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Potential Key Genes Associated with Stroke types and its subtypes: A Computational 

Approach  

Abstract 

To investigate prospective key genes and pathways associated with the pathogenesis and 

prognosis of stroke types along with subtypes. Human genes using genome assembly build 38 

patch release 13 with known gene symbols through NCBI gene database 

(https://www.ncbi.nlm.nih.gov/gene) were fetched. PubMed advanced queries were constructed 

using stroke-related keywords and associations were calculated using Normalized pointwise 

mutual information (nPMI) between each gene symbol and queries. Genes related with stroke 

risk within their types and subtypes were investigated in order to discover genetic markers to 

predict individuals who are at the risk of developing stroke with their subtypes. A total of 2,785 

(9.4%) genes were found to be linked to the risk of stroke. Based on stroke types, 1,287 (46.2%) 

and 376 (13.5%) genes were found to be related with IS and HS respectively. Further 

stratification of IS based on TOAST classification, 86 (6.6%) genes were confined to Large 

artery atherosclerosis; 131 (10.1%) and 130 (10%) genes were related with the risk of small 

vessel disease and Cardioembolism subtypes of IS. Besides, a prognostic panel of 9 genes 

signature consisting of CYP4A11, ALOX5P, NOTCH, NINJ2, FGB, MTHFR, PDE4D, 

HDAC9, and ZHFX3 can be treated as a diagnostic marker to predict individuals who are at the 

risk of developing stroke with their subtypes. 

Keywords: Stroke; Ischemic Stroke; Intracerebral Hemorrhage; Subtypes; TOAST 

Classification; Cerebrovascular Disease 
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Introduction 

 

Stroke is a complex heterogeneous disorder that occurs due to the interaction between 

environmental and genetic risk factors.[1, 2] It is one of the main important causes of mortality 

and long-term disability worldwide.[3] About 85% of stroke cases are ischemic stroke (IS), 

whereas 15% are hemorrhagic stroke (HS).[4] According to the Trial of Org 10172 in Acute 

Stroke Treatment (TOAST) classification; IS has been categorized according to the presumed 

etiological mechanism into five groups: large artery atherosclerosis (LAA), small vessel disease 

(SVD), cardio-embolic disease (CE), other determined etiology (ODE), and undetermined 

etiology (UDE).[5] Furthermore, HS is categorized into intracerebral hemorrhage (ICH) and 

Subarachnoid hemorrhage (SAH). Despite recent advancements in treatment modality, very few 

are known regarding the essential pathophysiology of stroke, and further research is still 

warranted to elucidate mechanisms in order to identify stroke occurrences. 

Several established risk factors including diabetes, hypertension, dyslipidemia, smoking, atrial 

fibrillation, and obesity have been a link to the happening of stroke.[6] The fraction of strokes of 

undermined or rare causes is greater for young adults as compared to elders, and in many cases, 

underlying causes are genetic related. More than hundreds of genes have been described to be 

linked with the risk of stroke.[7, 8] Unravelling the genetic causes that play an important role in 

IS and HS is very challenging, as the genetic part of it is multifaceted.[9] In most cases, 

numerous genes are likely involved in the pathogenesis of stroke performing on a broad variety 

of candidate pathways, such as inflammatory, haemostatic, renin-angiotensin-aldosterone, and 

homocysteine metabolisms.[10, 11]  
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The genetic constituent is more predominant in LAA subtypes of IS than in SVD or cryptogenic 

IS and in patients younger than 70 years of age.[12] Previously published multicentric genetic 

studies using genome-wide data estimated that 40% for LAA, 33% for CE, 16% for  SVD, and 

38% for combined (Determined plus undetermined) etiology comprises the heritability of IS.[7, 

13, 14] with the illustration that some genetic variants may serve as causal markers for stroke. To 

recognize the role of particular risk elements in regulating the pathophysiology of stroke, the 

hereditary basis of every risk factor is desirable to be examined and integrated, in context to their 

biological role and pathway interactions. To date, there are no well-established genetic markers 

that may discriminate the stroke types as well as their subtypes.  

