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A longstanding goal of biology is to identify the key genes and species that criti-
cally impact evolution, ecology, and health. Yet biological interactions between
genes (I, 2), species (3-6), and different environmental contexts (7-9) change
the individual effects due to non-additive interactions, known as epistasis. In
the fitness landscape concept, each gene/organism/environment is modeled as
a separate biological dimension (/0), yielding a high dimensional landscape,
with epistasis adding local peaks and valleys to the landscape. Massive efforts

have defined dense epistasis networks on a genome-wide scale (2), but these
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14 have mostly been limited to pairwise, or two-dimensional, interactions (11).
15 Here we develop a new mathematical formalism that allows us to quantify in-
16 teractions at high dimensionality in genetics and the microbiome. We then
17 generate and also reanalyze combinatorically complete datasets (two genetic,
18 two microbiome). In higher dimensions, we find that key genes (e.g. pykF) and
19 species (e.g. Lactobacillus plantarum) distort the fitness landscape, changing
20 the interactions for many other genes/species. These distortions can fracture a
21 “smooth” landscape with one optimal fitness peak into a landscape with many
22 local optima, regulating evolutionary or ecological diversification (12), which
23 may explain how a probiotic bacterium can stabilize the gut microbiome.

» 1 Introduction

s A fitness landscape depicts biological fitness as a function of its many underlying parts, namely
26 genes, each as a separate dimension (/0, 13, 14). Interactions between genes can change their
27 individual impacts on fitness in a non-additive way (/5), adding local peaks and valleys to
2s the fitness landscape, which affects the evolutionary paths through the landscape (/6). The
29 mathematical frameworks to quantify biological interactions, namely epistasis, determine the
s degree of non-additivity, and the concept has been applied to genetics (/, 2), microbiomes (3),
31 and ecology (4-6). In two dimensions, epistasis calculates interactions between e.g. two genes
32 as the degree to which a double mutant phenotype can be predicted by measuring the two single
33 mutants independently. Applying epistasis to genome-wide measurement of pairwise (17, 18)
s+ and three-way (2) genetic interactions has revealed biochemical pathways composed of discrete
35 sets of genes as well as complex traits, such as human height, that are affected by almost every
s gene in the genome (/9, 20). New techniques allow epistasis to be applied to broader data

a7 types (21).
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38 Epistatic interactions can arise due to mutations (13, /4, 22) or when sex, recombination, and
s horizontal gene transfer bring groups of genes together (1, 23-26), making multiple dimensions
s 1interact simultaneously. Interactions between bacteria in the microbiome also have functional
41 consequences (3, 27-31) and are prevalent in higher-dimensions (3, 37), where community as-
22 sembly may introduce groups of species in different combinations e.g. in a fecal transplant.

43 Interactions in higher dimensions could change the topography of the fitness landscape (37),
s« and their relative importance is unknown. To various extents, current approaches are limited in
45 their ability to discern the topography of interaction landscapes in high dimensions due to (i)
6 sign epistasis, which does not generalize well to more than two dimensions, (ii) a narrow ability
47 to account for genomic context, and (ii) statistical considerations of the false discovery rate due
ss to multiple testing (32, 33). Several different concepts of epistasis exist in the literature (34).
s However, standard epistasis frameworks often rely on parameter fitting, which brings along
so additional constraints (35). “Circuits”, which can describe all possible epistatic interactions
st (33, 36), introduce false discovery rate challenges.

52 Here we develop a new formulation of the fitness cube concept (10, 13, 14), where each bio-
s3 logical entity (gene, organism, environmental factor) is a separate dimension (Fig. 1a). Because
s¢ the biological entities are discrete (i.e., either a bacterium is there or it is not), our framework is
ss  discrete too. The cubes represent the landscape for interactions and can be composed of many
ss dimensions as n-dimensional hypercubes. We then develop epistatic filtrations to locate the
57 epistasis on this fitness landscape. Our approach solves problems of context and sign while
ss  reducing multiple testing concerns, all in a parameter-free form that is consistent across many

s9 dimensions (Fig. 1, Box 1).
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Figure 1: Filtrations describe epistatic topography. (a) Interacting biological entities, e.g. genes in a cell
or bacterial strains in a microbiome, can be depicted as orthogonal dimensions in a unit cube, where vertices
represent different genotypes or combinations of strains. (b) With 3 dimensions, the triangulation (/4) of the
fitness landscape produces 3D simplices (labeled A-F) of the genotypes, and 4D simplices of the fitness landscape
(not shown) give the epistasis. (c) To map the global connectivity of the landscape, we merge adjacent simplices in
a dual graph of the 3-cube triangulation, where nodes A-F are the simplices from (d) and the edges are the volumes
of the bipyramids from the merges of neighboring simplices. The smallest bipyramid, edge 5, is formed first,
followed by the next larger and so forth on up to the largest bipyramid, edge 1. The data set is from Esherichia
coli mutations in topA, spoT, and pykF from (37). (c legend) Each dual edge has two parameters: its epistatic
weight (indicated by shade) and its p-value (indicated by color). Black indices in (c) label the critical dual edges
of S(h), where critical indicates that loss of the edge leaves nodes unconnected to the graph. (d) The sequence
of merges between adjacent simplices (reading from top to bottom) shown in the dual graph is depicted by the
epistatic filtration. Epistasis of the merged simplex is indicated by the thin, black vertical hatch mark on the far left
bar of each row. Total width of the bars is fixed. Note the non-critical C+E merge is not depicted in the filtration
because those simplices are already merged with B, A, and F.
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o 2 Results

o 2.1 Defining the shapes of fitness landscapes

We first decompose the fitness cube into its most elementary parts through a triangulation (Box
1, Fig. 1b). Triangulations are used e.g. in computer vision to decompose a surface, such as
a human face, into discrete parts, which are triangles. Generalizing to higher dimensions, the
triangles connecting genotypes are simplices (Fig. 1b). The volume of each simplex connotes
the local steepness of the landscape (Box 1). To establish the global topography of the landscape
we merge adjacent simplices in a stepwise manner such that flattest parts of the landscape are
merged first and the steepest parts last (Fig. 1c). Each adjacent pair of merged simplices, s and

t, forms a bipyramid, (s, ¢) through their shared face. The epistatic weight of (s, ?) is

nvol(s Nt)
nvol (s) - nvol (¢)

(1

en(s,t) == |det Ey(s,t)] -

where E},(s,t) is the matrix specifying the vertices with their corresponding fitness phenotypes
and nvol denotes the dimensionally normalized volume of the genotypes (Box 1; Appendix

B1-B6). We use the notation
[0} + 0,0} 4 (o) @

> for the bipyramid (s, ), where the first and last vertices are the apices and the middle set forms

(=2}

s the shared face. The n+2 genotypes of the bipyramid form a non-linear interaction of dimension

(2]

e« n whenep(s,t) > 0.

65 We visualize the topography of the epistatic landscape by forming a dual graph of S(h),
es Where the nodes are the maximal simplices and adjacent simplices form the dual edges. Blue
o7 edges indicate epistasis (Fig. 1c). The epistatic filtration of / (Fig. 1d) depicts the path from
es lowest to highest epistasis by merging adjacent simplices to form a connected cluster c.f. (38).

e In this sense, epistatic filtrations encode a global notion of epistasis in higher dimensions by

5
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70 connecting adjacent bipyramids. This method has many advantages over parameter fitting,
71 including that it does not depend on the statistical constraints of determining a best fit.

72 Filtrations are also not constrained by the sign of epistasis, which depends on which geno-
73 type is considered wildtype, a somewhat arbitrary decision given varied ancestries (see Ap-
7+ pendix B1). Studying adjacent simplices and their neighboring relationships, as we propose
75 below, allows reconstruction of the fitness landscape and its epistatic properties in high dimen-
76 sions. This process rests on the mathematical theory of linear optimization, convex polyhedra,
77 and regular subdivisions (38).

78 We note that bipyramids account for the majority of genomic contexts (38), c.f. Table S1.
79 Furthermore, the location(s) of inferred epistasis is robust to the choice of triangulation S(h)

s (38).

s 2.2 An evolutionary genetics example of epistatic filtrations

g2 To illustrate our approach, we examined an existing data set from Lenski’s (39) classic experi-
ss mental evolution of Esherichia coli, in a set of strains with each combination of five beneficial
s« mutations (37) (Fig. 2a). We first examine n = 3 loci, corresponding to biallelic mutations in
ss topA, spoT, and pykF (Fig. 1c,d). Epistasis was generally low in magnitude (37, 40), and occurs
s 1n two ways: (i) either from merging groups of groups of simplices (c.f. BC + AFE in line #2
s7 of Fig. 1d), which indicates a complex interaction, or (i7) from merging a single simplex, c.f. D,
ss with the aggregated rest of the simplices (c.f. line #1 of Fig. 1d), much like a dominant effect in
ss the NK model (/4). This second way is consistent with a fitness landscape distortion, which oc-
90 curs when certain mutations influence the interactions of many other genes (4/). Geometrically,
91 such a distortion constitutes a vertex split (42). We next add a fourth biallelic mutation, in the
o2 glmUS locus (Fig. 2b,c), encoding peptidoglycan availability, which is an essential component

9 of the cell wall.
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Figure 2: E. coli evolution is guided by epistatic landscape distortions. (a) (i) E. coli mutants examined (37),
(i) their geometric relationships, and (iif) experimental approach to measure fitness. (b) Edge labeled dual graph
and (c) epistatic filtration restricted to n = 4 mutations in topA (locus 2), spoT (locus 3), glmUS (locus 4) and pykF
(locus 5). Locus 1, rbs, is fixed O (wildtype). Note that the left edge of the bars in (c) indicates there is very little
epistatic weight added to the filtration except for the final merge, where the single genotype 00001 gives weight to
the entire filtration. This final interaction corresponds to the vertices {00001} + {00000, 01001, 00101,00011} +
{00010}. (d) Dual graph for the complete Khan data set. Black indices in (b) label the critical dual edges of
S(h). (e) In the parallel filtration, for 1 *  * *, where the rbs mutation is present, the landscape is disorted by a
concentrated area of higher epistasis. Inset: graph in (b) recolored with weights from (e).
94 The filtration reveals a smooth, additive landscape with one dominant cell where epistasis
o5 arises only in the final merge of the filtration (Fig. 2¢), meaning the epistatic topography of the
o6 entire landscape (Fig. 2d) rests upon the single vertex, 00001, pykF. While the previous analysis
o7 detected a significant, marginal effect of pykF (37), filtrations reveal the geometric structure
es 1n terms of which specific combinations of loci are responsible for the effect (Fig. 2e): the
e interaction between the glmUS, {00001}, and pykF, {00010}, genes requires the context of four
100 loci, {00000,01001,00101, 00011}, yet it involves only up to double mutants, suggesting high

101 dimensional epistasis that arises from lower dimensional interactions (Fig. 2¢). This conclusion
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102 1S consistent with recent genome-wide work on trans-gene interactions (/9), suggesting that
103 complex traits may arise from genome-wide epistasis, where each mutation’s contribution to
104 the trait depends on the context of other mutations.

