v(n+1)}+ {v(n+2)} (5)

for the bipyramid (s, t), where the first and last vertices are the satellites and the middle set495

forms the base. Now the n + 2 genotypes of the bipyramid form an interaction of dimension n496

when eh(s, t) > 0.497
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In our regular triangulation S(h), the two n-dimensional simplices, s and t, are adjacent498

because their intersection s ∩ t is a common face of dimension n− 1.499

B.2 Constructing a filtration from the epistasis of adjacent simplices500

We visualize the topography of the epistatic landscape by forming a dual graph of S(h),501

where the nodes are the maximal simplices and adjacent simplices form the dual edges. A502

rugged path is one with more blue edges (Fig. 1d). To each such dual edge we associate an503

epistatic weight and a label (Fig. 1c, epistatic weights are in shades of blue and red, while504

labels are in black). In this way, we construct an epistatic landscape that corresponds to the505

underlying fitness landscape with the ruggedness specified along the dual graph. The epistatic506

filtration of h (Fig. 1e) depicts the path from weakest to highest epistasis by merging adja-507

cent simplices. These diagrams summarize the information contained in epistatic weights and508

dual graphs, and facilitate comparisons across data sets. But there is important new informa-509

tion contained in epistatic filtrations, which is not directly visible from the dual graph and its510

epistatic weights. Indeed, a step in the epistatic filtration merges adjacent simplices. We build511

the complete fitness landscape by stepwise merging of maximal cells, starting from the lowest512

epistatic weight and stepwise merging adjacent simplices to form a connected cluster c.f. (38).513

In this sense, epistatic filtrations encode a global notion of epistasis in higher dimensions by514

connecting adjacent bipyramids.515

To see this, notice that each row of the diagram has a number of bars and a black leftmost516

line. In the top row the black line marks the epistatic weight of zero (x-coordinate). Each bar517

is red and corresponds to one maximal simplex of S(h). In the second row (counting from the518

top), we see three things: (1) the value of the lowest epistatic weight moves the x-coordinate519

of the black line slightly to the right. (2) The two maximal simplices of S(h) corresponding to520

this epistatic weight are merged into one. These correspond to the two bars in the previous row521
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above the new, longer bar in the row. The lengths of the other bars remain unchanged but are522

shifted horizontally by the epistatic weight in (1). (3) The statistical significance of the epistatic523

weight giving rise to the merging step, encoded by the colors of the bars; cf. Section B.4.524

The merging procedure is then repeated for each pair of maximal simplices arising in each525

epistatic weight until one reaches the highest epistatic weight and the last maximal simplex of526

S(h) to be merged with the rest. In this way the indentation of the bar charts increases from top527

to bottom. The total width of the bars stays constant throughout.528

Importantly, in the epistatic filtration diagram, not every merging step is displayed; e.g.,529

in Fig. 1d there are fewer rows than dual edges in Fig. 1c. This is because some steps do not530

change the resulting fitness landscape (no actual new portion is merged to the previous one). The531

reported steps are only the ones increasing the connected components of the fitness landscape532

obtained from the previous merging steps. The epistatic weights corresponding to these steps533

are the edges in the dual graph which we call critical in (38, §.3.2).534

B.3 Normalized epistatic weights535

To gain a perspective on the generality of higher-order interactions, it is desirable to compare536

epistatic landscapes. Different phenotypes have different metrics, making comparisons difficult537

for current approaches to epistasis. Filtrations are well-suited in this sense. Scaling the height538

function h by a positive constant does not change the regular triangulation, and thus it does not539

change the dual graph. In order to compare different data sets, we scale the height function to540

Euclidean norm one. The epistatic weights are scaled accordingly. The resulting normalized541

epistatic weights are measured in epistatic units, giving a generalized metric for epistasis.542

Measuring the effect of context on epistatic interactions is also desirable, e.g. to detect the543

marginal or conditional effects of a locus (37), and these are a natural feature of filtrations. If544

we fix some k loci and let the remaining n− k loci vary, we obtain a height function, which is545
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restricted to a face of the genotope [0, 1]n. That face has 2n−k vertices, and it is an isomorphic546

copy of the cube [0, 1]n−k. For instance, if n = 5 and we fix the first and the fourth locus to 0,547

we obtain a 3-dimensional face, which we denote 0∗∗0∗. That is, such a face is written as a548

string of n symbols in the alphabet {0, 1, ∗}, where 0 or 1 mark the fixed choices, and ∗ stands549

for variation. The number of ∗ symbols equals the dimension of the face. Triangulations, their550

dual graphs, epistatic weights, etc. are well-defined for height functions restricted to faces. This551

aspect of the theory allows the study of conditional epistatic effects.552

B.4 Statistics of epistatic weights553

We developed a statistical test to quantify the significance of an interaction associated with a554

fixed bipyramid; cf. (38, §4.2). Here we assume that h(v) is the mean value of the individual555

phenotype measurements for some number of replicated experiments for the fixed genotype v.556

To each dual edge we associate a p-value, which is independent of the epistatic weight nor-557

malization. If that p-value is below 0.05 we call that dual edge significant. It is useful to also558

consider p-values, which are slightly higher because one can use the shape of the landscape559

to identify interesting locations for further statistical analysis. To this end we call a dual edge560

semi-significant if 0.05 ≤ p < 0.1.561

While it may be possible that this approach misses some biologically relevant interactions562

(e.g. if they do not correspond to a bipyramid selected by our method), those interactions that563

we identify carry information that is robust and supported by a statistical model. The fact that564

not all possible interactions can be approached is an inevitable consequence of the higher di-565

mensional nature of fitness landscapes, also reflected by a very high number of possible regular566

triangulations of [0, 1]n. That number equals 74 for n = 3 and 87,959,448 for n = 4, whereas567

the precise numbers for n ≥ 5 are unknown; cf. (55, §6.3). Thus, filtrations use the data to568

greatly condense the number of possible interactions considered.569
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The bar colorings in the filtrations of epistatic weights, as in (Fig. S4), reflect the outcome570

of multiple simultaneous statistical tests (one for each epistatic weight) (38).571

Significant dual edges at p < 0.05 are shown in blue, 0.05 ≤ p < 0.1 in purple, and p ≥ 0.1572

in red.573

It may happen that a triangulation has a significant dual edge, which is not critical, whence574

it does not show in the epistatic filtration. In that case the next critical dual edge becomes blue;575

so a filtration encodes all significant interactions found by our method.576

Remark. By funneling the analysis through the concept of regular triangulations our approach577

pre-selects interactions, which are most relevant with respect to fitness (38, §2.2). Via this major578

deviation from (33) we are able to detect interactions in many data sets, which are biologically579

plausible; this suggests strongly that our method is particularly good at avoiding false positives.580