 

Identifying novel diagnostic and prognostic genetic markers has become an urgent demand. But 

its experimental determination remains a costly and time-consuming process. Hence, novel 

computational methods are needed to fulfil this requirement. But, very few in silico methods 

were developed in this regard including gene expression-based models [18], machine learning-

based classifiers,[19]  genetic algorithm-based models [20], and a relational database named 

SigCS base (http://sysbio.kribb.re.kr/sigcs) [21] which documented genes, variants, and pathways 

related to cerebral stroke. Unfortunately, this rich resource was discontinued as of February 

2021. So, there was a huge scope for the development of a computational algorithm for the 

prediction of genes associated with stroke types and their sub-types. Our computational approach 

was aimed to recognize possible important genes and the pathways linked with the pathogenesis 

and prediction of stroke types along with their subtypes. 
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Methods  

 

Advanced query building and searching PubMed 

We fetched Human genes using genome assembly build 38 patch release 13 with known (status 

“Active”) gene symbols through the NCBI gene database (https://www.ncbi.nlm.nih.gov/gene). 

PubMed advanced queries were constructed using stroke-related keywords and associations were 

calculated using Normalized pointwise mutual information (nPMI) between each gene symbol 

and queries.[22] To reduce the false hits, only titles and abstracts were searched from the articles 

published till 31st August 2020.[23, 24] A list of sample queries used for searching has been 

provided in Table-1 with the number of hits observed. 

 

Model development 

Document frequency (DF) related to a query is defined as the number of hits fetched by 

searching the database. DF can be easily normalized by the total no. of entries in the database. 

Similarly, pointwise mutual information (PMI) is another important metric often employed to 

find the association between two random variables (RV). A normalized form of PMI (nPMI) was 

derived by Bouma et al.[22] In several published works, nPMI were employed to estimate the 

association between entities like genomic repeats, stress, virulence, computational tools, drug-

discovery related keywords, etc.[25, 26] Following a similar approach of association mining, 

individual and co-occurrences of each gene symbol (RV1) and stroke-related keywords (RV2) in 

PubMed titles and abstracts was calculated using normalized DF (nDF) which was further 

utilized to compute nPMI. This nPMI value represents the strength of association between the 

gene (genotype) and stroke (phenotype).  
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Performance evaluation 

Performance of the model was assessed using receiver operating characteristic (ROC) and 

precision-recall (PR) curve analysis on a cumulative dataset of human housekeeping (negative) 

[27] and already published stroke-related genes (positive). A positive gene set was constructed 

by compiling gene lists provided in the stroke-related research articles published during the last 

decade. [7, 18, 28] Different DF and nPMI value pairs were used to find the best model for 

stroke-associated gene identification. 

Pathway analysis 

To achieve insight into the biological roles and pathological mechanisms of stroke and its 

etiologies, we examined the biological ways that significantly overlapped with the curated stroke 

and etiology gene sets. For this, we calculated common genes related to stroke etiology gene sets 

and the genes wiki-pathways [29]  and executed statistical testing to measure the significance of 

the overlaps. To achieve insight into the biological functions and pathological mechanisms of 

stroke and its etiologies, we recognized the biological pathways that significantly enriched with 

the curated stroke and etiology gene sets. Using cluster Profiler R package,[30] enrichment 

analysis was performed on three major pathway databases namely KEGG 

(https://www.genome.jp/kegg/) (release 96.0),[31] WikiPathways 

(https://www.wikipathways.org/) (release September 2020)[29] and Reactome 

(https://reactome.org/) (version 75)[32] which are curated, comprehensive and rich data sources 

on human metabolic pathways. To initiate the analysis, probable stoke associated (PSA) gene 

symbols were first converted to ENTREZ ids and then pathway enrichment was done with a p-

value cutoff of 0.05 and was adjusted by the Bonferroni method.[33] 
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Results 

Genes associated with stroke and its types 

PubMed advanced searched using stroke-related keywords as mentioned in the Table-1 and 

associations were calculated using nPMI between each gene symbol and queries. To reduce the 

false hits, only titles and abstracts were searched from the articles published till 31st August 

2020. 