105 We introduced parallel transport (38, §6.6) to give a geometric measure of context-dependence
16 for the same set of loci with different bystanders (e.g. species or genes) (see Fig. S1), previously
107 examined by conditional or marginal epistasis (43). Examining the Khan data with and with-
s out the pykF mutation (37) (Fig. S2) showed increased significance in 9 out of 20 of the dual
100 edges (Fig. S2), when pykF was mutated. Examining the restoration of pykF (Fig. S3), only
10 3 of 22 edges changed significance and just one critical edge lost significance, indicating that
111 the epistasis in this case occurs because the mutation causes new interactions. Thus, the pykF
112 mutation appears to enable further evolution during the Lenski experiment (39) by distorting
113 the epistatic landscape. rbs also generates distortions (Fig. 2e), which can be visualized as a
112 concentrated region of epistasis on the dual graph (Fig. 2e Inset). We found similar features in
115 another genetic data set for the $-lactamase enzyme (44) (Appendix B7). Filtrations can thus

11e reveal the specific geometric structure of both the interactions and the context they rely upon.

w 2.3 Lactobacilli produce microbiome distortions

1s  Up to this point, we have focused on genetic epistasis, but our framework is generalizable to
119 interactions of environmental parameters, including the gut microbiome, for which a framework
120 to identify complex interactions is greatly needed. Like the genome, which is composed of
121 many genes that interact to determine organismal fitness, the microbiome is also composed of
122 many smaller units (bacterial species in this case) that affect host fitness. Hosts are known to
123 select and maintain a certain core set of microbes (45, 46); the interactions of these bacteria can
124 affect host fitness (3); and it is debated to what extent these interactions are of higher-order,

125 c.f. (28). While vertebrates have a gut taxonomic diversity of ~ 1000 species, precluding study
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126 of all possible combinations, the laboratory fruit fly, Drosophila melanogaster, has naturally
127 low diversity of ~ 5 stably associated species (47).

128 We made gnotobiotic flies inoculated with each combination of a set of n = 5 bacteria (2° =
120 32 combinations) that were isolated from a single wild-caught D. melanogaster, consisting of
130 two members of the Lactobacillus genus (L. plantarum and L. brevis) and three members of
131 the Acetobacter genus (Fig. 3a). We measured fly lifespan, which we previously identified as a
132 reproducible phenotype that is changed by the microbiome (3). Overall a reduction of microbial
133 diversity (number of species) led to an increase in fly lifespan as with a taxonomically similar

134 set of bacteria we examined previously, which came from multiple hosts (3).
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Figure 3: Loss of lactobacilli causes global distortion of the microbiome epistastic landscape. (a) Experimental
design for Eble and Gould (3) microbiome manipulations in flies. (b) Full graph of s+ for the Eble data. (c)
Filtration of S(h) for the 4-face, 1, of Eble data, where L. plantarum is present, indicates epistasis where two
clusters of maximal cells merge. (d) Parallel filtration with L. plantarum removed shows a landscape distortion. (e)

Filtration for *1xx*x, where L. brevis is present has similar structure to 1sxxx. (f) Parallel filtration with L. brevis
removed shows a landscape distortion.

135 Epistasis was concentrated at the center of the dual graph (Fig. 3b,c), with significant, non-

9
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136 critical edges distributed throughout the graph (Fig. 3c). Examining the parallel transport, we
137 found that the Lactobacilli drive changes in the global structure (Fig 3d,e). In 46 out of 128
138 (36%) interactions, significance changed due to adding or removing a Lactobacillus (Fig 3c-
139 f, S7, S8). These changes in significance primarily derive from non-significant interactions
140 when L. brevis is present that become significant when it is removed and vice versa, indicating
141 L. brevis suppresses epistatic interactions that affect fly lifespan.

142 Microbiome abundances could drive the effects on host lifespan, however, comparing the
143 epistatic landscapes for CFUs and lifespan, we found that only 2 of 99 dual edges were sig-
1« nificant for both the bacterial abundance and fly lifespan data sets (Fig. S9, S10, S11, S12,
145 Tables S2, S3, S4, S5), and there was a lack of correlation between the epistatic weights of the
146 bipyramids (Spearman rank correlations: p = 0.7, p = 0.5, p = 0.3, and p = 0.3 respectively).
127 This discord between the epistatic landscapes for microbiome fitness and host fitness could e.g.

148 diminish the rate of co-evolution.

we 2.4 Interactions are sparse in higher-dimensions

150 We used epistatic filtrations to systematically evaluate the prevalence of higher-order interac-
151 tions as a function of the number of dimensions. Critical, significant, higher-order interactions
12 were less frequent than pairwise interactions (p < 1079, Z-test) for each of the Khan, Eble,
153 and Gould data sets, with a decreasing probability as a function of the face dimension (Table
15 1). This occurs for three primary reasons. First, the degrees of freedom increase in higher
155 dimensions. Second, the probability of selecting a significant interaction from the set of all pos-
156 sible interactions decreases because the total number of interactions increases with increasing
157 dimensions. Finally, the absolute number of significant interactions decreases in higher dimen-
158 sions (Table 1), meaning they are biologically less prevalent. Overall, ~ 10% of possible dual

159 edges were significant at higher order, with ~ 1% significant for n = 5 dimensions (Table 1),

10
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suggesting limits to the dimensions of biological complexity.

We note that these fewer interactions in high dimensions can and do impact fitness. For ex-
ample, the two top 4-dimensional interactions in the Eble microbiome data produce a combined
9% effect on fitness (see edges 1 and 2 in (Fig. 3)) with the largest maximal cell accounting for
~ 5%. The relative sparsity makes for a tractable number of these interactions, where we may
eventually determine the mechanisms, and filtrations provide a way to identify these.

Table 1: Prevalence of interactions at different levels of complexity in genetics and microbiome data sets. Signifi-
cant versus all critical dual edges (p < 0.05).

Dataset: Dataset: Dataset:
Interaction dimension Khan Eble Gould
2: 20/80 (25%) 24/80 (30%) 22/80 (28%)
all higher order: 29/508 (5.7%) 58/540 (10%) 21/520 (4.0%)
3: 21/194 (11%) 35/199 (17%) 14/194 (7.2%)
4. 71214 (3.2%) 22/226 (10%) 6/216 (2.7%)
5: 1/100 (1.0%) 1/115 (0.8%) 1/110 (0.9%)
total: 49/588 (8.3%) 82/620 (13%) 43/600 (7.1%)

2.5 Higher-order interactions can arise from lower-order interactions

Non-linearities of lower-order interactions can produce interactions in higher dimensions (40).
In examining the higher-order epistasis present in our data sets, we noted that the clusters where
significant epistatic weights occur are often preceded by clusters with nearly significant epistatic
weights in lower dimensions (Fig. S4). We developed a graphical approach to distinguish these
interactions from those that arise de novo (Fig. S20b,c; Appendix B11).

Several higher-order interactions in the Gould and Khan data could not be attributed to
lower-order effects (Table S6). In particular, they could not be detected from pairwise inter-
actions between loci, (c.f. Fig. S20c). As we noted, the 4-dimensional interaction in the E.

coli evolution experiment involved loci with two genes (Fig. 2), whereas in the microbiome,

11
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176 interactions involved loci with four species, indicating different underlying geometries at these

177 different scales of biology (Table S6).

7 3  Discussion and Conclusions

7o From an evolutionary perspective, the Red Queen’s hypothesis emphasizes how conflicts with
180 other organisms can drive continuous genetic innovation (48). We find that epistasis in higher
181 dimensions generates fitness landscape distortions, which could continuously change the fitness
1.2 landscape to fuel new genomic innovation even in a static environment. This could partially
183 explain the observation of continuous diversification in long term evolution experiments (49).
18« In higher dimensions, we lack simple terminology to describe the many types of interactions
185 that may occur, whether between quadruples and singles, pairs and triples, or different genetic
186 backgrounds. We found that biologically-significant interactions in four and five dimensions are
157 sparse and often rooted in lower order, meaning that a limited number of such interactions exist.
188 This extends to higher dimensions the trend that 3-way interactions are often predicted from 2-
189 way interactions (2, 3, 28). However, our finding that key genes and species cause distortions
190 emphasizes the need to identify the significant higher-order interactions from the vast number
191 of possible ones, a task that epistatic filtrations enable.

192 This geometric approach could be extended, e.g. to GWAS (15, 19, 50), ecosystems (4, 5),
1e3 or neuronal networks (57), to discover non-additive higher-order structures at different scales.
192 It should be noted that the polyhedral geometry methods for analyzing epistasis deserve to be
155 developed further from the mathematical point of view. We believe that concepts of curvature

196 for piecewise linear manifolds will be useful (52).