Future work will investigate the relationship to other methods from statistics and signal pro-581

cessing. While most of this is beyond the scope of the present study, in Appendix B12 we offer582

a first step by comparing with traditional linear regression approaches.583

B.5 A synthetic experiment examining how epistatic weights change as a584

function of the interaction order585

Our method calculates significance of detected interactions and normalizes the epistatic weight586

to the volume of the unit cube of the same dimensionality. We used synthetic data to analyze the587

method performance. We first examined 468 synthetic filtrations over the 4-dimensional cube,588

producing 10011 critical dual edges. We found that the epistatic weight is indeed constant as a589

function of the interaction order, see (Fig. S19a). This indicates that the normalization method590

is effective. Furthermore, the number of significant interactions decreased as the standard de-591

viation of the input data increased, indicating the statistical method is sensitive to noise, see592

(Fig. S19b).593
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B.6 A microbiome example in dimension 4594

Here n = 4, and the fitness function h is defined by assigning the following values to the 16595

genotypes:596

0000 7→ 0.2484 ; 1000 7→ 0.2320 ; 0100 7→ 0.1618 ; 0010 7→ 0.1698 ;
0001 7→ 0.1943 ; 1100 7→ 0.1749 ; 1010 7→ 0.1714 ; 1001 7→ 0.1929 ;
0110 7→ 0.1668 ; 0101 7→ 0.1608 ; 0011 7→ 0.1617 ; 1110 7→ 0.1643 ;
1101 7→ 0.1677 ; 1011 7→ 0.1715 ; 0111 7→ 0.1613 ; 1111 7→ 0.1594 .

The vertices U := {v(1), . . . , v(6)} ∈ V given by

v(1) = (1, 1, 0, 0) ; v(2) = (0, 0, 0, 0) ; v(3) = (1, 0, 0, 0) ;
v(4) = (1, 1, 0, 1) ; v(5) = (1, 1, 1, 1) ; v(6) = (1, 0, 0, 1)

form a bipyramid (s, t) consisting of 4-dimensional simplices s and t as above. The simplices597

s and t correspond to nodes in the dual graph of S(h) that share a dual edge recording their598

adjacency relation as indicated in (Fig. 3b).599

In this situation, equation (4) reads

eh(s, t) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0 0 0.1749
1 0 0 0 0 0.2484
1 1 0 0 0 0.2320
1 1 1 0 1 0.1677
1 1 1 1 1 0.1594
1 1 0 0 1 0.1929

∣∣∣∣∣∣∣∣∣∣∣∣
· nvol(s ∩ t)
nvol (s) · nvol (t) = 0.0318 ·

√
2

1 · 1 ≈ 0.045 .

Since eh(s, t) > 0, the genotype set U defines a 4-dimensional interaction with full support600

{1, 2, 3, 4} and of order 4, according to our terminology of Section Terminology. With a p-601

value of 0.0005 < 0.05 the significance test established in (38, §.4) rejects the zero hypothesis602

for eh(s, t) and therefore proves the effect of the interaction U to be significant. We indicate this603

fact with the color blue both in the dual graph of S(h) in (Fig. 3b) and in the epistatic filtration604

of h in (Fig. 3c).605

This example illustrates the following fact of biological interest. For the bacterial com-606

binations v(1), v(2), . . . , v(6) fitness, given by the fitness function h, varies significantly in a607
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non-linear way.608

B.7 The epistatic landscape within a single enzyme is rugged609

As a point of comparison with the Khan data set, we re-analyzed data from a fully factorial610

5-mutation data set in the β-lactamase gene, where each mutation is in a separate residue of the611

same enzyme (44, 56). Due to a lack of the raw replicate data, our computations are based on612

the reported mean values, and p-values are not calculated. The filtration holds a high magnitude613

of epistasis (Fig. S5, S6) compared with the Khan data set (Fig. S4, S2); note magnitude on the614

x-axis. The epistasis arises in many steps (note slope of filtration on left side; (Fig. S5, S6)),615

consistent with the low number of possible evolutionary paths observed by Weinreich (56),616

and distortions are apparent in the shifted magnitude of epistasis by parallel transport. Our617

geometric approach also reveals a tiered structure to the epistasis, c.f. the largest weight merges618

two clusters of simplices (Fig. S5, S6), indicating a more complex epistatic landscape than the619

Khan data set, where epistasis came from one individual simplex on the periphery of the dual620

graph.621

Examining the filtration (Fig. 3d), the epistatic weight (i.e. magnitude) for the microbiome622

data generated ≈ 5% effect, roughly three times the weight in the Khan data and half that in623

the Tan β-lactamase landscapes (44) (c.f. x-axis between Fig. 3, S4, S5), indicating that the624

rugosity of microbiome interactions is comparable to genetic ones.625

To further compare the global effect of context across different datasets, we developed a626

method to compute epistasis, based on the triangulation of dual landscapes, which we call the627

epistatic product [Appendix Product model for epistasic landscape rugosity] (Fig. S13, S14,628

S15, S16, S17, S18). The total epistasis was highest for the β-lactamase experiment (44), which629

carries much higher context-dependence than either the microbiome (3) or E. coli evolution data630

sets (37), indicative of overall high epistasis at the smallest, within enzyme, scale.631
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B.8 Interactions are sparse in higher-dimensions632

The prevalence and importance of higher-order interactions is debated, with some studies sug-633

gesting pairwise interactions predict the vast majority of interactions in complex communi-634

ties (28), and others suggesting a large influence of context-dependent effects (3) (57), which635

would make higher-order interactions unpredictable. As we showed in the previous section, few636

such interactions are biologically meaningful in the context of fitness.637

This limitation on epistasis in higher dimensions could arise due to e.g. limited phenotypic638

dimensions where interactions can be detected or to a lower dimensional manifold that absorbs639

the majority of the effects (58) (e.g. lifespan and fecundity are anti-correlated, making fitness640

robust to changes in one or the other). Regardless, our analysis shows that significant epistatic641

interactions are increasingly sparse as the number of dimensions for interaction increase, indi-642

cating there exist some limits to biological complexity.643

We analyzed the few higher-order interactions in greater detail using a geometric approach.644

As we noted previously, the interactions in the Khan genetic data (Table 1) are based on a vertex645

split of the genotype 00001, meaning that the entire epistatic weight of the landscape is balanced646

by a single maximal cell (Fig. 2).647

In contrast, the epistatic filtration of the Eble microbiome data in (Fig. 3) has a much richer

texture. There are two significant bipyramids

{01001}+ {00000, 01000, 01101, 01111}+ {01100} 0.0451 #2
{01001}+ {00000, 01000, 01011, 01111}+ {01110} 0.0485 #1

given with their epistatic weights and edge id’s, which form a cluster of interactions, indicat-

ing a larger topographic feature in the epistatic landscape that relates the interactions between

L. brevis and increasing numbers of Acetobacters. Proximal to these significant cells are two

cells with nearly significant statistical support:

{01011}+ {00000, 01001, 00111, 01111}+ {01101} #8
{01011}+ {00000, 01000, 01001, 01111}+ {01101} #7
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with their edge id’s (Fig. 3). This invites further research on the bacteria involved. For instance,648

the interactions could derive from metabolic crossfeeding between the Acetobacters, which649

produce many co-factors, and L. brevis, which produces lactate, stimulating Acetobacter growth650

