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Abstract A Molecular Features Set (MFS), is a result of vast diversity of bioinformatics pipelines.10

In case when MFS is used for further analysis to distinguish between phenotypes, it is often11

referred to as a signature. Lack of the “gold standard” for most experimental data modalities12

makes it hard to provide valid estimation for a particular MFS’s quality. Yet, this goal can partially13

be achieved by analyzing inner-sample Distance Matrix (DM) and their power to distinguish14

between phenotypes.15

The quality of a DM can be assessed by summarizing its power to quantify the differences of16

inner-phenotype and outer-phenotype distances. This estimation of the DM quality can be17

construed as a measure of the MFS’s quality.18

Here we propose Hobotnica, an approach to estimate MFS’s quality by their ability to stratify19

data, and assign them significance scores, that allows for collating various signatures and20

comparing their quality for contrasting groups.21

22

Introduction23

A signature based on a predefined Molecular Features Set (MFS), which is designed to distinguish24

biological conditions or phenotypes from each other — is one of major concepts of bioinformatics25

and precision medicine. In this context, signatures typically originate from MFS from contrasting26

experimental data of two or more sample groups, which differ phenotypically. These MFS incor-27

porate information on the differences between the groups. The nature of the MFS depends on28

the modality of the original data. For instance, the MFS provided by the Differential Gene Expres-29

sion approach is a list of Differentially Expressed Genes (DEG); Differential Methylation analysis30

provides Differentially Methylated Cytosines or Regions (DMC and DMR) as MFS, etc.31

A significant number ofmutational, expression andmethylation-based signatures have recently32

been published and they are actively used in Research and Transnational Medicine. Examples33

of expression-based signatures involve genesets for clinical prognosis (e.g. PAM50 (Parker et al.34

(2009)), MammaPrint (Cardoso et al. (2016)) for Breast Cancer), for pathways and gene enrichment35

analysis (e.g. MsigDB collections (Subramanian et al. (2005))), for drug re-purposing (e.g. LINCS36

project(Liu et al. (2015))).37

Direct quality assessment forMFS is currently hardly possible, since there are no ’gold standard’38

datasets where active Molecular Features are explicitly known. In this manuscript, we propose a39

novel approach - Hobotnica - that allows for measurement of MFS quality by addressing the key40

property of the signature, namely, its quality for data stratification.41

Hobotnica leverages the quality of Distance Matrices obtained from any source in order to as-42
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sess quality of the MFS from any data modality compared to a random MFS. In this study, we43

demonstrate its application on transcriptomic signatures.44

Results45

Approach46

The Hobotnica approach is as follows: For a given data set W and a given Molecular Features Set47

(S) we derive the inter-sample distance matrix (DM(S,W )). Then we assess the quality of DM48

(and, thus, of S) with a summarizing function (�(DM(S)) = �(DM(S), Y ) or by abuse of notation49

�(DM(S)) ) where (Y ) represents the labels of samples.50

We desire the function � to gauge if the inner-class samples are closer to each other than to51

outer-class samples. If no difference exists from one class to another, � must be close to zero and52

as the difference grows, � grows. In ideal case of a perfect separation, � reaches its maximum at53

1:54

• � ∈ [0, 1]55

• � → 1 ⇔ High groups stratification quality56

• � → 0 ⇔ Low groups stratification quality57

Under the Null hypothesis of Hobotnica ((H0)), no significant difference exists between �(S) and58

the � of an equal-sized general random set. On the contrary, the Alternative (HA) hypothesizes that59

S generates higher � than most random S ′ of the same size. To estimate a Null distribution for60

Hobotnica’s �, we applied a permutation test. As our default options, we use Kendall distance as61

the distance measure and Mann-Whitney-Wilcoxon test as the summarizing function.62

Validation63

To validate our approach in the first case study we extracted RNA-seq expression dataset for64

Prostate Cancer from TCGA on counts level(Rahman et al. (2015)). As Molecular Feature Sets we65

recruited C2 collection of molecular signatures from MSigDB (Subramanian et al. (2005), Liberzon66

et al. (2011)) that contains a number of Prostate-related genesets. For the second case study we67

took PAM50 molecular signature, designed for various Breast Cancer types classification, and ap-68

plied it to several datasets (Marusyk et al. (2016))(Daemen et al. (2013))(Costello et al. (2014))(Rah-69

man et al. (2015))(Varley et al. (2014)). In both cases, the counts were normalised to cpm. For each70

geneset H-score and its p-value with BH correction were computed.71

Prostate-related C2 genesets clearly demonstrated highest values of H-score and sufficient sta-72

tistical significance(Fig.1.A), as well as data stratification (Fig.1.B), which is expected for Prostate73

Cancer vs Control contrast. Genesets not attributed to Prostate Cancer related processes did not74

achieve statistical significant p-values. (Table1).75

PAM50 signature evidently separates samples in for GSE48216 dataset (Fig.1.C). H-scores for76

random genesets for the same dataset are significantly lower than an H-score for PAM50 (Fig.1.D).77

Clearly, PAM50 signature demonstrates high quality of stratification for the samples of various78

Breast Cancer datasets with high H-score values and statistically significant p-values (Table 2).79

