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Abstract 28 

Studies of trait-mapping and local adaptation often identify signatures of genetically parallel 29 

evolution, where different species evolve similar phenotypes using the same genes. Such 30 

patterns appear incongruent with current estimations of quantitative trait architecture. With 31 

hundreds or thousands or genes contributing to a trait, why would selection make repeated use 32 

of the same genes? Here, we use individual-based simulations to explore a two-patch model 33 

with quantitative traits and pleiotropy to understand the parameters which may lead to repeated 34 

use of a particular locus during independent bouts of adaptation. We find that repeatability can 35 

be driven by increased phenotypic effect size, a reduction in trait dimensionality and a reduction 36 

in mutational correlations at a particular locus relative to other loci in the genome, and that these 37 

patterns are magnified by increased migration between demes. These results suggest that 38 

evolutionary convergence can arise from multiple characteristics of a locus, and provide a 39 

framework for the interpretation of quantitative signatures of convergence in empirical studies. 40 

 41 

Keywords: pleiotropy, parallel evolution, repeatability, migration, simulations  42 
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Introduction 43 

Studies of adaptation commonly observe convergent genetic responses, where multiple species 44 

independently respond to a given selection pressure with mutations in orthologous genes [1–4]. 45 

These patterns imply a lack of redundancy in the genes available for a selective response [5,6], 46 

and at first glance seem inconsistent with another common observation: that variation in 47 

quantitative traits is explained by a very large number of alleles of small effect [7,8], which 48 

suggests a high level of redundancy in the genes contributing to quantitative traits. 49 

 50 

In the early 20th century, theoretical work by R. A. Fisher demonstrated that the continuous 51 

phenotypic variation observed in populations could be explained by a large number of alleles 52 

inherited in a Mendelian manner [7], and that selection would favor small-effect changes at large 53 

numbers of loci [9]. Genome-wide association studies in humans have provided empirical 54 

observations of standing variation congruent to Fisher’s models of adaptive trait architecture 55 

(reviewed in [10]): Associations with hundreds or thousands of genetic variants explain only a 56 

modest proportion of trait heritability, with the remaining heritability attributable to even larger 57 

numbers of variants with effect sizes too small to detect with current cohorts (or possibly to rare 58 

variants that are excluded from many such analyses). But if variation in thousands of genes 59 

underpins a given trait, why would we ever observe orthologous genes contributing to 60 

adaptation in multiple species, when there are seemingly a myriad of ways to construct the 61 

same traits? 62 

 63 

In his revisiting of Fisher’s model, Kimura [11] demonstrated that although smaller effect 64 

mutations are more likely to be favourable, beneficial mutations of small effect are less likely to 65 

fix, as genetic drift biases the contribution of intermediate-effect loci to adaptation. Later, Orr 66 

[12] showed that effect sizes of fixed adaptive mutations during an adaptive walk should be 67 

exponential, illustrating the importance of large-effect mutations early in bouts of adaptation to a 68 

new and distant environmental optimum. The omnigenic model (which posits that all genetic 69 

variants in genes expressed in the relevant cell type contribute to a phenotype; [8,13]) also 70 

makes the distinction between ‘core’ genes of larger effect and ‘peripheral’ genes of small effect 71 

(although the latter explains the bulk of trait heritability). Perhaps the simplest explanation for 72 

convergent genetic adaptation is if alleles of large effect are disproportionately likely to 73 

contribute to adaptation (e.g., because of their fixation probabilities), but only a subset of loci are 74 

able to generate alleles of large effect [14]. Convergence in gene use would then occur if there 75 

is long-term conservation of the genotype-phenotype map and the potential for particular loci to 76 
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generate alleles of large effect. Certainly, large-effect QTL have been identified in both 77 

experimental evolution studies (e.g. [15]) and natural populations (e.g. [16,17]), and genomic 78 

footprints of selective sweeps [18,19] provide evidence for strong selection at individual loci 79 

[20,21]. The effects of local adaptation on genetic architecture may further act to increase the 80 

likelihood of repeatability, as the contributions of small-effect alleles are disproportionately 81 

limited by the swamping effect of gene flow in populations connected by migration [22]. 82 