(59). Note that the support sets of the bipyramids for all four interactions contain both the wild651

type 00000 and 01111, which are the maximum and minimum fitness respectively.652

B.9 Parallel transport of epistatic weights653

The notion of parallel transport in a fitness landscape (V, h) was introduced in (38, §6.6) as654

a way to compare geometric and biological information between pairs of parallel facets of the655

convex polytope conv V . In this work, we extended that notion to include the case of two fitness656

landscapes, (V, h1) and (V, h2), associated to different generic and normalized height functions657

hi : V → R, i ∈ {1, 2}, defined on the same vertex set V = {0, 1}n for some n ∈ N. To658

enable meaningful comparisons, we assume that each hi is normalized and that there is a larger659

fitness landscape (W,h) with a generic and normalized height function h : W → R restricting660

to h1 and h2 on the parallel facets V in W , such that the partition of convW induced by h661

is compatible with the one of conv V induced by h1, resp. by h2. In this setting, we define662

normalized epistatic weights as with Eq. (4) with h the normalized height function and s, t663

any adjacent simplices forming a bipyramid.664

Parallel transports enable us to transport epistatic filtrations along the reflection map

φ : V → V ; v = (v1, v2, . . . , vn) 7→ (v′1, v
′
2, . . . , v

′
n) ,

with v′i = 1− vk if i = k and v′i = vi otherwise. More precisely, let eh1(s, t) be the normalized665

epistatic weight associated to a bipyramid of S(h1) and let φ(eh1(s, t)) := eh2(φ(s), φ(t)) be666

the parallel normalized epistatic weight transported by φ. Then the filtration of normalized667

epistatic weights induces a filtration of parallel normalized epistatic weights. Additionally, to668

eh1(s, t) and to φ(eh1(s, t)) a p-value can unambiguously be associated (38, §4.1-4.2). Notice669
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that by design epistatic filtrations for S(h1) only show normalized epistatic weights associated670

to critical dual edges, defined as in (38). But normalized epistatic weights and their significance671

can be defined for all bipyramids including the ones associated to noncritical dual edges. This672

explains the labelling of the parallel transport tables below. There a row is numbered only if673

the bipyramid corresponds to a critical dual edge in the dual graph of S(h1). Noncritical dual674

edges whose normalized epistatic weight remains non-significant after the parallel transport are675

omitted. The normalized epistatic weight before (denoted by eo = eh1(s, t)) and after (denoted676

by ep = φ(eh1(s, t))) the parallel transport, as well as their p-values (denoted by po and pp) are677

also reported, as well as ratios of these quantities.678

These parallel transport tables are linked to the epistatic filtration diagrams. Indeed, each679

numbered row in the table corresponds to the row in the epistatic filtration diagram with the680

black line set at eo. It also corresponds to the row with black line set at ep in the parallel681

transported filtration diagram.682

Recall from Section Statistics of epistatic weights that there may be dual edges of the tri-683

angulations which are significant but not critical. Since only the critical dual edges are labeled684

(by the row number in the epistatic filtration), in our tables for parallel transport these show up685

as unlabelled rows.686

Examples for the parallel transport of epistatic filtrations are shown in Figures S1, S2,687

S3, S5, and S6. The magnitude of the epistasis in the left panels are roughly comparable688

between data sets due to normalization of the input data. Compare each left panel with its689

corresponding right panel to observe the relative change in epistasis in the parallel path. Larger690

changes in epistasis indicate stronger context-dependence of the interaction. For instance, in691

the first Weinreich comparison (Fig. S5), bar 10 in the right panel has a parallel epistasis greater692

than the original filtration on the left, indicating context-dependence.693
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B.10 Product model for epistasic landscape rugosity694

In this section we offer a new methodological framework to simultaneously study fitness land-695

scapes associated to different height functions. We also provide a measure to quantify how696

much the height function of the combined fitness landscape differs from the sum of the height697

functions.698

Let U and V be point configurations in Rm and Rn, respectively. We think of these point699

configurations as two sets of genotypes, which may be distinct or not. If we have height func-700

tions λ : U → R and µ : V → R, then taking the sum λ+ µ point-wise yields a lifting function701

of the product U×V ⊂ Rm+n. The cells of the regular subdivision SU×V (λ+µ) are products of702

cells of SU(λ) with cells of SV (µ). In particular, if λ and µ are generic, i.e., SU(λ) and SV (µ)703

are triangulations, then the cells of SU×V (λ+ µ) are products of simplices.704

Now we consider an arbitrary height function ν : U × V → R on the product of the point

configurations. This yields height functions

νU : U → R , u 7→ 1

`

∑
v∈V

ν(u, v) and νV : V → R , v 7→ 1

k

∑
u∈U

ν(p, q) ,

where k = #U , ` = #V , u is a vertex in U and v is a vertex in V .705

Further we define

ν ′ : U × V , (u, v) 7→ ν(u, v)− νU(u)− νV (v) .

Observe that

(λ+ µ)U(u) = λ(u) +
1

`

∑
v∈V

µ(v) and (λ+ µ)V (q) = µ(v) +
1

k

∑
u∈U

λ(u) ,

and (λ+ µ)′ is the height function with constant value −( 1
k

∑
u∈U λ(u) +

1
`

∑
v∈V λ(v)). Thus706

λ + µ and (λ + µ)U + (λ + µ)V induce the same regular subdivision of U × V . Therefore,707

we propose to analyze the height function ν ′ to measure how much ν deviates from the sum of708
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two height functions. We can use the techniques from our previous paper (38) and apply (all709

of) them to SU×V (ν ′) for any given ν. For instance, this allows to measure how independent710

two different height functions are on the same point set (this is the case U = V ). We say that ν711

decomposes as a product if ν ′ = 0.712

Example 1. If U = V = {0, 1} are the vertices of the unit interval then U × V are the vertices713

of the unit square [0, 1]2. Analyzing S(ν ′) for any given height function ν on the four points714

(0, 0), (0, 1), (1, 0) and (1, 1) gives back the standard basic example of additive epistasis.715

Remark. Two observations are in order: In (38, §6.6) we considered a version of parallel716

transport to compare epistatic effects, see also Appendix B9. The connection to the product717

model approach is as follows. Let V = {0, 1}n, i.e., the vertex set of the n-dimensional unit718

cube, be embedded twice, into a pair of parallel facets of the unit (n+1)-cube [0, 1] × [0, 1]n.719

This occurs in the product model with U = {0, 1}. If a height function ν on {0, 1} × U720

decomposes as a product then the parallel transport (in both directions) is trivial. Note that the721

number of dimensions is greater for the product model than for the parallel transport.722

Additionally, observe that the product model differs from the marginal epistasis framework,723

which would produce a single number testing if the mutant changes one specific interaction724

between the genes.725

B.10.1 Product model for the Khan data726

To illustrate the product model consider the following example from the Khan data. We are727

interested in detecting if interactions between the topA, spoT, and pykF genes change when the728

rbs gene is mutated. To answer this question we let U and V be 3-cubes inside [0, 1]5 defined729

by three mutable loci, one for each of the above genes and indicated by ∗, and two fixed loci.730