12
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« A Materials and Methods

ws A1 Fly husbandry

a6 Flies were reared germ-free and inoculated with one combination of bacteria on day 5 after eclo-
a7 sion. N>100 flies were assayed for lifespan in n>5 independent vials per bacterial combination
a8 for a total of 3200 individual flies. Food was 10% autoclaved fresh yeast, 5% filter-sterilized
a9 glucose, 1.2% agar, and 0.42% propionic acid, pH 4.5. Complete methods are described in
410 Gould et al (3).

a1 A2 Bacterial cultures

«2 Bacteria were cultured on MRS or MYPL, washed in PBS, standardized to a density of 107
s3 CFU/mL and 50 pL was inoculated onto the fly food. Strains are indicated in Table S7. See

414 Gould et al (3) for complete methods.

a5 A3 Genetics data

s6  Existing genetics data sets were gotten from Sailer and Harms 2017 (40) github repository
47 (https://github.com/harmslab/epistasis) or from Tan ef al (44).
418 For the Khan data in Fig. 2, the fitness function 4 is defined for (b) by assigning the follow-

419 ing normalized values to the 16 genotypes:

00000 — 0.1524 01000 + 0.1745 00100 — 0.1689 00010 > 0.1569
00001 — 0.1528 01100 ~ 0.1842 01010 — 0.1756 01001 — 0.1823
00110 — 0.1718 00101 ~ 0.1810 00011 ~ 0.1642 01110 > 0.1836

01101 = 0.1956 01011 ~ 0.1858 00111 ~ 0.1813 01111 ~> 0.1987
421 The Tan data set is different from the other fitness values in that only medlan and mean

420

a2 values are given, meaning we cannot compute p-values to assess the statistical significance. The
«23 fitness values are minimum inhibitory concentrations of antibiotics from a well-standardized

424 assay with little experimental variation. Thus, the measurements and our analysis are believed to

24
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225 be robust. We note that the regular subdivision resulting from the corresponding height function
25 of [0,1]° is degenerate in the sense that it is not a triangulation. This degeneracy arises because
«27 the data are discrete antibiotic concentrations with 24 possible values. The repetition of exact
428 values in several cases means a triangulation does not occur. We extended our methods to this
229 degenerate case by restricting the analysis to the faces that do have a triangulation, broadening
a0 the application of our approach. We focused on the piperacillin with clavanulate data from (44)

431 as it is the better behaved.

= A.4 Computational analysis

a3 The filtrations code is available as a polymake (53) package (cf. https://github.
a4 com/holgereble/EpistaticFiltration) and the analysis pipeline is available as a

435 jupyter notebook.

« B Terminology

a7 Loci (singular locus) refer to individual sites in the genome where a mutation may occur, or in
w8 the microbiome sense, a locus is a particular bacterial species. We write [n| := {1,...,n} for
a9 the set of all loci.

440 Genotypes, v = (vy,...,v,), are vectors of loci with 0/1-coordinates that form points in
a1 some fixed Euclidean space R", where n is the number of genetic loci or bacterial species
a2 considered. In this article we focus on biallelic n-locus systems, i.e. genotype sets of the form
sV = {0,1}" where n is the number of loci and each locus is either 0, absent, or 1, present.
ma  For instance, v = (1,0, 1) denotes a genotype in a 3-locus system R3, where the first and third
a5 loci are mutant and the second is wild type. The set of all genotypes will be denoted by V.
us  The convex hull P := conv (V') of all genotypes is called the genotope. In our setting P is the

w7 n-dimensional unit cube [0, 1]" (c.f. (Fig. S21) for a 2D projection of [0, 1]5).

25


https://github.com/holgereble/EpistaticFiltration
https://github.com/holgereble/EpistaticFiltration
https://github.com/holgereble/EpistaticFiltration
https://doi.org/10.1101/2021.09.11.459926

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.11.459926; this version posted September 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

448 A fitness function (also called height function) associates to each genotype v € V' a quan-
a9 tified phenotype describing the impact of the genotype on the organism. For example, if the
ss0 measured phenotype is fitness, i encodes the reproductive output of the genotype.

451 The fitness landscape is the pair (V, k), which defines the fitness i(v) for each genotype
w2 v € V. Letv = (vy,...,v,) € V be a genotype. Then its lift is given by (v, h(v)) =
w3 (V1,...,0,, h(v)) € R™HL

454 A set of points W = {w®, ... w®} is affinely independent if for all real scalars \;
a5 satisfying Zle Ai = 0 the condition Zle Nw® = 0 forces \; = 0 forall i € {1,...,¢}.
a6 Otherwise W is affinely dependent.

457 An interaction with respect to a fitness function h occurs between a collection of &k + 2
s affinely dependent genotypes v, ... v +2) ¢ vV c R, for k < n, whose lifts are affinely
9 independent points in R"*1. This is in line with the standard concept of additive epistasis. The
w0 number k is the dimension of the interaction; throughout we assume that k£ > 2.

Let U = {vM ... v¥} be a set of genotypes. Its support is the set
supp(U) := {k € [n] ‘ there are distinct 1 < ¢, j < ¢ with U,(:) # v,(cj)}

st That is, the support is the set of loci where at least two of the given genotypes differ. For
w2 example, if n = 3 and U = {(0,0,0),(1,0,1),(1,0,0)} then supp(U) = {1, 3}.

463 The number of loci that vary (0 vs 1) in the support is called the order of an interac-
se4 tion; this definition agrees with, c.f., (54): “We designate interactions among any subset of
s5 Kk mutations as kth-order epistasis.”. We give two examples: First, let n = 2 and U =
w6 {(0,0),(0,1),(1,0),(1,1)} = V such that U is an interaction with respect to some fitness
47 function. Then U is an interaction of dimension 2 and order 2. Second, let n = 3 and
w8 U = {(0,0,0),(0,1,1),(1,0,0),(1,1,1)} such that, again, U is an interaction with respect to

a9 some height function. Then the dimension is 2 and the order is 3. In general, the order is at least
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a0 as large as the dimension, but the two quantities may differ. We say that genes (corresponding

a1 to loci) interact if they form the support set of an interaction of genotypes.

s2 Remark. The dimension % of an interaction vV, ..., v(**2) with respect to some fitness func-
473 tion agrees with the dimension of the affine span of the given points in R". This can be seen
aa  as follows. By definition the lifted points (v, h(vM)), ... (v**+2) h(v*+2))) are affinely in-
w5 dependent in R™!. So their affine span has dimension k& + 1. As o™, ... v**2) are affinely
a6 dependent, the dimension of their affine span is at most k. Now the affine dimension can only

477 increase by at most one if one coordinate is appended.

«s B.1 A primer on epistatic filtrations

479 We first explain the biallelic case with n > 2 loci. In the geometric framework (33), two in-
a0 teracting loci give rise to four possible genotypes, which form the vertices of a square and may
ss1  be written as vectors of zeros and ones, indicating the absence (0, wildtype) or the presence (1,
a2 mutant) of each locus respectively (Fig. 1b) (33,38). The measured phenotypes lift the genotype
83 vertices into 3-space, and there is epistasis corresponding to the volume of the simplex enclosed
ss¢ by the lifted points (see blue simplex in Fig. 1b). Geometrically, the four genotypes involved
sss are fully symmetric, meaning that the sign of the epistasis for n = 2 is relative to the choice of
ass a coordinate system. Thus, the sign of epistasis depends on which genotype is considered wild-
a7 type. By considering the simplex volume rather than the fold of the upper shell of the simplex,
sss  epistatic filtrations do not specify a sign and thus avoid this caveat. However, directionality is
a9 considered by parallel transport (see later section). Returning to our explanation, by taking the
a0 upper convex hull of all 2" lifted points and projecting back onto the genotope [0, 1]" we induce
91 asubdivision S(h); cf. (38,55, §2.1), into maximal cells (Fig. 1b). Generically, every maximal
sz cell of S(h) is an n-dimensional simplex, which is the convex hull of (n + 1) affinely indepen-

s93 dent genotypes (Fig. 1c¢). Importantly, these n-dimensional simplices are the most elementary
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94 parts into which a fitness landscape can naturally be decomposed.
Our framework generalizes to higher dimensions through a geometric shape called a bipyra-
mid, where two satellite vertices, each the apex of one pyramid, are joined to a common set of
base vertices. The satellites correspond in the 2D example (Fig. 1b) to 00 and 11 and the base to
10 and 01. This is naturally associated with S(h), set up by the ridge (Fig. 1b). For an ordered

sequence of n + 2 genotypes (vM, v ... v("+2)) we let

s = conv{v® ... ™Y} and ¢ = conv{v®@, .. . oI

In other words, s and ¢ form convex hulls. We call such a pair (s, t) a bipyramid with vertices
v 0@ v+ Then we can find the volume of the lifted bipyramid by forming the (n +

2)x(n + 2)-matrix

1 vy Vig ... Uip h(v™)
YR I e ®
i Unt2.1 ’Un_;_272 . Un_;_gjn h(v(;”Q))
where v; 1, v; 2, . . . , v; , are the coordinates of v € R™. The epistatic weight of the bipyramid
(s,t)is
nvol(s Nt)

en(s,t) = |detEh(s,t)‘- 4)

nvol (s) - nvol (¢)
Here nvol denotes the dimensionally normalized volume. The quantity nvol(sNt) is the relative
(n—1)-dimensional normalized volume of the ridge of the bipyramid, given by the intersection

sNt=conv(v®, ... v™*1) We use the notation
{oW} + {o@, .. o™} 4 {p( D} (5)

s for the bipyramid (s, t), where the first and last vertices are the satellites and the middle set
a6 forms the base. Now the n + 2 genotypes of the bipyramid form an interaction of dimension n

a7 When ep(s,t) > 0.
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498 In our regular triangulation S(h), the two n-dimensional simplices, s and ¢, are adjacent

490 because their intersection s N ¢ is a common face of dimension n — 1.

0 B.2 Constructing a filtration from the epistasis of adjacent simplices

sot  We visualize the topography of the epistatic landscape by forming a dual graph of S(h),
so2 where the nodes are the maximal simplices and adjacent simplices form the dual edges. A
so3 rugged path is one with more blue edges (Fig. 1d). To each such dual edge we associate an
so4 epistatic weight and a label (Fig. lc, epistatic weights are in shades of blue and red, while
sos labels are in black). In this way, we construct an epistatic landscape that corresponds to the
sos underlying fitness landscape with the ruggedness specified along the dual graph. The epistatic
so7 filtration of h (Fig. le) depicts the path from weakest to highest epistasis by merging adja-
sos cent simplices. These diagrams summarize the information contained in epistatic weights and
so9 dual graphs, and facilitate comparisons across data sets. But there is important new informa-
sto tion contained in epistatic filtrations, which is not directly visible from the dual graph and its
s11 epistatic weights. Indeed, a step in the epistatic filtration merges adjacent simplices. We build
stz the complete fitness landscape by stepwise merging of maximal cells, starting from the lowest
513 epistatic weight and stepwise merging adjacent simplices to form a connected cluster c.f. (38).
s14 In this sense, epistatic filtrations encode a global notion of epistasis in higher dimensions by
s15  connecting adjacent bipyramids.

516 To see this, notice that each row of the diagram has a number of bars and a black leftmost
si7 line. In the top row the black line marks the epistatic weight of zero (z-coordinate). Each bar
s18 s red and corresponds to one maximal simplex of S(h). In the second row (counting from the
st9 top), we see three things: (1) the value of the lowest epistatic weight moves the x-coordinate
s20  of the black line slightly to the right. (2) The two maximal simplices of S(h) corresponding to

s21 this epistatic weight are merged into one. These correspond to the two bars in the previous row
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s22 above the new, longer bar in the row. The lengths of the other bars remain unchanged but are
s2s  shifted horizontally by the epistatic weight in (1). (3) The statistical significance of the epistatic
s24  weight giving rise to the merging step, encoded by the colors of the bars; cf. Section B.4.