Consequently, convergence in the genetic basis of local adaptation is expected to frequently 83 

involve large-effect mutations, particularly when gene flow is high or drift is strong, yet these 84 

processes do not overwhelm selection [6]. 85 

 86 

While alleles of large effect may be favoured early in adaptation or when there is migration-87 

selection balance, their contribution to adaptation can be limited by pleiotropy. In both Fisher’s 88 

[9] and Orr’s [12] models, mutations are modelled as vectors in multidimensional phenotypic 89 

space; therefore mutations with a large effect in a favorable dimension generally deviate too far 90 

from the optima in other dimensions, with serious fitness consequences (e.g. [23]). Chevin, 91 

Martin & Lenormand [24] expanded these models to incorporate distinct genes which could vary 92 

in their pleiotropic properties: specifically the number of traits that mutations would affect, and 93 

the correlation in effects of mutations on different traits (the latter being a property that can arise 94 

from organization of genes into networks; [25]). They demonstrated that repeatability in the 95 

genetics of adaptation is an expected consequence of between-locus variation in pleiotropy; 96 

convergence may therefore be observed in genes where negative fitness effects of pleiotropy 97 

are minimized. 98 

  99 

Previous models provide expectations for the contribution of pleiotropy and effect size to 100 

repeatability in isolated populations, however the interaction of these parameters with gene flow 101 

in locally-adapting populations has not been studied. This stands in contrast to the growing body 102 

of empirical work describing repeatability in locally-adapting populations and divergent lineages 103 

with gene flow [1–4]. To provide a theoretical grounding for such studies, we utilize individual-104 

based simulations of quantitative trait evolution examining how the interplay between inter-locus 105 

heterogeneity in pleiotropy and migration-selection balance affects genetic convergence. We 106 

build on previous models, which have considered adaptation in a single population following an 107 

environmental shift, by introducing a second population adapting to a divergent environment, 108 

allowing the observation of interactions between migration, effect size and pleiotropy in bouts of 109 

local adaptation. We find that increasing effect size or decreasing pleiotropy (both the overall 110 
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dimensionality as well as mutational correlation) at a given QTL relative to the other QTL will 111 

increase repeatability. Moreover we find that increased migration between demes exacerbates 112 

the repeatability observed.  113 
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Simulations 114 

To study the factors driving repeatability at particular loci in independent bouts of adaptation, we 115 

performed Wright-Fisher, forward-time simulations in SLiM (v. 3.3.1; [26]) with adaptation to a 116 

complex environment that varied across two patches connected by migration. Adaptation within 117 

each patch was driven by selection on two (or more) traits: Z1 with an optimum that varied 118 

among the patches, and one or more (e.g. Z2) with the same optimum in each patch. 119 

 120 

To gain insight into the parameters capable of driving repeatability at a particular locus and their 121 

interaction, we simulated a simplified genome: Traits could be affected by mutations at five 122 

genetically unlinked QTL; recombination within QTL occurred at a rate of 2.5×10-7. Properties 123 

were uniform across four QTL, while aberrant properties were assigned to a single ‘focal ‘QTL, 124 

where parameter values could be varied independently of the non-focal QTL. For some 125 

parameters, simulations were repeated with a total of 20 QTL and one focal QTL (fig. S3). Each 126 

QTL consisted of 500bp, and mutations occurred at a rate of 1×10-7 per base pair per 127 

generation, resulting in an expected 10,000 mutations in each of two demes over the 20,000-128 

generation simulation. 129 

  130 

QTL mutations affected two or more phenotypes (e.g. Z1 and Z2); mutational effects for each 131 

QTL were drawn from a multivariate normal distribution with variance ɑ2, which determines the 132 

QTL effect magnitude, and covariance which was equal to the QTL mutational correlation 133 

multiplied by ɑ2. 134 

  135 

The following Gaussian function related individual fitness to phenotype Zi: 136 

 137 

 
𝑤! = 𝑒"