The first fixed locus represents the rbs gene. It is not mutated in U and mutated in V . The731

height functions are compared over the three variable loci. Thus the filtration over the product732
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model for U and V has four dimensions in this case. A computation reveals that there are no733

significant dual edges in the epistatic filtration on product model, see (Fig. S13). This indicates734

that the rbs mutant does not affect the interaction landscape.735

B.11 Meta-epistatic charts736

This section deals with the question to which extent higher order epistatic effects are induced by737

lower dimensional ones or, put in other terms, which lower dimension epistatic effects can be738

seen in higher dimension. The meta-epistatic chart is a diagram drawn on top of the induced739

epistatic filtrations for some selection of faces of a fixed cube; higher-order interactions induced740

by lower order interactions are marked as corresponding.741

In (Fig. S20b) and (Fig. S20c) we exhibit an example for the Eble data set, with 5 loci, where742

we take the five 4-dimensional faces 0∗∗∗∗, ∗0∗∗∗, ∗∗0∗∗, ∗∗∗0∗ and ∗∗∗∗0 into consideration.743

Mathematically, these five 4-faces constitute the face figure of the wild type. Fix one 4-face, say744

0∗∗∗∗. The induced epistatic filtration on this face shows two blue bars corresponding to dual745

edges labeled 1 and 2. Each of them refers to the ridge of a bipyramid, which is a 3-dimensional746

simplex in this case. These two ridges may intersect certain 3-dimensional faces in the right747

dimension and thus may or may not descend to significant ridges within certain 3-dimensional748

filtrations. In case of an incidence with a lower dimensional significant ridge, the significant749

4-dimensional effect is induced by a lower dimensional effect and one may picture this fact as750

a directed assignment pointing from the lower towards the higher dimensional interaction.751

B.12 Comparison with a simple linear regression approach752

In the theory of fitness landscapes many linear regression approaches have been proposed to753

study higher-order interactions, c.f. (21, 34, 40, 60). In this section, we compare our epistatic754

weight method to an elementary regression approach using an example from the data.755
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The regression analysis we have in mind assumes that there is a linear relationship between

the predictors X1, X2, . . . , Xn (one associated to each locus/dimension of the genotope) and

response, or dependent, variables Y (associated to the biological measurements). That is, one

assumes that Y = f(X1, X2, . . . , Xn) + ε where f : Rn → R; (X1, X2, . . . , Xn) 7→ β0 +

β1X1 + β2X2 + · · ·+ βnXn and where ε is a random error term. The coefficients β1, β2, . . . , βn

are unknown but can be estimated by minimizing the sum of squared residuals associated to the

observations pairs (x, y). These observations pairs consisting of a genotype and a measurement

associated to it. Notice that more than one measurements are typically associated to a single

genotype. With the coefficient estimates one can make predictions for the dependent variable

via

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂nxn . (6)

The hat symbolˆindicates a prediction, for instance of Y on the basis of xi = Xi, or an estimate756

for an unknown coefficient.757

Below, we are interested in the differences between the observed measurements y associated758

to the genotypes of [0, 1]n, expressed in terms of x1, x2, . . . xn and the predicated values ŷ on759

the regression hyperplane (6). Notice that the regression analysis remains unchanged after760

normalizing the height function to Euclidean norm one. Additionally, computing residues for761

all replicated measurements (when provided) and then take averages builds on the assumption762

that measurements associated to different genotypes are statistically independent from each763

other. This assumption is consistent with the one underlying the computation of statistical764

significances for epistatic weights, following (38, §. 4.2-4.3).765

Remark. In the regression setting of (6) there are hypothesis tests (like the F -statistic, t-766

statistics and p-value) to answer if at least one regression coefficient βj, 1 ≤ j ≤ n is nonzero,767

see for example (61). Such statistical approaches are different from the one in (38, §. 4.2-4.3),768

where other hypothesis tests for each epistatic weight were proposed.769

41

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 12, 2021. ; https://doi.org/10.1101/2021.09.11.459926doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.11.459926


B.12.1 Regression for Eble data770

In the following, we perform a regression analysis focusing on the replicated measurements for771

the lifespan fitness landscape on [0, 1]5 obtained from Eble and subspaces thereof. Numerical772

measures of model fit (F -statistic: 2357, with p-value essentially zero, and for 3840 obser-773

vations and 5 predictors) show that the multiple linear regression model can be considered to774

be appropriated for this data. Since the epistatic weights of the dual edges are close to zero775

(≤ 0.02) and are mostly not significant, the above regression analysis conclusion is in line with776

what we see from the filtration of epistatic weights associated to the same fitness landscapes,777

see (Fig. S22).778

From this example we see that the regression approach provides some general information779

on higher-order interactions. However, without further assumptions, only one interaction for-780

mula is given in terms of a regression hyperplane (6) while the epistatic weight approach gives781

more fine grained information. This example also illustrate that when the regression model fits782

the data well (essentially the higher the F -statistics and the more coefficients in the hyperplane783

equation are significantly non-zero) the epistatic filtration has little horizontal shifts and few784

significant epistatic weights.785

We now proceed repeating the above analysis on some of the bipyramids considered in the

parallel analysis for the normalized lifespan Eble data. Regressing over bipyramid 23 in Table

S8

{0001}+ {0000, 1001, 1011, 0111}+ {1111}

in 0∗∗∗∗ and 1∗∗∗∗ reveals that only two average residues over 0∗∗∗∗ are non-zero (associated786

to the microbiomes 00000 and 00001), and only one is non-zero over 1∗∗∗∗ (associated to the787

microbiome 10000). This confirms the two non significant epistatic weights over bipyramid 23788

in Table S8.789
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Remark. If minimally dependent sets of points in the genotope are fixed, as in the epistatic790

weight approach, and one regresses above these points, then the corresponding regression hy-791

perplanes equations are learned from data and the equations generally differ from the epistatic792

weights given as in (4), but similar biological and geometric conclusions can be drawn. This793

idea could then be taken further by considering smoothing splines, instead of linear regression,794

and their relation to epistatic filtrations. From an application point of view, one would obtain795

an interesting new extension of the concept of epistasis because intermediate genotypes could796

be assessed, which would correspond to the case of genetically heterogeneous populations of797

organisms as occur in nature.798

Other numerical results for the above regressions are summarized in Table S9. Over 0∗∗∗∗799

two coefficients are significantly non-zero (for x1 and x4), see top part of Table S9. Similarly,800

over 1∗∗∗∗ four coefficients are significantly non-zero (x1, x2, x3, x4), see bottom part of Table801

S9. The fit of the linear regression models is confirmed by the relatively high values of the802

F -statistic. Over 0∗∗∗v the F -statistics is 459.1 for a p-value near zero and 720 observations.803