Thus, in the first case study, Prostate Cancer related genesets from C2 collection, when applied80

to Prostate Cancer dataset, delivered highest H-scores andmost significant and p-values proved to81

demonstrate best scores and performance. Likewise, in the second case study, PAM50 expression82

signature applied to several heterogeneous Breast Cancer datasets delivered high H-score values83

along with significant scores of p-values.84

Application85

An important question that researches often face is establishing the optimal size of the retrieved86

signature. The exact number of genes to be retrieved from the set of all significant genes is an87

important parameter that is essential for signature’s application. To explore the optimal size of DE88
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Table 1. 10 C2-CGP Gene Signatures with highest H-scores
Signature H-score p-value
TOMLINS_PROSTATE_CANCER 0.795 0.025
WALLACE_PROSTATE_CANCER 0.747 0.025
OUYANG_PROSTATE_CANCER_PROGRESSION 0.745 0.025
LIU_PROSTATE_CANCER 0.735 0.025
PIEPOLI_LGI1_TARGETS 0.724 0.059
SMID_BREAST_CANCER_RELAPSE_IN_LIVER 0.712 0.164
TIMOFEEVA_GROWTH_STRESS_VIA_STAT1 0.708 0.240
GENTILE_UV_LOW_DOSE 0.705 0.308
JOHANSSON_BRAIN_CANCER_EARLY_VS_LATE 0.701 0.377
HOWLIN_CITED1_TARGETS_1 0.700 0.377

Table 2. PAM50 results
GEO Accession Sample size Groups in dataset H-score p-value
GSE58135 168 6 0.772 7e-4
GSE62944 1067 5 0.8892 0.0003
GSE48216 46 3 0.8567 0.0003
GSE80333 10 3 0.9765 0.0003

Figure 1. A : Distribution of H-scores for random genesets (blue) on TCGA Prostate Cancer vs Normal dataset(see Tab.1) and Tomlins prostate geneset H-score (red). B: MDS for TCGA Prostate demonstrates samplesseparation with Tomlins geneset. C: Distribution of H-scores for random genesets (blue) on GSE48216 BreastCancer dataset (see Tab.2) and PAM50 geneset H-score (red). D: MDS for GSE48216 Breast Cancer datasetsamples separation with PAM50 geneset.

signature we performed Hobotnica analysis for top DE p-value ordered gene signatures of various89

lengths. For the reference we performed DGE analysis for Breast Cancer vs Control TCGA dataset90
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Figure 2. A: H-scores delivered by top 100 gene signatures from various DE models applied to TCGA BreastCancer data. B: Change of H-score with the length of gene signature derived from DESeq2 and edgeR models
.

(Rahman et al. (2015)) with DESeq2 (Love et al. (2014)) and edgeR (McCarthy et al. (2012)). Top91

100 genes for each method were retrieved, as well as genes with highest variance in expression.92

H-scores for every signature then were computed (Fig.2.A.). For this dataset DESeq2 provided a93

signature with the highest quality score. Then, we calculated H-score for signatures of various94

lengths (Fig.2.B.) Surprisingly, the signature quality is non-monotonously dependant on the signa-95

ture length, i.e. number of genes in the signature. The pattern also varies for DE models. Addi-96

tionally, for the best-performing model, DESeq2, the a signature quality is generally declining with97

the length. Thus, increasing number of genes in a signature may not improve its quality, and an98

optimal gene signature length for the DE analysis result may be established: DESeq2 signature99

reaches its maximum H-score at 13 genes and edgeR at 11 in this case.100

Discussion101

Hobotnica is designed to quantitatively evaluate Molecular Feature Set’s quality by their ability for102

data stratification from their inter-sample distance matrices, and to assess the statistical signifi-103

cance of the results. We demonstrated that Hobotnica can efficiently estimate the quality of a104

Molecular Signature in the context of Expression data.105

Suggested method can be used to evaluate Molecular Feature sets of various nature: retrieved106

in DGE, Differential Methylation analysis, Mutation/SNV calling or Pathways analysis, as well as107

data modalities from other types of Differential Problem. In addition, assessing H-score values for108

various lengths of the same set or signature will help with its structure optimization, which may be109

especially important in clinical applications.110

Hobotnica is available as an R package at https://github.com/lab-medvedeva/Hobotnica-main111

Methods and Materials112

Problem formalization113

If a Molecular Feature Set (S), that presumably incorporates information on the contrast between114

groups of samples with known samples annotation Y in Data D is in place (H ∶ S), we can com-115

pute Distance Matrix between samples DM (f (S|D) → DM ) and then introduce a measure �116

(g(DM|Y ) → �) of signature quality for Data D stratification.117

H ∶ S
f (S|D) → DM
g(DM|Y ) → �

(1)
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When instead of a single GS a set of hypotheses {H1 ∶ GS1,H2 ∶ GS2, ...,Hn ∶ GSn} is in place,118

for each Gene Signature GSi corresponding Distance Matrix DMi can be generated, and than, in119

turn, particular value of the measure �i:120

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

H1 ∶ S1

H2 ∶ S2

...
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→

⎧
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⎪

⎪
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⎪
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⎩

f (S1|D) → DM1

f (S2|D) → DM2

...

(Sn|D) → DMn

→

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

g(DM1|A) → �1
g(DM2|A) → �2
...

g(DMn|A) → �n

. (2)

Thus, for every MFS Si from set of hypotheses {H1 ∶ S1,H2 ∶ S2, ...,Hn ∶ Sn} H-score �i may be121

computed, resulting in a set ⟨�1, �2, ...�n, ⟩. Comparing � values allows for corresponding Feature122

Sets qualities ranking and selecting the most informative Signatures for the Data D.123

To assess statistical significance of each obtained H-score �i we compute empirical p-value via124

generating a distribution of H-scores for set of random MFS.125

Availability126

We implementedHobotnica as anRpackage available at https://github.com/lab-medvedeva/Hobotnica-127

mainhttps://github.com/lab-medvedeva/Hobotnica-main. It contains an implementation of the128

Hobotnica measure, statistical analysis for significance, and several auxiliary functions for visu-129

alizing results and parallel processing.130
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