($!"%&!)"
()#  (1) 

 138 

where θi = the phenotypic optimum and Σai = the sum of mutation effects for phenotype Zi, and 139 

Vs = the variance in the fitness function, reflecting the strength of stabilizing selection (set at 125 140 

for all simulations). Overall individual fitness was calculated as the product of w across all 141 

phenotypes, so there was no correlational selection between pairs of phenotypes. 142 

 143 

We simulated two demes (d1 and d2), each composed of 1000 randomly-mating diploid 144 

hermaphroditic individuals. Phenotypic space was unitless and provided a relative scaling for 145 
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the width of the fitness function and the magnitude of mutational effects. Both demes began the 146 

simulation with phenotypic optima of 0 for all phenotypes and ran with a burn-in for 20,000 147 

generations. After the burn-in, phenotypic optima were shifted and we tracked adaptive 148 

evolution over the following 20,000 generations. For most simulations, we focussed on the case 149 

where in d1 the optima for all phenotypes remained at 0, while in d2, the optimum for Z1 was 150 

shifted to -10, while Z2 (and optima for any other phenotypes) remained at 0. We varied the 151 

migration rate between d1 and d2 (from 0 to 0.05) and ɑ2 (from 0.1 to 5), mutational correlations 152 

(from 0 to 0.99), and the number of phenotypes affected by the QTL. 153 

  154 

We investigated three main ways in which the characteristics of the focal QTL could be 155 

differentiated from those of the other loci: 156 

1) A change in ɑ2 by altering the variance component of the variance-covariance matrix 157 

used to generate mutations (fig. 1A cf. B). This parameter was used to model a 158 

large-effect QTL at the focal QTL. 159 

2) A change in mutational correlation by altering the covariance component of the 160 

variance-covariance matrix (fig 1A cf. C). This parameter models dependence 161 

between phenotypes and determines the likelihood that a mutation’s effect on one 162 

phenotype will have a corresponding effect on another. 163 

3) A change in the number of phenotypes affected by a mutation by reducing the 164 

dimensionality of the variance-covariance matrix (fig. 1A cf. D). This models a 165 

situation where a QTL has no effect on one or more phenotypes.. 166 
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 167 
Figure 1. Effect sizes on Z1 (x-axes) and Z2 (y-axes) for 10,000 draws from distributions used to generate 168 
mutations. In A, ɑ2 is 0.1 and the mutational correlation between traits is 0.75. In B, the mutational 169 
correlation is the same as A (0.75) but ɑ2 is increased to 0.5. In C, ɑ2 is the same as A (0.1), but the 170 
mutational correlation is relaxed to 0.25. In D, mutations have no effect on the non-divergent phenotype.  171 
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To interpret the results of each parameter combination, we calculated the genetic value (GV) 172 

that a given genomic region (e.g., a QTL) contributes to phenotypic divergence using the 173 

formula: 174 

 175 

 𝐺𝑉 =&((𝑝* − 𝑝() × 𝑎) (2) 

 176 

where p1 and p2 are the frequencies of a mutation in each deme, and a is the size of the 177 

mutation’s effect on Z1. 178 

 179 

For each parameter combination we quantified the divergence (the difference in mean 180 

phenotypes) between demes d1 and d2 at the divergently selected phenotype with 2×GVall (GV 181 

summed across all QTL), and quantified repeatability in the contributions of the QTL to trait 182 

divergence (measured by QTL-specific GV) across 100 replicates using the Cchisq statistic with 183 

1000 permutations [6], implemented in the dgconstraint R package [6] with the 184 

pairwise_c_chisq() function (i.e., each replicate is treated as an independent bout of evolution). 185 

Briefly, χ2 was calculated across simulation replicates with: 186 

 187 

 
𝜒( =

𝛴(𝐺𝑉+/ − 𝐺𝑉+// )(

𝐺𝑉+//
 (3) 

 188 

where 𝐺𝑉+/  is the sum across simulation replicates of GV for the nth QTL, and 𝐺𝑉+//  is the mean 189 