525 The merging procedure is then repeated for each pair of maximal simplices arising in each
s26  epistatic weight until one reaches the highest epistatic weight and the last maximal simplex of
27 S(h) to be merged with the rest. In this way the indentation of the bar charts increases from top
s2s  to bottom. The total width of the bars stays constant throughout.

529 Importantly, in the epistatic filtration diagram, not every merging step is displayed; e.g.,
s in Fig. 1d there are fewer rows than dual edges in Fig. 1c. This is because some steps do not
ss1 - change the resulting fitness landscape (no actual new portion is merged to the previous one). The
ss2  reported steps are only the ones increasing the connected components of the fitness landscape
ss3  obtained from the previous merging steps. The epistatic weights corresponding to these steps

sa  are the edges in the dual graph which we call critical in (38, §.3.2).

s B.3 Normalized epistatic weights

s 10 gain a perspective on the generality of higher-order interactions, it is desirable to compare
s37 - epistatic landscapes. Different phenotypes have different metrics, making comparisons difficult
sss  for current approaches to epistasis. Filtrations are well-suited in this sense. Scaling the height
ss0 function h by a positive constant does not change the regular triangulation, and thus it does not
ss00 change the dual graph. In order to compare different data sets, we scale the height function to
ss1  Buclidean norm one. The epistatic weights are scaled accordingly. The resulting normalized
se2  epistatic weights are measured in epistatic units, giving a generalized metric for epistasis.

543 Measuring the effect of context on epistatic interactions is also desirable, e.g. to detect the
s marginal or conditional effects of a locus (37), and these are a natural feature of filtrations. If

s¢s we fix some £ loci and let the remaining n — £ loci vary, we obtain a height function, which is
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s restricted to a face of the genotope [0, 1]*. That face has 2"~ * vertices, and it is an isomorphic
s¢7 copy of the cube [0, 1]"~*. For instance, if n = 5 and we fix the first and the fourth locus to 0,
s We obtain a 3-dimensional face, which we denote O%x0x. That is, such a face is written as a
s49  string of n symbols in the alphabet {0, 1, *}, where 0 or 1 mark the fixed choices, and * stands
sso for variation. The number of * symbols equals the dimension of the face. Triangulations, their
ss1 - dual graphs, epistatic weights, etc. are well-defined for height functions restricted to faces. This

ss2  aspect of the theory allows the study of conditional epistatic effects.

s B.4 Statistics of epistatic weights

ss«  We developed a statistical test to quantify the significance of an interaction associated with a
sss fixed bipyramid; cf. (38, §4.2). Here we assume that h(v) is the mean value of the individual
sss  phenotype measurements for some number of replicated experiments for the fixed genotype v.
ss7 'To each dual edge we associate a p-value, which is independent of the epistatic weight nor-
sss  malization. If that p-value is below 0.05 we call that dual edge significant. It is useful to also
sse consider p-values, which are slightly higher because one can use the shape of the landscape
se0 to identify interesting locations for further statistical analysis. To this end we call a dual edge
st semi-significant if 0.05 < p < 0.1.

562 While it may be possible that this approach misses some biologically relevant interactions
ses  (e.g. if they do not correspond to a bipyramid selected by our method), those interactions that
se¢« we identify carry information that is robust and supported by a statistical model. The fact that
ses not all possible interactions can be approached is an inevitable consequence of the higher di-
ses mensional nature of fitness landscapes, also reflected by a very high number of possible regular
se7 triangulations of [0, 1]”. That number equals 74 for n = 3 and 87,959,448 for n = 4, whereas
ses the precise numbers for n > 5 are unknown; cf. (55, §6.3). Thus, filtrations use the data to

se9 greatly condense the number of possible interactions considered.
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570 The bar colorings in the filtrations of epistatic weights, as in (Fig. S4), reflect the outcome
st of multiple simultaneous statistical tests (one for each epistatic weight) (38).

572 Significant dual edges at p < 0.05 are shown in blue, 0.05 < p < 0.1 in purple, and p > 0.1
s73  in red.

574 It may happen that a triangulation has a significant dual edge, which is not critical, whence
s75 it does not show in the epistatic filtration. In that case the next critical dual edge becomes blue;

s76 S0 a filtration encodes all significant interactions found by our method.

s77 Remark. By funneling the analysis through the concept of regular triangulations our approach
s7s  pre-selects interactions, which are most relevant with respect to fitness (38, §2.2). Via this major
s79  deviation from (33) we are able to detect interactions in many data sets, which are biologically
ss0 plausible; this suggests strongly that our method is particularly good at avoiding false positives.
ss1  Future work will investigate the relationship to other methods from statistics and signal pro-
se2  cessing. While most of this is beyond the scope of the present study, in Appendix B12 we offer

ss3  a first step by comparing with traditional linear regression approaches.

s« B.5 A synthetic experiment examining how epistatic weights change as a
565 function of the interaction order

sss  Our method calculates significance of detected interactions and normalizes the epistatic weight
se7 to the volume of the unit cube of the same dimensionality. We used synthetic data to analyze the
sss method performance. We first examined 468 synthetic filtrations over the 4-dimensional cube,
ss9  producing 10011 critical dual edges. We found that the epistatic weight is indeed constant as a
s0 function of the interaction order, see (Fig. S19a). This indicates that the normalization method
so1 18 effective. Furthermore, the number of significant interactions decreased as the standard de-
se2 viation of the input data increased, indicating the statistical method is sensitive to noise, see

sos  (Fig. S19b).
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s« B.6 A microbiome example in dimension 4

sss Here n = 4, and the fitness function A is defined by assigning the following values to the 16

s96 genotypes:

0000 — 0.2484 ; 1000 — 0.2320 ; 0100 — 0.1618 ; 0010 — 0.1698 ;
0001 — 0.1943; 1100 + 0.1749; 1010 — 0.1714; 1001 — 0.1929 ;
0110 — 0.1668 ; 0101 — 0.1608 ; 0011 — 0.1617; 1110 — 0.1643 ;
1101 — 0.1677; 1011 — 0.1715; 0111 — 0.1613; 1111 — 0.1594

The vertices U := {v1),... v} € V given by

)
)

se7  form a bipyramid (s, ¢) consisting of 4-dimensional simplices s and ¢ as above. The simplices

v =(1,1,0,0) ; = (1,0,
Y =(1,1,0,1); v® =(1,1,1,1); +® =(1,0,0,1)

sss 5 and t correspond to nodes in the dual graph of S(h) that share a dual edge recording their
se9 adjacency relation as indicated in (Fig. 3b).

In this situation, equation (4) reads

1 11 0 0 0.1749
1 0 0 0 0 0.2484
1 100 0 0.2320 nvol(s Nt) V2
en(s 1) I 1.1 0 1 01677 nvol(s)-nvol (t) 0.0318 1-1 0.045
1 1 1 1 1 0.159%4
1 1 0 0 1 0.1929

so0 Since e, (s,t) > 0, the genotype set U defines a 4-dimensional interaction with full support
ot {1,2,3,4} and of order 4, according to our terminology of Section Terminology. With a p-
o2 value of 0.0005 < 0.05 the significance test established in (38, §.4) rejects the zero hypothesis
sos for ey (s, t) and therefore proves the effect of the interaction U to be significant. We indicate this
s04 fact with the color blue both in the dual graph of S(%) in (Fig. 3b) and in the epistatic filtration
eos of h in (Fig. 3c).

606 This example illustrates the following fact of biological interest. For the bacterial com-

eo7 binations v(1), v® . 0O fitness, given by the fitness function h, varies significantly in a

33


https://doi.org/10.1101/2021.09.11.459926

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.11.459926; this version posted September 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

s nhon-linear way.

oo B.7 The epistatic landscape within a single enzyme is rugged

st0  As a point of comparison with the Khan data set, we re-analyzed data from a fully factorial
11 O-mutation data set in the 3-lactamase gene, where each mutation is in a separate residue of the
sz same enzyme (44, 56). Due to a lack of the raw replicate data, our computations are based on
s13 the reported mean values, and p-values are not calculated. The filtration holds a high magnitude
s14 of epistasis (Fig. S5, S6) compared with the Khan data set (Fig. S4, S2); note magnitude on the
e15 x-axis. The epistasis arises in many steps (note slope of filtration on left side; (Fig. S5, S6)),
s16 consistent with the low number of possible evolutionary paths observed by Weinreich (56),
si7 and distortions are apparent in the shifted magnitude of epistasis by parallel transport. Our
s1s geometric approach also reveals a tiered structure to the epistasis, c.f. the largest weight merges
sto two clusters of simplices (Fig. S5, S6), indicating a more complex epistatic landscape than the
s20 Khan data set, where epistasis came from one individual simplex on the periphery of the dual
et graph.

622 Examining the filtration (Fig. 3d), the epistatic weight (i.e. magnitude) for the microbiome
s2s data generated ~ 5% effect, roughly three times the weight in the Khan data and half that in
e2« the Tan f(-lactamase landscapes (44) (c.f. x-axis between Fig. 3, S4, S5), indicating that the
e25 rugosity of microbiome interactions is comparable to genetic ones.

626 To further compare the global effect of context across different datasets, we developed a
sz method to compute epistasis, based on the triangulation of dual landscapes, which we call the
e2s epistatic product [Appendix Product model for epistasic landscape rugosity] (Fig. S13, S14,
20 S15,S16,S17, S18). The total epistasis was highest for the 5-lactamase experiment (44), which
ss0 carries much higher context-dependence than either the microbiome (3) or E. coli evolution data

a1 sets (37), indicative of overall high epistasis at the smallest, within enzyme, scale.
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<= B.8 Interactions are sparse in higher-dimensions

sss The prevalence and importance of higher-order interactions is debated, with some studies sug-
s« gesting pairwise interactions predict the vast majority of interactions in complex communi-
e35  ties (28), and others suggesting a large influence of context-dependent effects (3) (57), which
sss would make higher-order interactions unpredictable. As we showed in the previous section, few
37 such interactions are biologically meaningful in the context of fitness.
638 This limitation on epistasis in higher dimensions could arise due to e.g. limited phenotypic
ss0 dimensions where interactions can be detected or to a lower dimensional manifold that absorbs
ss0 the majority of the effects (58) (e.g. lifespan and fecundity are anti-correlated, making fitness
s+t robust to changes in one or the other). Regardless, our analysis shows that significant epistatic
ss2 interactions are increasingly sparse as the number of dimensions for interaction increase, indi-
ess cating there exist some limits to biological complexity.
644 We analyzed the few higher-order interactions in greater detail using a geometric approach.
sss  As we noted previously, the interactions in the Khan genetic data (Table 1) are based on a vertex
sss  split of the genotype 00001, meaning that the entire epistatic weight of the landscape is balanced
ss7 by a single maximal cell (Fig. 2).

