Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Dinophiliformia early neurogenesis suggests the evolution of conservative neural structures across the Annelida phylogenetic tree

Elizaveta Fofanova, Tatiana D. Mayorova, Elena E. Voronezhskaya
doi: https://doi.org/10.1101/2021.09.12.459658
Elizaveta Fofanova
1Department of Comparative and Developmental Physiology, Koltzov Institute of Developmental Biology RAS Moscow, Russia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: fofanova@idbras.ru
Tatiana D. Mayorova
1Department of Comparative and Developmental Physiology, Koltzov Institute of Developmental Biology RAS Moscow, Russia
2Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elena E. Voronezhskaya
1Department of Comparative and Developmental Physiology, Koltzov Institute of Developmental Biology RAS Moscow, Russia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Despite the increasing data concerning the structure of the adult nervous system in various Lophotrochozoa groups, the early events during the neurogenesis of rare and unique groups need clarification. Annelida are a diverse clade of Lophotrochozoa, and their representatives demonstrate a variety of body plans, lifestyles, and life cycles. Comparative data about the early development are available for Errantia, Sedentaria, Sipuncula and Palaeoannelida; however, our knowledge of Dinophiliformia is currently scarce. Representatives of Dinophiliformia are small interstitial worms combining unique morphological features of different Lophotrochozoan taxa and expressing paedomorphic traits. We describe in detail the early neurogenesis of two related species: Dimorphilus gyrociliatus and Dinophilus vorticoides, from the appearance of first nerve cells until the formation of an adult body plan. In both species, the first cells were detected at the anterior and posterior regions at the early trochophore stage and demonstrated positive reactions with pan-neuronal marker anti-acetylated tubulin only. Long fibers of early cells grow towards each other and form longitudinal bundles along which differentiating neurons later appear and send their processes. We propose that these early cells serve as pioneer neurons, forming a layout of the adult nervous system. The early anterior cell of D. vorticoides is transient and present during the short embryonic period, while early anterior and posterior cells in D. gyrociliatus are maintained throughout the whole lifespan of the species. During development, the growing processes of early cells form compact brain neuropile, paired ventral and lateral longitudinal bundles; unpaired medial longitudinal bundle; and commissures in the ventral hyposphere. Specific 5-HT- and FMRFa-immunopositive neurons differentiate adjacent to the ventral bundles and brain neuropile in the middle trochophore and late trochophore stages, i.e. after the main structures of the nervous system have already been established. Processes of 5-HT- and FMRFa-positive cells constitute a small proportion of the tubulin-immunopositive brain neuropile, ventral cords, and commissures in all developmental stages. No 5-HT- and FMRFa-positive cells similar to apical sensory cells of other Lophotrochozoa were detected. We conclude that: (i) like in Errantia and Sedentaria, Dinophiliformia neurogenesis starts from the peripheral cells, whose processes prefigure the forming adult nervous system, (ii) Dinophiliformia early cells are negative to 5-HT and FMRFa antibodies like Sedentaria pioneer cells.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted September 14, 2021.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Dinophiliformia early neurogenesis suggests the evolution of conservative neural structures across the Annelida phylogenetic tree
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Dinophiliformia early neurogenesis suggests the evolution of conservative neural structures across the Annelida phylogenetic tree
Elizaveta Fofanova, Tatiana D. Mayorova, Elena E. Voronezhskaya
bioRxiv 2021.09.12.459658; doi: https://doi.org/10.1101/2021.09.12.459658
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Dinophiliformia early neurogenesis suggests the evolution of conservative neural structures across the Annelida phylogenetic tree
Elizaveta Fofanova, Tatiana D. Mayorova, Elena E. Voronezhskaya
bioRxiv 2021.09.12.459658; doi: https://doi.org/10.1101/2021.09.12.459658

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Developmental Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4859)
  • Biochemistry (10802)
  • Bioengineering (8046)
  • Bioinformatics (27314)
  • Biophysics (13987)
  • Cancer Biology (11130)
  • Cell Biology (16072)
  • Clinical Trials (138)
  • Developmental Biology (8791)
  • Ecology (13299)
  • Epidemiology (2067)
  • Evolutionary Biology (17364)
  • Genetics (11689)
  • Genomics (15927)
  • Immunology (11034)
  • Microbiology (26114)
  • Molecular Biology (10655)
  • Neuroscience (56608)
  • Paleontology (419)
  • Pathology (1735)
  • Pharmacology and Toxicology (3005)
  • Physiology (4551)
  • Plant Biology (9644)
  • Scientific Communication and Education (1615)
  • Synthetic Biology (2691)
  • Systems Biology (6979)
  • Zoology (1511)