𝐺𝑉+/  across all QTL. 190 

 191 

The Cchisq statistic was then calculated by using 𝜒(and 𝜒,!-( , the results of 1000 permutations of 192 

the data within each replicate: 193 

 194 

 
𝐶./!,0 =

𝜒( −𝑚𝑒𝑎𝑛(𝜒,!-( )
𝑠𝑑(𝜒,!-( )

 (4) 

 195 

By this equation, when Cchisq=0 we observe no more repeatability than would be expected by 196 

chance. The maximum value of Cchisq varies with the number of QTL modelled: Cchisq=2 for five 197 

QTL and Cchisq!"#36 for 20 QTL.  198 

 199 
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Additionally, we calculated GVfocal / GVall, the proportion of GV summed across all QTL 200 

explained by GV summed across the focal QTL.  201 
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Results 202 

We began by examining the behavior of models with different arrangements of phenotypic 203 

optima, while increasing ɑ2 at the focal QTL and holding ɑ2 constant at non-focal QTL. Divergent 204 

optima result in divergent phenotypes (fig. 2B; C), although divergence to a heterogeneous 205 

optimum is constrained by high mutational correlations (fig. 2C), as found by Guillaume [27]. 206 

QTL have equal probability of contributing to adaptation (Cchisq=0) when all loci have the same 207 

ɑ2 and mutational correlation (fig. 2 where focal QTL ɑ2=0.1), but repeatability was observed 208 

with any increase in focal QTL ɑ2 in models with divergent phenotypes (fig. 2). For the 209 

remainder of this study, we focus on the phenotypic arrangement in fig. 2C, where repeatability 210 

occurs but divergence is affected by mutational correlations (pleiotropy) between 211 

heterogeneous optima.  212 
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 213 
Figure 2. Divergence and repeatability (Cchisq) in Z1 for three arrangements of phenotypic optima: A, 214 
where d1 (circle) and d2 (triangle) both shift to a heterogeneous environment; B, where d2 alone shifts to a 215 
homogeneous environment; C, where d2 alone shifts to a heterogeneous environment. ɑ2 at the focal QTL 216 
is varied, while ɑ2 for non-focal QTL is 0.1. Mutational correlations are uniform at all QTL, and the 217 
migration rate is 0.005. These simulations use two phenotypes (one divergent and one non-divergent), 218 
and were run for 20,000 generations.  219 
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The repeatability observed with increased focal QTL ɑ2 was robust to variation in migration rate 220 

(fig. 3A), and was reflected by an increasing contribution of the focal QTL to divergence (fig. 221 

3C). While high mutational correlations impeded phenotypic divergence, comparable levels of 222 

repeatability were observed between high and low mutational correlations unless migration was 223 

absent (fig. 3A c.f. B). This is because high mutational correlations limit the rate of, but do not 224 

completely exclude the occurrence of mutations with fortuitous combinations of effects (fig. 225 

S2A). Furthermore, increasing migration rates resulted in increasing repeatability (fig. 3; fig. S1), 226 

and this pattern was exacerbated by increasing mutational correlations.  227 
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Figure 3. Repeatability (Cchisq) in Z1 (A), Z1 phenotypic divergence (2×GVall) between d1 and d2 (B), and 229 
the corresponding mean proportion of all GV explained by GV at the focal QTL (C) against focal QTL ɑ2 230 
where the ɑ2 for non-focal QTL is 0.1. The dotted line indicates GVfocal / GVall = 0.2, the point at which this 231 
value shifts from representing overuse of the focal QTL to underuse of the focal QTL. Mutational 232 
correlations between phenotypes at all QTL are 0 (circle points; solid lines) or 0.99 (triangle points; 233 
dashed lines). These simulations use two phenotypes (one divergent and one non-divergent), and were 234 
run for 20,000 generations.  235 
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Reducing the correlation in phenotypic effects at a given QTL may also allow it to more readily 236 

acquire adaptive mutations when the direction of change toward the optimum is not aligned with 237 

the correlation in phenotypic effects (thereby increasing its repeatability). We modeled this by 238 