In contrast, the epistatic filtration of the Eble microbiome data in (Fig. 3) has a much richer

texture. There are two significant bipyramids

{01001} 4 {00000, 01000,01101,01111} + {01100} 0.0451 H#2
{01001} 4 {00000,01000,01011,01111} + {01110} 0.0485 #1

given with their epistatic weights and edge id’s, which form a cluster of interactions, indicat-
ing a larger topographic feature in the epistatic landscape that relates the interactions between
L. brevis and increasing numbers of Acetobacters. Proximal to these significant cells are two

cells with nearly significant statistical support:

{01011} + {00000, 01001, 00111,01111} + {01101} #8
{01011} + {00000, 01000,01001,01111} + {01101} #7
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sss  With their edge id’s (Fig. 3). This invites further research on the bacteria involved. For instance,
ss9 the interactions could derive from metabolic crossfeeding between the Acetobacters, which
ss0 produce many co-factors, and L. brevis, which produces lactate, stimulating Acetobacter growth
st (59). Note that the support sets of the bipyramids for all four interactions contain both the wild

es2  type 00000 and 01111, which are the maximum and minimum fitness respectively.

s B.9 Parallel transport of epistatic weights

s« The notion of parallel transport in a fitness landscape (V) h) was introduced in (38, §6.6) as
55 a way to compare geometric and biological information between pairs of parallel facets of the
ess  convex polytope conv V. In this work, we extended that notion to include the case of two fitness
es7 landscapes, (V, hy) and (V, hs), associated to different generic and normalized height functions
s h; V. — R i € {1,2}, defined on the same vertex set V' = {0,1}" for some n € N. To
eso enable meaningful comparisons, we assume that each h; is normalized and that there is a larger
se0 fitness landscape (W, h) with a generic and normalized height function i : W — R restricting
est to hy and hy on the parallel facets V' in W, such that the partition of conv W induced by h
ss2 1S compatible with the one of conv V' induced by hq, resp. by ho. In this setting, we define
sss normalized epistatic weights as with Eq. (4) with i the normalized height function and s, ¢
es+ any adjacent simplices forming a bipyramid.

Parallel transports enable us to transport epistatic filtrations along the reflection map
OV = Viv=(v,ve,...,0,) — (V,v5,...,0)) ,

65 with v, = 1 — vy if i = k and v} = v; otherwise. More precisely, let ey, (s, t) be the normalized
ees epistatic weight associated to a bipyramid of S(h;) and let ¢(ep, (s,1)) = en,(¢(s), P(t)) be
es7 the parallel normalized epistatic weight transported by ¢. Then the filtration of normalized
ess epistatic weights induces a filtration of parallel normalized epistatic weights. Additionally, to

e69 €p,(s,t) and to ¢(ep, (s,%)) a p-value can unambiguously be associated (38, §4.1-4.2). Notice
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eo that by design epistatic filtrations for S(h;) only show normalized epistatic weights associated
e71  to critical dual edges, defined as in (38). But normalized epistatic weights and their significance
e72 can be defined for all bipyramids including the ones associated to noncritical dual edges. This
e73 explains the labelling of the parallel transport tables below. There a row is numbered only if
674+ the bipyramid corresponds to a critical dual edge in the dual graph of S(h;). Noncritical dual
e7s edges whose normalized epistatic weight remains non-significant after the parallel transport are
e76 omitted. The normalized epistatic weight before (denoted by e, = ey, (s, t)) and after (denoted
77 by e, = ¢(en, (s,t))) the parallel transport, as well as their p-values (denoted by p, and p,) are
e7s also reported, as well as ratios of these quantities.

679 These parallel transport tables are linked to the epistatic filtration diagrams. Indeed, each
ss0 numbered row in the table corresponds to the row in the epistatic filtration diagram with the
es1 black line set at e,. It also corresponds to the row with black line set at e, in the parallel
es2 transported filtration diagram.

683 Recall from Section Statistics of epistatic weights that there may be dual edges of the tri-
s« angulations which are significant but not critical. Since only the critical dual edges are labeled
ess (by the row number in the epistatic filtration), in our tables for parallel transport these show up
sss as unlabelled rows.

687 Examples for the parallel transport of epistatic filtrations are shown in Figures S1, S2,
sss 53, S5, and S6. The magnitude of the epistasis in the left panels are roughly comparable
ess between data sets due to normalization of the input data. Compare each left panel with its
so0 corresponding right panel to observe the relative change in epistasis in the parallel path. Larger
sot changes in epistasis indicate stronger context-dependence of the interaction. For instance, in
ez the first Weinreich comparison (Fig. S5), bar 10 in the right panel has a parallel epistasis greater

sos than the original filtration on the left, indicating context-dependence.
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B.10 Product model for epistasic landscape rugosity

In this section we offer a new methodological framework to simultaneously study fitness land-
scapes associated to different height functions. We also provide a measure to quantify how
much the height function of the combined fitness landscape differs from the sum of the height
functions.

Let U and V' be point configurations in R and R", respectively. We think of these point
configurations as two sets of genotypes, which may be distinct or not. If we have height func-
tions A : U — Rand i : V — R, then taking the sum A + . point-wise yields a lifting function
of the product U x V' C R™*". The cells of the regular subdivision Sy (A + ) are products of
cells of Syy(\) with cells of Sy (u). In particular, if A and u are generic, i.e., Sy(A\) and Sy (1)
are triangulations, then the cells of Sy«y (A + 1) are products of simplices.

Now we consider an arbitrary height function v : U X V' — R on the product of the point
configurations. This yields height functions

1 1
VU:U%R,uHZZV(u,v) and VV:V%R,UH%ZV(p,q),

veV uelU
where k = #U, ¢ = #V,wis avertex in U and v is a vertex in V.

Further we define
ViU XV (u,0) = v(u,v) — vy (u) — vy (v) .
Observe that

Ot () = Mu) +5 S nl) and O+ wvle) = (o) + 1 AW |

veV uel
and (X + p)’ is the height function with constant value — (1 -, .y M) + 3 >, A(v)). Thus
A+ pand (A + )y + (A + p)y induce the same regular subdivision of U x V. Therefore,

we propose to analyze the height function v/ to measure how much v deviates from the sum of
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700 two height functions. We can use the techniques from our previous paper (38) and apply (all
710 of) them to Sy« (/') for any given v. For instance, this allows to measure how independent
711 two different height functions are on the same point set (this is the case U = V). We say that v

712 decomposes as a product if v/ = 0.

73 Example 1. If U = V = {0, 1} are the vertices of the unit interval then U x V" are the vertices
74 of the unit square [0, 1]%>. Analyzing S(v) for any given height function v on the four points

75 (0,0),(0,1),(1,0) and (1, 1) gives back the standard basic example of additive epistasis.

76 Remark. Two observations are in order: In (38, §6.6) we considered a version of parallel
717 transport to compare epistatic effects, see also Appendix B9. The connection to the product
7s  model approach is as follows. Let V' = {0,1}", i.e., the vertex set of the n-dimensional unit
79 cube, be embedded twice, into a pair of parallel facets of the unit (n+1)-cube [0, 1] x [0, 1]™.
720 This occurs in the product model with U = {0,1}. If a height function v on {0,1} x U
721 decomposes as a product then the parallel transport (in both directions) is trivial. Note that the
722 number of dimensions is greater for the product model than for the parallel transport.

723 Additionally, observe that the product model differs from the marginal epistasis framework,
724 which would produce a single number testing if the mutant changes one specific interaction

725 between the genes.
726 B.10.1 Product model for the Khan data

727 To illustrate the product model consider the following example from the Khan data. We are
728 interested in detecting if interactions between the fopA, spoT, and pykF genes change when the
720 rbs gene is mutated. To answer this question we let U and V' be 3-cubes inside [0, 1]° defined
730 by three mutable loci, one for each of the above genes and indicated by *, and two fixed loci.
731 The first fixed locus represents the rbs gene. It is not mutated in U and mutated in V. The

732 height functions are compared over the three variable loci. Thus the filtration over the product
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733 model for U and V' has four dimensions in this case. A computation reveals that there are no
734 significant dual edges in the epistatic filtration on product model, see (Fig. S13). This indicates

735 that the rbs mutant does not affect the interaction landscape.

= B.11 Meta-epistatic charts

737 This section deals with the question to which extent higher order epistatic effects are induced by
73 lower dimensional ones or, put in other terms, which lower dimension epistatic effects can be
730 seen in higher dimension. The meta-epistatic chart is a diagram drawn on top of the induced
720 epistatic filtrations for some selection of faces of a fixed cube; higher-order interactions induced
741 by lower order interactions are marked as corresponding.

742 In (Fig. S20b) and (Fig. S20c) we exhibit an example for the Eble data set, with 5 loci, where
743 we take the five 4-dimensional faces Okkk*, *Oxx*, *x0%*, xxx0* and ***x0 into consideration.
724 Mathematically, these five 4-faces constitute the face figure of the wild type. Fix one 4-face, say
725 Oxxx, The induced epistatic filtration on this face shows two blue bars corresponding to dual
76 edges labeled 1 and 2. Each of them refers to the ridge of a bipyramid, which is a 3-dimensional
747 simplex in this case. These two ridges may intersect certain 3-dimensional faces in the right
728 dimension and thus may or may not descend to significant ridges within certain 3-dimensional
729 filtrations. In case of an incidence with a lower dimensional significant ridge, the significant
750 4-dimensional effect is induced by a lower dimensional effect and one may picture this fact as

751 a directed assignment pointing from the lower towards the higher dimensional interaction.