Over 1∗∗∗∗ the corresponding F -statistics (near zero) is 52.61.804

B.13 Comparison with other approaches805

Currently the main lines of research to investigate higher-order epistasis in computational bi-806

ology and related disciplines include the present methods, inspired from discrete polyhedral807

geometry (3, 33, 38, 62); linear regression approaches, c.f. (21); methods originating from har-808

monic analysis, c.f. (40, 54, 63); and using correlations between the effects of pairwise muta-809

tions, discussed in (38).810

In a 2-locus, biallelic system, all these methods can easily be recovered from one another;811

some of them even agree. This is true also for some ecological approaches, including the gener-812

alized Lotka-Voleterra equations, which yield a mathematically equivalent form to epistasis for813
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certain situations c.f. see equation 9 of (4). In higher dimensional systems, these methods re-814

main conceptually closely related but they generally yield different insights about the problem,815

such as whether the interactions are significant, what their magnitude is, and what their sign816

is. Because these previous methods make specific, a priori assumptions about the forms of in-817

teractions, they are limited by these assumptions. Epistatic filtrations add a global perspective,818

determining the structure of interactions from the shape of the fitness landscape.819

B.14 Microbiome data sets820

In this work, Drosophila microbiome fitness landscapes consist of experimental measurements821

on germ-free Drosophila flies inoculated with different bacterial species. The lifespan of ap-822

proximately 100 individual flies were measured for each combination of bacterial species, giv-823

ing roughly 3,200 individual fly lifespans for each of the two data sets presented. The experi-824

mental methods are described in (3, 64). The first data set is the exact data presented in (3, 64).825

The second data set is the second set of species with exactly the same methods used in (3, 64).826

The bacterial compositions considered consist of all possible combinations of five species. The827

species considered can all occur naturally in the gut of wild flies: Lactobacillus plantarum828

(LP), Lactobacillus brevis (LB), Acetobacter pasteurianus (APa), Acetobacter tropicalis (AT),829

Acetobacter orientalis (AO), Acetobacter cerevisiae (AC), Acetobacter malorum (AM). The 5-830

member communities both stably persist in the fly gut. For the purposes of this work, we define831

stable as maintaining colonization of the gut when ≤ 20 flies are co-housed in a standard fly832

vial and transferred daily to fresh food containing 10% glucose, 5% live yeast that has sub-833

sequently been autoclaved, 1.2% agar, and 0.42% propionic acid, with a pH of 4.5. The total834

number of species found stably associated with an individual fly is typically between 3 and 8.835

Consistently, Lactobacillus plantarum and Lactobacillus brevis, are found with two to three836

Acetobacter species. Less consistently, species of Enterobacteria and Enterococci occur, and837
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these have been described as pathogens. While more strains may be present, for each of the two838

data sets in the present work, a set of five non pathogen species was chosen, including the two839

Lactobacilli and three Acetobacter species. The combinations of species are shown in Table S7.840

Different strains of the same species were used in the two data sets.841
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Figure S1: Parallel transport from 0∗∗0∗ to 1∗∗0∗ within the Khan dataset. (a) Filtration based on the trian-
gulation of 0∗∗0∗. (b) Parallel epistatic weights computed from 1∗∗0∗ for the triangulation based on 0∗∗0∗. (c)
The two parallel triangulations (and exploded copies) are depicted. The partitions in the node set are transferred
from the cube on the middle left to the cube on the middle right. Exploded versions of these same triangulation on
the far left and far right demonstrate the geometry of the simplices generated by the triangulations.
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Figure S2: Epistatic filtration and parallel epistatic units for transport from ∗∗∗∗0 to ∗∗∗∗1 within the Khan data.
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Figure S3: Epistatic filtration and parallel epistatic units for transport from ∗∗∗∗1 to ∗∗∗∗0 within the Khan data.
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Figure S4: Complete filtration of the Khan data over the whole 5-cube.
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Figure S5: Parallel transport from 0∗∗∗∗ to 1∗∗∗∗ within the Tan data. Analysis based on mean values only; hence
there is no color coding for the significance.
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Figure S6: Parallel transport from the face ∗∗0∗∗ to the face ∗∗1∗∗ within the Tan data. Analysis based on mean
values only; hence there is no color coding for the significance.
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Figure S7: 0∗∗∗∗(Eble) to 1∗∗∗∗(Eble).
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Figure S8: ∗0∗∗∗(Eble) to ∗1∗∗∗(Eble).
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Figure S9: 0∗∗∗∗(GouldCFU) to 0∗∗∗∗(GouldTTD).
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Figure S10: 1∗∗∗∗(GouldCFU) to 1∗∗∗∗(GouldTTD).

0.1 0.2 0.3 0.4

1

5

10

15

20

epistatic units

du
al

ed
ge

s

0.025 0.05 0.075 0.1

1

5

10

15

20

epistatic units

du
al

ed
ge

s

Figure S11: ∗0∗∗∗(GouldCFU) to ∗0∗∗∗(GouldTTD).
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Figure S12: ∗1∗∗∗(GouldCFU) to ∗1∗∗∗(GouldTTD).
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Figure S13: Product model associated to the parallel transport 0∗∗0∗ → 1∗∗0∗ within the Khan evolution data, cf.
(Fig. S1.)
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Figure S14: Non-generic product model associated to the parallel transport ∗∗0∗∗ → ∗∗1∗∗ within the Tan data.
Its unique non-simplicial maximal cell has 7 vertices and is split into a bipyramid by a slight perturbation of its
height values, cf. Theorem 8 of (38). The corresponding artificial dual edge has edge label 111 and is indicated by
a horizontal line.
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Figure S15: Non-generic product model associated to the parallel transport 0∗∗∗∗ → 1∗∗∗∗ within the Tan data.
There are two non-simplicial maximal cells, both of cardinality 7. As in (Fig. S14) they are split into a bipyramid
each at the beginning of the filtration process.
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Figure S16: Product model for the parallel transport Khan ∗∗∗0∗ → ∗∗∗1∗. The semisignificant bipyramid
labeled 2 reads {(1000)o}+ {(0000)o, (1010)0, (0110)o, (1010)p, (0011)p}+ {(0010)o} and the semisignificant
bipyramid labeled 1 reads {(1100)o}+ {(1011)o, (1010)p, (1001)p, (0011)p, (1111)p}+ {(1011)p}.
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Figure S17: Product model for the parallel transport Eble 0∗∗∗∗ → 1∗∗∗∗. The unique significant bipyramid reads
{(0001)o}+ {(0000)o, (1001)o, (0101)o, (0011)o, (0001)p}+ {(0101)p}.
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Figure S18: Product model for the parallel transport Eble ∗0∗∗∗ → ∗1∗∗∗.
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Figure S19: Synthetic data demonstrate method performance. Synthetic height functions over the 4-
dimensional cube are generated with 100 replicates each and standard deviation as indicated. The heights of
the wild type 0000 and 0001 are sampled with mean 53, all the other vertices with mean 50. (a) The distribution
of log10-transformed epistatic weights is roughly constant as a function of interaction order, indicating the dimen-
sional normalization is effective. (b) The number of significant interactions decreases as the standard deviation of
the input data for each genotype increases. A blue dot is drawn if the interaction is significant and a red dot is
drawn otherwise.
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Figure S20: Meta-epistatic charts illustrate whether or not higher-order interactions arise from lower-order
interactions. (a) Cartoon of the principle underlying meta-epistatic charts. The important loci in the interaction
are depicted as black dots in a hyperplane through the genotypes, where the true dimensions of the genotypes are
flattened onto the cartoon plane (pink). Higher-order interactions that derive from lower-order interactions occur in
a new hyperplane (blue), which magnifies the weights of a subset of the landscape. In contrast, novel higher-order
interactions that only arise in higher dimensions do not lie in a single additional hyperplane but instead require at
least two additional hyperplanes (green). In (b) and (c) two meta-epistatic charts are represented. In each chart we
identify the source of a higher-order interaction for the Eble and Gould data respectively. The results are compiled
in Table S6.
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Figure S21: Vertices of the bipyramid {00001} + {00000, 01001, 00101, 00011} + {00010} arising for the
Khan data set (37) restricted to n = 4 loci. Dark blue dots correspond to common face s ∩ t of the bipyramid
and light blue dots correspond to the satellite vertices of s and t.
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Figure S22: Complete filtration of the Eble fitness landscape over the whole 5-cube.
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Table S1: Number of circuits of [0, 1]n and bipyramids among these.