independently varying mutational correlations at the focal and non-focal QTL (fig. 4; fig. S3), and 239 

observed repeatability where there were differences between mutational correlation values at 240 

focal and non-focal QTL (fig. 4). When the mutational correlation at the focal QTL was reduced 241 

relative to the non-focal QTL, repeatability involving the focal QTL increased, and when the 242 

mutational correlation at the focal QTL was increased relative to the non-focal QTL, repeatability 243 

involving the focal QTL decreased, although this latter observation was not robust to an 244 

increase in the number of QTL (fig. S4). High levels of repeatability were only seen when the 245 

focal QTL had a relaxed mutational correlation against a background of high mutational 246 

correlation at non-focal QTL (i.e. 0.75 and particularly 0.9). This reflects the fact that mutational 247 

correlations need to be high to significantly limit the availability of mutations with fortuitous 248 

combinations of effects (fig. S2B).  249 
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 250 

 251 
Figure 4. Repeatability (Cchisq) in Z1 against focal QTL mutational correlation for varying values of non-252 
focal QTL mutation correlation (A), and the corresponding mean proportion of all GV explained by GV at 253 
the focal QTL (B). The dotted line indicates GVfocal / GVall = 0.2, the point at which this value shifts from 254 
representing overuse of the focal QTL to underuse of the focal QTL. These simulations use a migration 255 
rate of 0.005, an ɑ2 of 0.5 and two phenotypes (one divergent and one non-divergent), and were run for 256 
20,000 generations.  257 
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To assess the robustness of  these observations to an increase in the dimensionality of the 258 

phenotypes under selection, we increased the number of non-divergent phenotypes from one to 259 

nine for the case where the non-focal QTL mutational correlation = 0.75, but saw only a very 260 

modest increase in repeatability (fig. 5A). Finally, we investigated the case where mutations at 261 

the focal QTL affect fewer phenotypes than the non-focal QTL. In the two-phenotype model, this 262 

meant focal QTL mutations would only affect the divergent phenotype; in the five and ten-263 

phenotype models, focal QTL mutations affected the divergent phenotype and one fewer non-264 

divergent phenotypes than non-focal QTL. With high mutational correlation between phenotypic 265 

effects, high levels of repeatability at the focal QTL are observed, however when mutational 266 

correlations are weak or absent, very little repeatability is observed (fig. 5B).  267 
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 268 
Figure 5. Repeatability (Cchisq) against focal QTL mutational correlation where the non-focal QTL 269 
mutational correlation = 0.75 (A) and repeatability against QTL mutational correlation where all QTL share 270 
the same mutational correlation, but the focal QTL affects the divergent phenotype (Z1) and one fewer 271 
non-divergent phenotypes than the non-focal QTL (B). Shades indicate the total number of phenotypes in 272 
the simulation (two with one non-divergent phenotype, five with four non-divergent phenotypes and ten 273 
with nine non-divergent phenotypes). These simulations use a migration rate of 0.005 and an ɑ2 of 0.1, 274 
and were run for 20,000 generations.  275 
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Discussion 276 

Empirical observations of convergent genetic evolution are common (reviewed in [5]), but in 277 

many ways at odds with some models of complex trait architecture. In this study we used 278 

simulations to understand the factors that could be varied at a QTL to produce convergent 279 

evolutionary patterns. Firstly, we demonstrated that an increase in effect magnitude (ɑ2) of a 280 

QTL will produce patterns of repeatability, which is consistent with previous theoretical [24] and 281 

empirical observations (e.g. [28,29]). Both mutational correlations and migration can force 282 

adaptation away from phenotypic optima along ‘genetic lines of least resistance’ [27,30]. 283 