= B.12 Comparison with a simple linear regression approach

753 In the theory of fitness landscapes many linear regression approaches have been proposed to
754 study higher-order interactions, c.f. (21, 34, 40, 60). In this section, we compare our epistatic

755 weight method to an elementary regression approach using an example from the data.
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The regression analysis we have in mind assumes that there is a linear relationship between
the predictors X7, Xo, ..., X, (one associated to each locus/dimension of the genotope) and
response, or dependent, variables Y (associated to the biological measurements). That is, one
assumes that Y = f(Xy, Xs,...,X,,) + € where f : R — R; (X1, Xs,...,X,) — B+
051X1 + PoXs + - - - + 8,X,, and where € is a random error term. The coefficients 31, 5s, ..., 3,
are unknown but can be estimated by minimizing the sum of squared residuals associated to the
observations pairs (z, y). These observations pairs consisting of a genotype and a measurement
associated to it. Notice that more than one measurements are typically associated to a single
genotype. With the coefficient estimates one can make predictions for the dependent variable
via

i = fo+ Pras + Pawa + - + B (6)
756 The hat symbol “indicates a prediction, for instance of Y on the basis of x; = X, or an estimate
757 for an unknown coefficient.
758 Below, we are interested in the differences between the observed measurements y associated
759 to the genotypes of [0, 1]", expressed in terms of x1, x5, ...z, and the predicated values § on
760 the regression hyperplane (6). Notice that the regression analysis remains unchanged after
761 normalizing the height function to Euclidean norm one. Additionally, computing residues for
762 all replicated measurements (when provided) and then take averages builds on the assumption
763 that measurements associated to different genotypes are statistically independent from each
764 other. This assumption is consistent with the one underlying the computation of statistical

765 significances for epistatic weights, following (38, §. 4.2-4.3).

766 Remark. In the regression setting of (6) there are hypothesis tests (like the F'-statistic, t-
767 statistics and p-value) to answer if at least one regression coefficient 3;,1 < j < n is nonzero,
768 see for example (67). Such statistical approaches are different from the one in (38, §. 4.2-4.3),

760 where other hypothesis tests for each epistatic weight were proposed.
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770 B.12.1 Regression for Eble data

771 In the following, we perform a regression analysis focusing on the replicated measurements for
72 the lifespan fitness landscape on [0, 1]° obtained from Eble and subspaces thereof. Numerical
773 measures of model fit (F'-statistic: 2357, with p-value essentially zero, and for 3840 obser-
774 vations and 5 predictors) show that the multiple linear regression model can be considered to
775 be appropriated for this data. Since the epistatic weights of the dual edges are close to zero
776 (< 0.02) and are mostly not significant, the above regression analysis conclusion is in line with
777 what we see from the filtration of epistatic weights associated to the same fitness landscapes,
778 see (Fig. S22).
779 From this example we see that the regression approach provides some general information
780 on higher-order interactions. However, without further assumptions, only one interaction for-
7s1 mula is given in terms of a regression hyperplane (6) while the epistatic weight approach gives
752 more fine grained information. This example also illustrate that when the regression model fits
7ss  the data well (essentially the higher the F'-statistics and the more coefficients in the hyperplane
784 equation are significantly non-zero) the epistatic filtration has little horizontal shifts and few
785 significant epistatic weights.
We now proceed repeating the above analysis on some of the bipyramids considered in the
parallel analysis for the normalized lifespan Eble data. Regressing over bipyramid 23 in Table
S8
{0001} + {0000, 1001, 1011,0111} + {1111}

786 1N Ox%kx and Lx*+* reveals that only two average residues over O**x** are non-zero (associated
787 to the microbiomes 00000 and 00001), and only one is non-zero over 1sxxx (associated to the
7ss microbiome 10000). This confirms the two non significant epistatic weights over bipyramid 23

70 1in Table S8.
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790 Remark. If minimally dependent sets of points in the genotope are fixed, as in the epistatic
791 weight approach, and one regresses above these points, then the corresponding regression hy-
792 perplanes equations are learned from data and the equations generally differ from the epistatic
793 weights given as in (4), but similar biological and geometric conclusions can be drawn. This
794 1dea could then be taken further by considering smoothing splines, instead of linear regression,
795 and their relation to epistatic filtrations. From an application point of view, one would obtain
796 an interesting new extension of the concept of epistasis because intermediate genotypes could
797 be assessed, which would correspond to the case of genetically heterogeneous populations of

798 Organisms as occur in nature.

799 Other numerical results for the above regressions are summarized in Table S9. Over Oxx*xx*
soo two coefficients are significantly non-zero (for x; and x4), see top part of Table S9. Similarly,
st over Lsxxx four coefficients are significantly non-zero (1, x2, 3, 24), see bottom part of Table
sz S9. The fit of the linear regression models is confirmed by the relatively high values of the
sos F-statistic. Over Oxxxv the F-statistics is 459.1 for a p-value near zero and 720 observations.

soa Over lxxxx the corresponding F'-statistics (near zero) is 52.61.

sos B.13 Comparison with other approaches

sos Currently the main lines of research to investigate higher-order epistasis in computational bi-
sz ology and related disciplines include the present methods, inspired from discrete polyhedral
sos geometry (3, 33, 38, 62); linear regression approaches, c.f. (27); methods originating from har-
sos monic analysis, c.f. (40, 54, 63); and using correlations between the effects of pairwise muta-
sto tions, discussed in (38).

811 In a 2-locus, biallelic system, all these methods can easily be recovered from one another;
sz some of them even agree. This is true also for some ecological approaches, including the gener-

s13  alized Lotka-Voleterra equations, which yield a mathematically equivalent form to epistasis for
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s14 certain situations c.f. see equation 9 of (4). In higher dimensional systems, these methods re-
s1s main conceptually closely related but they generally yield different insights about the problem,
ste such as whether the interactions are significant, what their magnitude is, and what their sign
s17 1S. Because these previous methods make specific, a priori assumptions about the forms of in-
s1s  teractions, they are limited by these assumptions. Epistatic filtrations add a global perspective,

s19 determining the structure of interactions from the shape of the fitness landscape.

20 B.14 Microbiome data sets

g2t In this work, Drosophila microbiome fitness landscapes consist of experimental measurements
s22 on germ-free Drosophila flies inoculated with different bacterial species. The lifespan of ap-
s23 proximately 100 individual flies were measured for each combination of bacterial species, giv-
g2« ing roughly 3,200 individual fly lifespans for each of the two data sets presented. The experi-
s2s mental methods are described in (3, 64). The first data set is the exact data presented in (3, 64).
s2s The second data set is the second set of species with exactly the same methods used in (3, 64).
sz The bacterial compositions considered consist of all possible combinations of five species. The
s2s  species considered can all occur naturally in the gut of wild flies: Lactobacillus plantarum
s20 (LP), Lactobacillus brevis (LB), Acetobacter pasteurianus (APa), Acetobacter tropicalis (AT),
830 Acetobacter orientalis (AO), Acetobacter cerevisiae (AC), Acetobacter malorum (AM). The 5-
st member communities both stably persist in the fly gut. For the purposes of this work, we define
g2 stable as maintaining colonization of the gut when < 20 flies are co-housed in a standard fly
sss vial and transferred daily to fresh food containing 10% glucose, 5% live yeast that has sub-
s« sequently been autoclaved, 1.2% agar, and 0.42% propionic acid, with a pH of 4.5. The total
s3s number of species found stably associated with an individual fly is typically between 3 and 8.
sss Consistently, Lactobacillus plantarum and Lactobacillus brevis, are found with two to three

87 Acetobacter species. Less consistently, species of Enterobacteria and Enterococci occur, and
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these have been described as pathogens. While more strains may be present, for each of the two
data sets in the present work, a set of five non pathogen species was chosen, including the two
Lactobacilli and three Acetobacter species. The combinations of species are shown in Table S7.

Different strains of the same species were used in the two data sets.

45


https://doi.org/10.1101/2021.09.11.459926

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.11.459926; this version posted September 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

(a) (b)
B C A F E D
— T ¢ I 1 &
54 . — - - D | [|—
44 e —— — 41 —
£33  — —— 3 —
T2 —— 2 |—
=1 ETTTE—— 1+ P
% I | I | ‘ ! ' ! :
0.025 0.05 0.075 0'1 0.025 0.05 0.075 0.1
epistatic units parallel epistatic units
(©)

N H

Figure S1: Parallel transport from 0xx0x to 10+ within the Khan dataset. (a) Filtration based on the trian-
gulation of Oxx0x. (b) Parallel epistatic weights computed from 1xx0x for the triangulation based on 0xx0x. (c)
The two parallel triangulations (and exploded copies) are depicted. The partitions in the node set are transferred
from the cube on the middle left to the cube on the middle right. Exploded versions of these same triangulation on
the far left and far right demonstrate the geometry of the simplices generated by the triangulations.
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Figure S3: Epistatic filtration and parallel epistatic units for transport from sxx1 to #x*#x*0 within the Khan data
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Figure S4: Complete filtration of the Khan data over the whole 5-cube.
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values only; hence there is no color coding for the significance.
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Figure S14: Non-generic product model associated to the parallel transport **(0%* — sx1%% within the Tan data.
Its unique non-simplicial maximal cell has 7 vertices and is split into a bipyramid by a slight perturbation of its
height values, cf. Theorem 8 of (38). The corresponding artificial dual edge has edge label 111 and is indicated by
a horizontal line.
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Figure S15: Non-generic product model associated to the parallel transport Ox##% — lxsx* within the Tan data.
There are two non-simplicial maximal cells, both of cardinality 7. As in (Fig. S14) they are split into a bipyramid
each at the beginning of the filtration process.
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Figure S16: Product model for the parallel transport Khan s%0% — s*x1x. The semisignificant bipyramid

labeled 2 reads {(1000),} + {(0000),, (1010)o, (0110),, (1010),, (0011), } + {(0010),} and the semisignificant
bipyramid labeled 1 reads {(1100),} + {(1011),, (1010),, (1001),, (0011),, (1111),} + {(1011),}.
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Figure S17: Product model for the parallel transport Eble Ox#x% — Lsxx. The unique significant bipyramid reads
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Figure S19: Synthetic data demonstrate method performance. Synthetic height functions over the 4-
dimensional cube are generated with 100 replicates each and standard deviation as indicated. The heights of
the wild type 0000 and 0001 are sampled with mean 53, all the other vertices with mean 50. (a) The distribution
of log, ,-transformed epistatic weights is roughly constant as a function of interaction order, indicating the dimen-
sional normalization is effective. (b) The number of significant interactions decreases as the standard deviation of
the input data for each genotype increases. A blue dot is drawn if the interaction is significant and a red dot is
drawn otherwise.
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Figure S20: Meta-epistatic charts illustrate whether or not higher-order interactions arise from lower-order
interactions. (a) Cartoon of the principle underlying meta-epistatic charts. The important loci in the interaction
are depicted as black dots in a hyperplane through the genotypes, where the true dimensions of the genotypes are
flattened onto the cartoon plane (pink). Higher-order interactions that derive from lower-order interactions occur in
a new hyperplane (blue), which magnifies the weights of a subset of the landscape. In contrast, novel higher-order
interactions that only arise in higher dimensions do not lie in a single additional hyperplane but instead require at
least two additional hyperplanes (green). In (b) and (c) two meta-epistatic charts are represented. In each chart we
identify the source of a higher-order interaction for the Eble and Gould data respectively. The results are compiled
in Table S6.
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Figure S21: Vertices of the bipyramid {00001} + {00000,01001,00101, 00011} + {00010} arising for the
Khan data set (37) restricted to n = 4 loci. Dark blue dots correspond to common face s N ¢ of the bipyramid

and light blue dots correspond to the satellite vertices of s and ¢.
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Figure S22: Complete filtration of the Eble fitness landscape over the whole 5-cube.
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Table S1: Number of circuits of [0, 1]™ and bipyramids among these.

dimensions circuits bipyramids percentage
2 1 1 100.00%
3 20 8 40.00%
4 1348 1088 80.71%
5 353616 309056 87.40%
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Table S2: Parallel analysis GouldCFU O#xx* — Gould O, non-critical red/red-case omitted.