dimensions circuits bipyramids percentage

2 1 1 100.00%
3 20 8 40.00%
4 1348 1088 80.71%
5 353616 309056 87.40%
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Table S2: Parallel analysis GouldCFU 0∗∗∗∗ → Gould 0∗∗∗∗, non-critical red/red-case omitted.

No. bipyramid type eo ep eo/ep po pp po/pp

22 {01001}+{01000,01100,01010,00111}+{00110} red/blue 0.010 0.027 0.357 0.978 0.038 25.873

21 {01001}+{01000,00100,01100,00111}+{00110} red/blue 0.010 0.027 0.357 0.978 0.038 25.873

20 {01001}+{01000,00010,01010,00111}+{00110} red/blue 0.010 0.027 0.357 0.978 0.038 25.873

19 {01001}+{01000,00100,00010,00111}+{00110} red/blue 0.014 0.039 0.357 0.978 0.038 25.873

18 {01100}+{01001,01110,01101,00111}+{01111} red/red 0.017 0.006 2.747 0.815 0.677 1.204

17 {01000}+{01100,01010,00110,00111}+{01110} red/red 0.021 0.013 1.584 0.783 0.433 1.808

16 {00100}+{01100,01001,00101,00111}+{01101} red/red 0.026 0.017 1.514 0.807 0.302 2.672

15 {01001}+{01100,01010,01110,00111}+{00110} red/red 0.027 0.017 1.619 0.941 0.231 4.074

14 {00001}+{00010,01001,00011,00111}+{01011} red/red 0.031 0.012 2.630 0.905 0.312 2.901

13 {01000}+{00100,00010,00001,01001}+{00111} red/red 0.057 0.011 5.217 0.869 0.479 1.814

12 {00010}+{01000,01010,00110,00111}+{01100} red/red 0.057 0.019 2.943 0.531 0.148 3.588

11 {00010}+{01000,00100,00110,00111}+{01100} red/red 0.057 0.019 2.943 0.531 0.148 3.588

{00010}+{01000,01010,01001,00111}+{01100} red/blue 0.067 0.047 1.431 0.853 0.032 27.079

{00010}+{01000,00100,01001,00111}+{01100} red/blue 0.067 0.047 1.431 0.853 0.032 27.079

10 {01010}+{01001,01110,01011,00111}+{01111} red/red 0.067 0.018 3.722 0.323 0.186 1.737

9 {00000}+{01000,00100,00010,00001}+{01001} red/red 0.068 0.035 1.911 0.851 0.086 9.872

8 {00100}+{01000,01100,00110,00111}+{01010} red/red 0.085 0.025 3.408 0.317 0.083 3.819

7 {01000}+{00100,00010,01001,00111}+{00001} red/red 0.087 0.017 5.217 0.869 0.479 1.814

{00100}+{01000,01100,01001,00111}+{01010} red/blue 0.095 0.052 1.816 0.791 0.019 40.984

{00100}+{01000,00010,01001,00111}+{01010} red/blue 0.095 0.052 1.816 0.791 0.019 40.984

6 {01101}+{01001,01110,00111,01111}+{01011} red/red 0.157 0.010 15.097 0.533 0.362 1.472

5 {00001}+{00100,01001,00101,00111}+{01100} red/blue 0.159 0.029 5.516 0.541 0.028 19.049

4 {01010}+{00010,01001,01011,00111}+{00011} blue/blue 0.192 0.028 6.871 0.032 0.042 0.758

3 {00010}+{00100,00001,01001,00111}+{00101} red/red 0.197 0.014 13.654 0.262 0.211 1.242

2 {01100}+{01010,01001,01110,00111}+{01011} red/red 0.209 0.019 11.109 0.502 0.175 2.869

1 {01000}+{00010,01010,01001,00111}+{01011} blue/blue 0.229 0.032 7.188 0.458 0.049 9.271

{00100}+{00010,00001,01001,00111}+{00011} blue/red 0.365 0.007 53.243 0.026 0.526 0.049
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Table S3: Parallel analysis GouldCFU 1∗∗∗∗ → Gould 1∗∗∗∗, non-critical red/red-case omitted.

No. bipyramid type eo ep eo/ep po pp po/pp

23 {11001}+{11000,10101,11101,11011}+{11111} red/blue 0.002 0.051 0.033 0.962 0.001 1286.096

22 {11100}+{11000,10101,11110,11101}+{11111} red/red 0.017 0.006 2.799 0.773 0.689 1.122

21 {10000}+{11010,10101,10011,10111}+{11111} red/red 0.023 0.002 10.615 0.967 0.875 1.105

20 {10000}+{11010,10101,10011,11011}+{11111} red/red 0.023 0.002 10.615 0.967 0.875 1.105

19 {10000}+{11000,11010,10101,11011}+{11111} red/red 0.023 0.002 10.615 0.967 0.875 1.105

18 {10000}+{11010,10110,10101,10111}+{11111} red/red 0.023 0.002 10.615 0.967 0.875 1.105

17 {10000}+{11010,10110,10101,11110}+{11111} red/red 0.023 0.002 10.615 0.967 0.875 1.105

16 {10000}+{11000,11010,10101,11110}+{11111} red/red 0.023 0.002 10.615 0.967 0.875 1.105

15 {11011}+{11010,10101,10011,11111}+{10111} red/blue 0.027 0.039 0.695 0.580 0.012 47.154

14 {10110}+{10000,10010,11010,10111}+{10011} red/red 0.031 0.012 2.513 0.693 0.277 2.502

13 {11001}+{10000,10001,10101,11011}+{10011} red/blue 0.033 0.031 1.066 0.388 0.007 54.190

12 {11010}+{11000,10101,11011,11111}+{11101} red/red 0.059 0.017 3.428 0.905 0.318 2.846

11 {11010}+{11000,10101,11110,11111}+{11101} red/red 0.059 0.017 3.428 0.905 0.318 2.846

10 {11010}+{10000,11000,10101,11011}+{11001} red/blue 0.060 0.068 0.881 0.902 0.000 ∞

9 {10000}+{11000,11100,10101,11110}+{11101} red/red 0.070 0.012 5.959 0.897 0.426 2.106