Correspondingly, we see a reduction in trait divergence between demes as mutational 284 

correlation or migration is increased (fig. 2B). However, while increasing mutational correlations 285 

reduce repeatability, migration amplifies it (fig. 3A). 286 

 287 

We also investigated how varying pleiotropy at the focal QTL affected signatures of 288 

repeatability. Pleiotropy was varied in two ways: a relaxation in mutational correlations with a 289 

non-divergent phenotype, or a reduction in the number of phenotypes that a QTL mutation 290 

affects. Congruent with the findings of Chevin, Martin & Lenormand [24] who examined single 291 

populations, we found that variation in different forms of pleiotropy will increase the likelihood 292 

that repeatability will emerge for loci governing local adaptation. Specifically, we find that a 293 

reduction in pleiotropic dimensionality at a focal QTL produces greater levels of repeatability 294 

than a relaxation in mutational correlations, a pattern that is robust to increases in trait 295 

dimensionality in our models (fig. 6A c.f. B). 296 

 297 

Whereas Chevin, Martin & Lenormand [24] used a single phenotype in a single deme under 298 

divergent selection, our simulations used two demes linked by varying amounts of migration. 299 

This models a common situation in local adaptation: Individuals in one population may 300 

experience local environmental shifts; they must therefore adapt to new optima for some 301 

phenotypes, while retaining existing optima at others. Previously, Yeaman & Whitlock [22] 302 

demonstrated that migration concentrates the genetic architecture of local adaptation and favors 303 

alleles of larger effect. Correspondingly, we find that migration increases the observed 304 

repeatability arising from effect-magnitude variation (fig. 3, fig. S1), as high migration rates 305 

favour adaptation by larger effect alleles, which can most readily occur at the focal QTL when 306 

pleiotropy is present. But this effect breaks down as migration increases further, at which point 307 

swamping tends to prevent persistent divergence. We also find that migration increases 308 

repeatability arising from pleiotropic variation (fig. S3). This is because repeatability is driven by 309 
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the net effect of selection on a QTL. Under migration-selection balance those QTL with larger 310 

net beneficial effects (weaker mutational correlations) will be maintained as differentiated 311 

(unless migration is so high that no mutations meet the threshold). 312 

 313 

Guillaume [27] utilized a similar two-patch design to investigate the effects of pleiotropy and 314 

migration on population divergence of phenotypes. He demonstrated that combinations of 315 

migration and pleiotropy can drive divergence between demes at phenotypes that share the 316 

same optima in both demes, as long as the phenotypes are sufficiently correlated with 317 

divergently selected phenotypes. We observe similar patterns in our simulations: Increasing 318 

levels of mutational correlations and migration reduce differentiation between demes at the 319 

divergent phenotype, and increase differentiation between demes in phenotypes not under 320 

divergent selection (fig. S3). Perhaps surprisingly, we show that this reduced phenotypic 321 

differentiation does not necessarily limit genetic repeatability, as high Cchisq values are observed 322 

in simulations where pleiotropy and migration have substantially limited the divergence between 323 

demes (fig. 2; 3). 324 

 325 

Our simulations provide important insights for studies of local adaptation. Firstly, in the presence 326 

of adequate levels of migration, repeatability is expected to occur across lineages undergoing 327 

local adaptation to similar optima, even if strong pleiotropic relationships oppose the direction of 328 

divergence in phenotypic space (fig. 3). Secondly, repeated use of a QTL down multiple 329 

lineages may arise because the QTL has a disproportionately large effect size (fig. 3), but also 330 

because pleiotropy at the QTL (either the amount of correlation between traits or the number of 331 

traits affected) is relaxed (fig. 4; 5). Finally, for mutational correlations between divergent and 332 

non-divergent traits to influence repeatability, the correlations must be high, so that fortuitous 333 

pleiotropy-breaking mutations are substantially limited (fig. S2). 334 

 335 

However, our simulations make a number of assumptions that are almost certainly violated in 336 

natural populations exhibiting evolutionary convergence. Firstly, we treat each simulation 337 

replicate as if it were a different species representing an independent bout of adaptation, and 338 

we assume complete orthology between QTL in replicates and that orthologous QTL retain 339 

corresponding effect magnitude and pleiotropic properties. In nature, divergence between 340 

species limits studies of convergence to the orthologous portions of their genomes and the 341 

effects of adaptation in non-orthologous regions has not been addressed here. Secondly, we 342 