No.  bipyramid type €o ep eo/ep Do Pp Po/Pp

22 {01001}+{01000,01100,01010,00111}+{00110} red/blue 0.010 0.027 0.357 0.978 0.038 25.873
21 {01001}+{01000,00100,01100,00111}+{00110} red/blue 0.010 0.027 0.357 0.978 0.038 25.873
20 {01001}+{01000,00010,01010,00111}+{00110} red/blue 0.010 0.027 0.357 0.978 0.038 25.873
19 {01001 }+{01000,00100,00010,00111}+{00110} red/blue 0.014 0.039 0.357 0.978 0.038 25.873

18 {01100}+{01001,01110,01101,00111}+{01111}  red/red 0017 0006 2747 0815 0677 1204
17 {01000}+{01100,01010,00110,00111}+{01110}  red/red 0021 0013 158 0783 0433  1.808
16 {00100}+{01100,01001,00101,00111}+{01101}  red/red 0026 0017 1514 0807 0302 2.672

15 {01001}+{01100,01010,01110,00111}+{00110} red/red 0.027 0.017 1.619 0.941 0.231 4.074
14 {00001}+{00010,01001,00011,00111}+{01011} red/red 0.031 0.012 2.630 0.905 0.312 2.901

13 {01000}+{00100,00010,00001,01001 }+{00111} red/red 0.057 0.011 5.217 0.869 0.479 1.814
12 {00010}+{01000,01010,00110,00111}+{01100} red/red 0.057 0.019 2.943 0.531 0.148 3.588
11 {00010}+{01000,00100,00110,00111}+{01100} red/red 0.057 0.019 2.943 0.531 0.148 3.588

{00010}+{01000,01010,01001,00111}+{01100} red/blue 0.067 0.047 1.431 0.853 0.032 27.079
{00010}+{01000,00100,01001,00111}+{01100} red/blue 0.067 0.047 1.431 0.853 0.032 27.079

10 {01010}+{01001,01110,01011,00111}+{01111}  red/red 0067 0018 3722 0323 018 1737
9 {00000}+{01000,00100,00010,00001}+{01001} red/red 0068 0035 1911 0851 008  9.872
8  {00100}+{01000,01100,00110,00111}+{01010} red/red 0085 0025 3408 0317 0083 3819

7 {01000}+{00100,00010,01001,00111 }+{00001 } red/red 0.087 0.017 5.217 0.869 0.479 1.814
{00100}+{01000,01100,01001,00111}+{01010} red/blue 0.095 0.052 1.816 0.791 0.019 40.984
{00100}+{01000,00010,01001,00111}+{01010} red/blue 0.095 0.052 1.816 0.791 0.019 40.984
{01101}+{01001,01110,00111,01111}+{01011} red/red 0.157 0.010 15.097 0.533 0.362 1.472
{00001}+{00100,01001,00101,00111}+{01100} red/blue 0.159 0.029 5.516 0.541 0.028 19.049
{01010}+{00010,01001,01011,00111}+{00011} blue/blue 0.192 0.028 6.871 0.032 0.042 0.758
{00010}+{00100,00001,01001,00111}+{00101} red/red 0.197 0.014 13.654 0.262 0.211 1.242
{01100}+{01010,01001,01110,00111}+{01011} red/red 0.209 0.019 11.109 0.502 0.175 2.869
{01000}+{00010,01010,01001,00111}+{01011} blue/blue 0.229 0.032 7.188 0.458 0.049 9.271
{00100}+{00010,00001,01001,00111}+{00011} blue/red 0.365 0.007 53.243 0.026 0.526 0.049

- N W A U1
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Table S3: Parallel analysis GouldCFU 1#x%* — Gould 1%, non-critical red/red-case omitted.

No. bipyramid type €o ep eo/ep Po Dp Do/Pp

23 {11001}+{11000,10101,11101,11011}+{11111}  red/blue 0002  0.051 0033 0962  0.001  1286.096
22 {11100}+{11000,10101,11110,11101}+{11111}  red/red ~ 0.017  0.006 2799 0773  0.689  1.122
21 {10000}+{11010,10101,10011,10111}+{11111}  red/red ~ 0.023 0002 10615 0967 0875  1.105
20 {10000}+{11010,10101,10011,11011}+{11111}  red/red ~ 0.023 0002 10615 0967 0875  1.105
19 {10000}+{11000,11010,10101,11011}+{11111}  redred ~ 0023 0002 10615 0967 0875  1.105
18 {10000}+{11010,10110,10101,10111}+{11111}  redred ~ 0.023 0002 10615 0967 0875  1.105
17 {10000}+{11010,10110,10101,11110}+{11111}  redred ~ 0.023  0.002  10.615 0967 0875  1.105
16 {10000}+{11000,11010,10101,11110}+{11111}  redred ~ 0.023  0.002  10.615 0967 0875 1105
15 {11011}+{11010,10101,10011,11111}+{10111}  red/blue  0.027  0.039 0695  0.580 0012  47.154
14 {10110}+{10000,10010,11010,10111}+{10011}  redred ~ 0031 0012 2513 0693 0277  2.502
13 {11001}+{10000,10001,10101,11011}+{10011}  red/blue  0.033  0.031  1.066 0388  0.007  54.190
12 {11010}+{11000,10101,11011,11111}+{11101}  redred ~ 0.059 0017 3428 0905 0318  2.846
11 {11010}+{11000,10101,11110,11111}+{11101}  redred ~ 0.059  0.017 3428 0905 0318  2.846
10 {11010}+{10000,11000,10101,11011}+{11001}  red/blue ~ 0.060  0.068  0.881 0902 0000 oo

9 {10000}+{11000,11100,10101,11110}+{11101}  red/red  0.070  0.012 5959 0897 0426  2.106
8  {10100}+{10000,11100,10110,10101}+{11110}  red/red ~ 0.080  0.021  3.820 0430 0274  1.569
7 {11110}+{11010,10110,10101,11111}+{10111}  red/red  0.134 0021  6.534 0130 0227  0.573
6  {11000}+{10000,11010,10101,11110}+{10110}  red/blue  0.163  0.035 4659 0737 0019 38586
5 {10010}+{10000,11010,10110,10111}+{10101}  red/red ~ 0.163  0.028 5788 0776  0.075  10.402
4 {10010}+{10000,11010,10011,10111}+{10101}  red/red ~ 0.163 0028 5788  0.776  0.075 10402
{11000}+{11010,10101,11110,11111}+{10110}  red/blue  0.186  0.037 5000  0.695  0.026  26.834
3 {11000}+{10000,11100,10101,11110}+{10110}  red/blue  0.200  0.043 4659  0.737 0019  38.586

2 {11000}+{10000,11010,10101,11011}+{10011}  red/red ~ 0239  0.007 35102 0.621  0.628  0.989

1 {11000}+{10000,11001,10101,11011}+{10001}  redired ~ 0253  0.030 8530 0671 0104 6452
{11110}+{11000,11010,10101,11111}+{11011}  red/blue 0301  0.026 11785 0288  0.035 8348
{10001}+{10000,10101,10011,11011}+{11010}  red/blue  0.313  0.039 8062 0598 0014  43.650
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Table S4: Parallel analysis GouldCFU *0x%x* — Gould *0x*xx*, non-critical red/red-case omitted.

No.  bipyramid type €o ep eo/ep Do Pp Do/ Pp
21 {10001 }+{10000,00001,10101,10011}+{00111} red/blue 0.012 0.024 0.481 0.963 0.026 36.756
20 {00010}+{10000,10010,00011,00111}+{10011} red/red 0.021 0.012 1.714 0.797 0.270 2.952
19 {10100}+{10000,00100,10110,10101}+{00110}  redfred ~ 0022  0.007  3.155 0869 0717 1212
18 {10110}+{10000,10010,00111,10111}+{10011} red/red 0.031 0.012 2.513 0.693 0.277 2.502
17 {00100}+{10000,00110,10101,00111}+{10110} red/red 0.040 0.018 2.266 0.915 0.290 3.155
16 {00100}+{10000,00110,10110,10101 }+{00111} red/red 0.049 0.022 2.266 0.915 0.290 3.155
15 {00001 }+{10000,00100,00010,00111}+{00110} red/blue 0.079 0.026 3.047 0.698 0.023 30.749
14 {00010}+{10000,10010,00110,00111}+{10110} red/red 0.113 0.008 13.352 0.295 0.461 0.640
13 {00000}+{10000,00100,00010,00001 }+{00111} red/blue 0.133 0.048 2.775 0.476 0.001 707.281
12 {10010}+{10000,10011,00111,10111}+{10101} red/red 0.133 0.023 5.788 0.776 0.075 10.402
11 {10010}+{10000,10110,00111,10111}+{10101} red/red 0.133 0.023 5.788 0.776 0.075 10.402
10 {00011}+{10000,00001,10011,00111}+{10101} red/red 0.208 0.001 275.689 0.413 0.949 0.435

9 {00010}+{10000,00100,00001,00111}+{00101} red/red 0.227 0.017 13.654 0.262 0.211 1.242
8 {00100}+{10000,00001,00101,00111}+{10101} red/red 0.269 0.033 8.193 0.579 0.101 5.733
7 {00001}+{10000,00100,00101,00111}+{10101} red/red 0.269 0.033 8.193 0.579 0.101 5.733
6 {00001 }+{10000,00010,00011,00111}+{10010} red/red 0.275 0.004 67.167 0.493 0.755 0.653
5 {00001 }+{10000,00011,10011,00111}+{10010} red/red 0.275 0.004 67.167 0.493 0.755 0.653
4 {00110}+{10000,00100,10101,00111}+{00101} red/red 0.306 0.009 32.813 0.413 0.610 0.677
3 {00110}+{10000,10010,10110,00111}+{10111}  red/blue 0344 0024 14403 0186 0035  5.345
2 {00110}+{10000,00010,10010,00111}+{00011} red/blue 0.354 0.024 14.760 0.175 0.030 5.853

{00001}+{10000,10101,10011,00111}+{10111} red/blue 0.408 0.028 14.815 0.108 0.013 8.308
1 {00100}+{10000,00010,00001,00111}+{00011} blue/red 0.421 0.008 53.243 0.026 0.526 0.049
{00110}+{10000,10110,10101,00111}+{10111} red/blue 0.486 0.034 14.403 0.186 0.035 5.345
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Table S5: Parallel analysis GouldCFU *1*x* — Gould *1*#x*, non-critical red/red-case omitted.