8 {10100}+{10000,11100,10110,10101}+{11110} red/red 0.080 0.021 3.820 0.430 0.274 1.569

7 {11110}+{11010,10110,10101,11111}+{10111} red/red 0.134 0.021 6.534 0.130 0.227 0.573

6 {11000}+{10000,11010,10101,11110}+{10110} red/blue 0.163 0.035 4.659 0.737 0.019 38.586

5 {10010}+{10000,11010,10110,10111}+{10101} red/red 0.163 0.028 5.788 0.776 0.075 10.402

4 {10010}+{10000,11010,10011,10111}+{10101} red/red 0.163 0.028 5.788 0.776 0.075 10.402

{11000}+{11010,10101,11110,11111}+{10110} red/blue 0.186 0.037 5.000 0.695 0.026 26.834

3 {11000}+{10000,11100,10101,11110}+{10110} red/blue 0.200 0.043 4.659 0.737 0.019 38.586

2 {11000}+{10000,11010,10101,11011}+{10011} red/red 0.239 0.007 35.102 0.621 0.628 0.989

1 {11000}+{10000,11001,10101,11011}+{10001} red/red 0.253 0.030 8.530 0.671 0.104 6.452

{11110}+{11000,11010,10101,11111}+{11011} red/blue 0.301 0.026 11.785 0.288 0.035 8.348

{10001}+{10000,10101,10011,11011}+{11010} red/blue 0.313 0.039 8.062 0.598 0.014 43.650
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Table S4: Parallel analysis GouldCFU ∗0∗∗∗ → Gould ∗0∗∗∗, non-critical red/red-case omitted.

No. bipyramid type eo ep eo/ep po pp po/pp

21 {10001}+{10000,00001,10101,10011}+{00111} red/blue 0.012 0.024 0.481 0.963 0.026 36.756

20 {00010}+{10000,10010,00011,00111}+{10011} red/red 0.021 0.012 1.714 0.797 0.270 2.952

19 {10100}+{10000,00100,10110,10101}+{00110} red/red 0.022 0.007 3.155 0.869 0.717 1.212

18 {10110}+{10000,10010,00111,10111}+{10011} red/red 0.031 0.012 2.513 0.693 0.277 2.502

17 {00100}+{10000,00110,10101,00111}+{10110} red/red 0.040 0.018 2.266 0.915 0.290 3.155

16 {00100}+{10000,00110,10110,10101}+{00111} red/red 0.049 0.022 2.266 0.915 0.290 3.155

15 {00001}+{10000,00100,00010,00111}+{00110} red/blue 0.079 0.026 3.047 0.698 0.023 30.749

14 {00010}+{10000,10010,00110,00111}+{10110} red/red 0.113 0.008 13.352 0.295 0.461 0.640

13 {00000}+{10000,00100,00010,00001}+{00111} red/blue 0.133 0.048 2.775 0.476 0.001 707.281

12 {10010}+{10000,10011,00111,10111}+{10101} red/red 0.133 0.023 5.788 0.776 0.075 10.402

11 {10010}+{10000,10110,00111,10111}+{10101} red/red 0.133 0.023 5.788 0.776 0.075 10.402

10 {00011}+{10000,00001,10011,00111}+{10101} red/red 0.208 0.001 275.689 0.413 0.949 0.435

9 {00010}+{10000,00100,00001,00111}+{00101} red/red 0.227 0.017 13.654 0.262 0.211 1.242

8 {00100}+{10000,00001,00101,00111}+{10101} red/red 0.269 0.033 8.193 0.579 0.101 5.733

7 {00001}+{10000,00100,00101,00111}+{10101} red/red 0.269 0.033 8.193 0.579 0.101 5.733

6 {00001}+{10000,00010,00011,00111}+{10010} red/red 0.275 0.004 67.167 0.493 0.755 0.653

5 {00001}+{10000,00011,10011,00111}+{10010} red/red 0.275 0.004 67.167 0.493 0.755 0.653

4 {00110}+{10000,00100,10101,00111}+{00101} red/red 0.306 0.009 32.813 0.413 0.610 0.677

3 {00110}+{10000,10010,10110,00111}+{10111} red/blue 0.344 0.024 14.403 0.186 0.035 5.345

2 {00110}+{10000,00010,10010,00111}+{00011} red/blue 0.354 0.024 14.760 0.175 0.030 5.853

{00001}+{10000,10101,10011,00111}+{10111} red/blue 0.408 0.028 14.815 0.108 0.013 8.308

1 {00100}+{10000,00010,00001,00111}+{00011} blue/red 0.421 0.008 53.243 0.026 0.526 0.049

{00110}+{10000,10110,10101,00111}+{10111} red/blue 0.486 0.034 14.403 0.186 0.035 5.345
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Table S5: Parallel analysis GouldCFU ∗1∗∗∗ → Gould ∗1∗∗∗, non-critical red/red-case omitted.

No. bipyramid type eo ep eo/ep po pp po/pp

23 {01100}+{11000,01110,01101,11110}+{11010} red/red 0.001 0.018 0.054 0.998 0.292 3.418

22 {01100}+{11000,01010,01001,01110}+{11010} red/red 0.001 0.018 0.054 0.998 0.292 3.418

21 {01100}+{11000,01001,01110,01101}+{11010} red/red 0.001 0.018 0.054 0.998 0.292 3.418

20 {11001}+{11000,01001,11101,11011}+{11111} red/blue 0.002 0.059 0.033 0.962 0.001 1286.096

19 {11110}+{11010,01110,01101,11111}+{01111} red/red 0.005 0.009 0.488 0.945 0.576 1.641

18 {11100}+{11000,01100,11110,11101}+{01101} red/red 0.005 0.023 0.218 0.952 0.193 4.933

17 {11000}+{11010,01110,01101,11110}+{11111} red/red 0.010 0.026 0.369 0.981 0.106 9.255

16 {01110}+{11000,11010,01101,11110}+{11111} red/red 0.010 0.026 0.369 0.981 0.106 9.255

15 {01100}+{11000,01101,11110,11101}+{11111} red/red 0.013 0.014 0.905 0.866 0.346 2.503

14 {11000}+{01001,11010,01110,01101}+{01111} red/red 0.013 0.020 0.656 0.974 0.160 6.087

13 {11000}+{01001,11010,01101,11111}+{01111} red/red 0.013 0.020 0.656 0.974 0.160 6.087

12 {01000}+{11000,01100,01010,01001}+{01110} red/red 0.024 0.015 1.584 0.783 0.433 1.808

11 {11010}+{11000,01001,01101,11111}+{11101} red/red 0.059 0.017 3.428 0.905 0.318 2.846

10 {11010}+{11000,01001,11011,11111}+{11101} red/red 0.059 0.017 3.428 0.905 0.318 2.846

9 {11010}+{11000,01101,11110,11111}+{11101} red/red 0.059 0.017 3.428 0.905 0.318 2.846

8 {01010}+{01001,11010,01110,01011}+{01111} red/red 0.067 0.018 3.722 0.323 0.186 1.737

7 {01110}+{01001,11010,01101,01111}+{11111} red/red 0.075 0.022 3.483 0.841 0.136 6.184