have simulated both the initial phenotypic optima (to which both demes start our simulations 343 
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adapted) and the divergent phenotypic optima as identical between replicates. Populations 344 

adapting to similar environments will not share identical phenotypic optima, which is important 345 

for the interpretation of our results, as Thompson, Osmond & Schluter [31] observed that 346 

repeatability declines rapidly as the angle between phenotypic optima increases, a pattern that 347 

is exacerbated by increased trait dimensionality. Furthermore variation between QTL in 348 

mutation rate, retention of standing variation and patterns of linkage disequilibrium may all affect 349 

the likelihood of repeatability, but we have held these parameters constant in our simulations. 350 

 351 

The simulations presented here also use a simplified genome architecture: four QTL with 352 

uniform properties and a single QTL with aberrant properties, and between two and ten traits. 353 

This system pales in comparison to the thousands of genes (exhibiting near-global pleiotropy) 354 

which contribute to traits under the omnigenic model [8,13]. Contrastingly, a metaanalysis of 355 

gene knockout experiments in Saccharomyces cerevisiae, Caenorhabditis elegans and Mus 356 

musculus [32] estimated pleiotropy to be far less pervasive: a median gene affects only one to 357 

nine percent of traits. Wang, Liao & Zhang [32] also detected significant signals of modular 358 

pleiotropy (where subsets of genes affect subsets of traits), which would serve to simplify the 359 

architecture available for evolutionary convergence. Simple genetic architecture enhances 360 

repeatability at a genome-wide level, and this study suggests that an even more modular 361 

architecture at some QTL will act to further magnify repeatability. While the nature of pleiotropic, 362 

quantitative traits in higher organisms remains unresolved, we expect our simple model to be 363 

applicable to more complex architectures [6], and repeating our simulations on models with 20 364 

QTL yields comparable results (fig. S4).  365 
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Supplementary figures 366 

 367 
Figure S1. Repeatability (Cchisq) in Z1 against focal QTL ɑ2 where the ɑ2 for non-focal QTL is 0.1. These 368 
simulations use two phenotypes (one divergent and one non-divergent), and were run for 20,000 369 
generations.  370 
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 371 
Figure S2. Phenotypic effects for all mutations occurring in d2 across 100 replicates for single 372 
combinations of parameters (A: two phenotypes; five QTL; focal QTL ɑ2 = 5; non-focal QTL ɑ2 = 0.1; 373 
mutational correlations = 0.99; migration rate = 0.005; B: two phenotypes; five QTL; ɑ2 = 0.5; focal QTL 374 
mutational correlations = 0.75; non-focal QTL mutational correlations = 0.9; migration rate = 0.005). Red 375 
points represent mutations at the focal QTL; blue points represent mutations at non-focal QTL. The mean 376 
divergence across replicates for focal and non-focal QTL is represented by red and blue triangles 377 
respectively, and the mean overall divergence by the black square.  378 
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 379 

 380 
Figure S3. Repeatability (Cchisq) in Z1 against focal QTL mutational correlation for varying values of non-381 
focal QTL mutation correlation (top row), the mean proportion of all GV explained by GV at the focal QTL 382 
(second row), and divergence between demes in Z1 (third row) and Z2 (bottom row). These simulations 383 
use an ɑ2 of 0.5 and two phenotypes (one divergent and one non-divergent), and were run for 20,000 384 
generations.  385 
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Figure S4. Effects of increasing the number of QTL modelled from five (solid lines, circle points) to 20 387 
(dashed lines, triangle points). In the top pane we examine effect-magnitude variation at the focal QTL (as 388 
in fig. 2), with mutational correlations for all QTL fixed at 0.5. In the middle pane we examine mutational 389 
correlation variation at the focal QTL (as in fig. 4), with mutational correlations at non-focal QTL of 0.75 390 
and ɑ2 at 0.5. In the lower pane we examine a reduction in dimensionality at the focal QTL (as in fig. 5B), 391 
where the total number of phenotypes is two and ɑ2 is 0.5.  392 
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