No.  bipyramid type €o ep eo/ep Do Dp Do/ Pp
23 {01100}+{11000,01110,01101,11110}+{11010}  red/red 0.001 0.018  0.054 0998 0292 3418
22 {01100}+{11000,01010,01001,01110}+{11010}  red/red 0.001 0.018  0.054 0998 0292 3418
21 {01100}+{11000,01001,01110,01101}+{11010}  red/red  0.001  0.018  0.054 0998 0292 3418
20 {11001}+{11000,01001,11101,11011 }+{11111} red/blue  0.002  0.059  0.033 0.962  0.001 1286.096
19 {11110}+{11010,01110,01101,11111}+{01111}  red/red ~ 0.005  0.009  0.488 0945 0576  1.641
18 {11100}+{11000,01100,11110,11101}+{01101}  red/red 0.005 0.023 0.218 0952  0.193 4933
17 {11000}+{11010,01110,01101,11110}+{11111}  red/red 0.010  0.026  0.369 0.981 0.106  9.255
16 {01110}+{11000,11010,01101,11110}+{11111}  red/red  0.010  0.026  0.369 0981  0.106  9.255
15 {01100}+{11000,01101,11110,11101}+{11111}  redred 0013 0014  0.905 0.866 0346  2.503
14 {11000}+{01001,11010,01110,01101 }+{01111} red/red 0.013  0.020  0.656 0974  0.160  6.087
13 {11000}+{01001,11010,01101,11111}+{01111}  red/red 0.013  0.020 0.656 0974  0.160  6.087
12 {01000}+{11000,01100,01010,01001}+{01110}  red/red 0.024  0.015 1.584 0.783  0.433 1.808
11 {11010}+{11000,01001,01101,11111}+{11101}  redred 0059 0017  3.428 0905 0318  2.846
10 {11010}+{11000,01001,11011,11111}+{11101}  redred 0059 0017  3.428 0905 0318  2.846

9 {11010}+{11000,01101,11110,11111}+{11101}  red/red ~ 0.059 0.017  3.428 0905 0318  2.846
8 {01010}+{01001,11010,01110,01011}+{01111}  red/red 0.067  0.018 3.722 0.323  0.186 1.737
7 {01110}+{01001,11010,01101,01111}+{11111}  red/red 0.075  0.022  3.483 0.841 0.136  6.184
6  {01001}+{11010,01110,01101,01111}+{11111}  red/red 0.075  0.022  3.483 0.841 0.136  6.184
5 {11011}+{01001,11010,01011,11111}+{01111} red/red 0.081 0.000 1235.241 0.126 0.996 0.127
4 {11000}+{01010,01001,11010,01110}+{01011} red/blue  0.170  0.030  5.666 0.718  0.026  27.722
3 {11000}+{01001,11010,11011,11111}+{01011}  red/blue ~ 0.170  0.030  5.666 0718 0026 27.722
2 {01101}+{01001,11010,01110,01111}+{01011}  red/red 0.192  0.013 15.097 0.533  0.362 1.472
1 {01101}+{01001,11010,01111,11111}+{01011}  red/red 0.192  0.013 15.097 0.533  0.362 1.472
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Table S6: Significant 4-dimensional interactions, which cannot be seen in lower dimensions, cf. (Fig. S20). The
value p 1 refers to the p-value of the 4-dimensional bipyramid in question whereas p | is the p-value of its ridge
intersected with the N - face, cf. (Fig. S20c) for the Gould data.

Data significant bipyramid N-face pT pd

Eble - - - -

Gould

EEIETS {00010} + {00000, 10010,00011,11011} 4+ {10001} $x0 1% 0.041 0.270
*00% 0.041 0.149

{10010} + {00000, 11000, 10001,11011} + {01001} 10 0.041 0.076

#x (0% 0.041 0.063

Khan

Ok % {00010} + {00000, 01001, 00101,00011} 4+ {00001} O%xx1 0.009 0.052

67


https://doi.org/10.1101/2021.09.11.459926

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.11.459926; this version posted September 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Table S7: Bacterial species considered in the two microbiome data sets.

Gould data set Eble data set
Species 1 L. plantarum L. plantarum
Species 2 L. brevis L. brevis
Species 3 A. pasteurianus A. cerevisiae
Species 4 A. tropicalis A. malorum
Species 5 A. orientalis A. orientalis
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Table S8: Parallel analysis Eble Oxx#% — 1sx%x, non-critical red/red-case omitted.

No. bipyramid type €o ep eo/ep Po Dp Do/Dp
23 {00001 }+{00000,01001,01011,00111}+{01111} red/red 0.001 0.012 0.066 0.953 0.390 2.444
22 {00001 }+{00000,01001,01101,00111}+{01111} red/red 0.001 0.012 0.066 0.953 0.390 2.444

21 {01110}+{00000,00110,01011,01111}+{00111} red/blue 0.001 0.025 0.041 0.923 0.038 24.226
20 {01110}+{00000,01100,00110,01111}+{00111} red/blue 0.001 0.035 0.041 0.923 0.038 24.226

19  {00110}+{00000,01100,00111,01111}+{01101}  red/red 0.002 0012 0201 0827 0303 2729
18 {00110}+{00000,01100,00101,00111}+{01101}  red/red 0.003 0014 0201 0827 0303 2729
17 {01110}+{00000,01000,01100,01111}+{01101}  red/red 0003 0013 0264 0742 0251 2956
16 {00110}+{00000,00010,01011,00111}+{00011}  red/red 0.004 0003 1568 0755 0843  0.89
15 {00010}+{00000,01010,00110,01011}+{01110}  red/red 0007 0010 0748 0606 0488 1242
14 {01010}+{00000,00010,00110,01011}+{00111}  red/red 0.008 0005 1583 0443 0639  0.693
13 {01010}+{00000,00110,01110,01011}+{01111}  red/red 0.009 0024 0359 0475 0062  7.686
12 {01010}+{00000,01000,01110,01011}+{01111}  red/red 0009 0024 0359 0475 0062  7.686
11 {00100}+{00000,01100,00110,00101}+{00111}  red/red 0009 0018 0498 0533 0269 1981
10 {01001}+{00000,00001,01101,00111}+{00101}  red/red 0014 0014 1018 028 0313 0920
9 {00101}+{00000,01100,01101,00111}+{01111}  red/red 0015 0026 058 0228 0062  3.695
{00101}+{00000,01100,00110,00111}+{01111}  red/blue  0.018  0.040 0446 0321 0035  9.119

8  {01101}+{00000,01001,00111,01111}+{01011} red/red 0019 0003 6623 0068 0800  0.085
7 {01101}+{00000,01000,01001,01111}+{01011}  red/red 0019 0003 6623 0068 0800  0.085
6  {01001}+{00000,00001,01011,00111}+{00011}  red/red 0019 0005 3571 0153 0689 0222
5 {01000}+{00000,01010,01110,01011}+{00110} red/red 0020 0011 1750 0169 0443 0381
4 {01000}+{00000,01100,01110,01111}+{00110} red/red 0020 0011 1750  0.169 0443 0381
3 {01000}+{00000,01001,01011,01111}+{00111}  red/red 0021 0013 1535 0140 0339 0413
2 {01100}+{00000,01000,01101,01111}+{01001}  blue/blue  0.045  0.037 1215 0000 0003  0.176
1 {01001}+{00000,01000,01011,01111}+{01110}  blue/red ~ 0.048 0024 1993  0.000  0.056  0.002

{01100}+{00000,01000,01110,01111}+{01011} blue/blue 0.064 0.034 1.855 0.000 0.005 0.000
{00010}+{00000,00011,01011,00111}+{00001} blue/blue 0.065 0.043 1.518 0.000 0.001 0.001
{01100}+{00000,01101,00111,01111}+{01001} blue/red 0.066 0.024 2.775 0.000 0.105 0.000
{00001 }+{00000,00101,01101,00111}+{01100} blue/blue 0.066 0.033 1.989 0.000 0.009 0.000
{01001}+{00000,01011,00111,01111}+{00110} blue/blue 0.068 0.036 1.917 0.000 0.007 0.000
{01100}+{00000,00110,01110,01111}+{01011} blue/blue 0.083 0.045 1.829 0.000 0.002 0.000
{01100}+{00000,00110,00111,01111}+{01011} blue/red 0.084 0.021 4.035 0.000 0.210 0.000
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Table S9: Regressions over {0001 }+{0000,1001,1011,0111}+{1111} for normalized lifespan data for Eble Osxxx
and Eble sk,

Coefficient Std. error t-statistic p-value
Bo 0 0 nan nan
1 —0.0270 0.009 —2.987 0.003
T —0.0149 0.012 —1.246 0.213
x3 —0.0156 0.012 —1.306 0.192
x4 0.2039 0.008 26.022 0.000
Bo 0.2320 0.005 44.642 0.000
1 0.0310 0.005 5.957 0.000
T 0.0610 0.007 8.874 0.000
x3 —0.0185 0.007 —2.692 0.007
X4 —0.0861 0.007 —12.518 0.000
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