6 {01001}+{11010,01110,01101,01111}+{11111} red/red 0.075 0.022 3.483 0.841 0.136 6.184

5 {11011}+{01001,11010,01011,11111}+{01111} red/red 0.081 0.000 1235.241 0.126 0.996 0.127

4 {11000}+{01010,01001,11010,01110}+{01011} red/blue 0.170 0.030 5.666 0.718 0.026 27.722

3 {11000}+{01001,11010,11011,11111}+{01011} red/blue 0.170 0.030 5.666 0.718 0.026 27.722

2 {01101}+{01001,11010,01110,01111}+{01011} red/red 0.192 0.013 15.097 0.533 0.362 1.472

1 {01101}+{01001,11010,01111,11111}+{01011} red/red 0.192 0.013 15.097 0.533 0.362 1.472
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Table S6: Significant 4-dimensional interactions, which cannot be seen in lower dimensions, cf. (Fig. S20). The
value p ↑ refers to the p-value of the 4-dimensional bipyramid in question whereas p ↓ is the p-value of its ridge
intersected with the ∩ - face, cf. (Fig. S20c) for the Gould data.

Data significant bipyramid ∩ - face p ↑ p ↓
Eble - - - -

Gould
∗∗0∗∗ {00010}+ {00000, 10010, 00011, 11011}+ {10001} ∗∗01∗ 0.041 0.270

∗00∗∗ 0.041 0.149

{10010}+ {00000, 11000, 10001, 11011}+ {01001} 1∗0∗∗ 0.041 0.076

∗∗00∗ 0.041 0.063

Khan
0∗∗∗∗ {00010}+ {00000, 01001, 00101, 00011}+ {00001} 0∗∗∗1 0.009 0.052
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Table S7: Bacterial species considered in the two microbiome data sets.

Gould data set Eble data set

Species 1 L. plantarum L. plantarum
Species 2 L. brevis L. brevis
Species 3 A. pasteurianus A. cerevisiae
Species 4 A. tropicalis A. malorum
Species 5 A. orientalis A. orientalis
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Table S8: Parallel analysis Eble 0∗∗∗∗ → 1∗∗∗∗, non-critical red/red-case omitted.

No. bipyramids type eo ep eo/ep po pp po/pp

23 {00001}+{00000,01001,01011,00111}+{01111} red/red 0.001 0.012 0.066 0.953 0.390 2.444

22 {00001}+{00000,01001,01101,00111}+{01111} red/red 0.001 0.012 0.066 0.953 0.390 2.444

21 {01110}+{00000,00110,01011,01111}+{00111} red/blue 0.001 0.025 0.041 0.923 0.038 24.226

20 {01110}+{00000,01100,00110,01111}+{00111} red/blue 0.001 0.035 0.041 0.923 0.038 24.226

19 {00110}+{00000,01100,00111,01111}+{01101} red/red 0.002 0.012 0.201 0.827 0.303 2.729

18 {00110}+{00000,01100,00101,00111}+{01101} red/red 0.003 0.014 0.201 0.827 0.303 2.729

17 {01110}+{00000,01000,01100,01111}+{01101} red/red 0.003 0.013 0.264 0.742 0.251 2.956

16 {00110}+{00000,00010,01011,00111}+{00011} red/red 0.004 0.003 1.568 0.755 0.843 0.896

15 {00010}+{00000,01010,00110,01011}+{01110} red/red 0.007 0.010 0.748 0.606 0.488 1.242

14 {01010}+{00000,00010,00110,01011}+{00111} red/red 0.008 0.005 1.583 0.443 0.639 0.693

13 {01010}+{00000,00110,01110,01011}+{01111} red/red 0.009 0.024 0.359 0.475 0.062 7.686

12 {01010}+{00000,01000,01110,01011}+{01111} red/red 0.009 0.024 0.359 0.475 0.062 7.686

11 {00100}+{00000,01100,00110,00101}+{00111} red/red 0.009 0.018 0.498 0.533 0.269 1.981

10 {01001}+{00000,00001,01101,00111}+{00101} red/red 0.014 0.014 1.018 0.288 0.313 0.920

9 {00101}+{00000,01100,01101,00111}+{01111} red/red 0.015 0.026 0.584 0.228 0.062 3.695

{00101}+{00000,01100,00110,00111}+{01111} red/blue 0.018 0.040 0.446 0.321 0.035 9.119

8 {01101}+{00000,01001,00111,01111}+{01011} red/red 0.019 0.003 6.623 0.068 0.800 0.085

7 {01101}+{00000,01000,01001,01111}+{01011} red/red 0.019 0.003 6.623 0.068 0.800 0.085

6 {01001}+{00000,00001,01011,00111}+{00011} red/red 0.019 0.005 3.571 0.153 0.689 0.222

5 {01000}+{00000,01010,01110,01011}+{00110} red/red 0.020 0.011 1.750 0.169 0.443 0.381

4 {01000}+{00000,01100,01110,01111}+{00110} red/red 0.020 0.011 1.750 0.169 0.443 0.381

3 {01000}+{00000,01001,01011,01111}+{00111} red/red 0.021 0.013 1.535 0.140 0.339 0.413

2 {01100}+{00000,01000,01101,01111}+{01001} blue/blue 0.045 0.037 1.215 0.000 0.003 0.176

1 {01001}+{00000,01000,01011,01111}+{01110} blue/red 0.048 0.024 1.993 0.000 0.056 0.002

{01100}+{00000,01000,01110,01111}+{01011} blue/blue 0.064 0.034 1.855 0.000 0.005 0.000

{00010}+{00000,00011,01011,00111}+{00001} blue/blue 0.065 0.043 1.518 0.000 0.001 0.001

{01100}+{00000,01101,00111,01111}+{01001} blue/red 0.066 0.024 2.775 0.000 0.105 0.000

{00001}+{00000,00101,01101,00111}+{01100} blue/blue 0.066 0.033 1.989 0.000 0.009 0.000

{01001}+{00000,01011,00111,01111}+{00110} blue/blue 0.068 0.036 1.917 0.000 0.007 0.000

{01100}+{00000,00110,01110,01111}+{01011} blue/blue 0.083 0.045 1.829 0.000 0.002 0.000

{01100}+{00000,00110,00111,01111}+{01011} blue/red 0.084 0.021 4.035 0.000 0.210 0.000
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Table S9: Regressions over {0001}+{0000,1001,1011,0111}+{1111} for normalized lifespan data for Eble 0∗∗∗∗
and Eble 1∗∗∗∗.

Coefficient Std. error t-statistic p-value

β0 0 0 nan nan
x1 −0.0270 0.009 −2.987 0.003
x2 −0.0149 0.012 −1.246 0.213
x3 −0.0156 0.012 −1.306 0.192
x4 0.2039 0.008 26.022 0.000

β0 0.2320 0.005 44.642 0.000
x1 0.0310 0.005 5.957 0.000
x2 0.0610 0.007 8.874 0.000
x3 −0.0185 0.007 −2.692 0.007
x4 −0.0861 0.007 −12.518 0.000
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