A total of 2,785 (9.4%) genes were found to be linked to stroke risk. Based on stroke types, 

1,287 (46.2%) and 376 (13.5%) genes were found to be associated with the risk of IS and HS 

respectively. Further stratification of IS based on TOAST classification, it was found that 86 

(6.6%) genes were confined to Large artery atherosclerosis (LAA); 131 (10.1%) and 130 (10%) 

genes were related with the risk of small vessel disease (SVD) and Cardioembolism (CE) 

subtypes of IS. Circos diagram for the identified genes associated with stroke types and subtypes 

are represented in Figure-1. 

Total 28,281 human gene symbols (Supplementary Table-T1) were extracted from the NCBI 

gene database with the status tag “Active” and used for calculation of nPMI with query no. 2 

from Table-1. 2,785 (9.8%) symbols were found to be associated (having positive or negative 

nPMI values) with stroke (set A). To determine the stroke subtypes, nPMI was computed with 

query no. 3 and query no. 4 (Table-1) for these 2,785 gene symbols (Supplementary Figure-

S1) resulting 1,294 (46.5%) and 376 (13.5%) genes in association with IS and HS respectively. 

The rest of the symbols were marked as “Unclassified”. Further filtering using DF values (>5) 

and removing symbols (#11) like CAT, IMPACT,  SET, etc. which are common English words, 

were listed 441 PSA genes along with their types (Figure-1). Gene symbols that were found to 
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be in association with both types (HS and IS) of strokes were tagged as “Both Types” (Figure-

1). Mining manually curated TRRUST database v2 (transcriptional regulatory relationships 

unraveled by sentence-based text-mining) (https://www.grnpedia.org/trrust/)[34] catalogued all 

the transcription factors and their target genes along with existing interaction types (activation, 

repression, or unknown) (Figure-1). A prognostic panel of 9 genes signature consisting of 

CYP4A11, ALOX5P, NOTCH, NINJ2, FGB, MTHFR, PDE4D, HDAC9, and ZHFX3 can be 

treated as a diagnostic marker to predict individuals who are at the risk of developing stroke with 

their subtypes 

Genes associated with stroke sub-types 

Queries no. 5-9 from Table-1 have been used in nPMI model for stratification of genes 

associated with IS subtypes as per TOAST classification. 131 (10.1%) genes were confined to 

Small Vessel Disease (SVD) followed by 130 (10%) Cardioembolism (CE), 86 (6.6%) Large 

artery atherosclerosis (LAA), 30 (2.3%) Undetermined etiology (UDE) and 7 (0.5%) Other 

determined etiology (ODE) (Supplementary Figure-S2). While classifying HS sub-types using 

queries no. 10-11, 292 (77.8%), and 132 (35.2%) were predicted as Intracerebral hemorrhage 

(ICH) and Subarachnoid hemorrhage (SAH) respectively (Supplementary Figure-S3). A subset 

of PSA (#140) genes associated with different stroke subtypes was represented in Figure-2. 

Complete lists along with DF and nPMI values can be found in Supplementary Table T2-T10. 

Evaluation of nPMI model 

For performance evaluation of the developed nPMI model, a list of already published 7,431 

genes consisting of 2,168 (29%) stroke-related (positive set) and 5,263 (71%) human 

housekeeping genes (negative set) were constructed. An intersection of 1,144 genes was found 
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between set A and published gene sets (positive: 581, negative: 563) which was used for 

evaluation. Multiple models were built using different DF (ranging from 1 to 5) and nPMI 

(ranging from 0.05 to 0.5) cut-offs and the best model having Accuracy: 0.64, Sensitivity: 0.63, 

Specificity: 0.65, and Precision: 0.66 was reported at DF cut-off 2 and nPMI cut-off 0.1. 

Performance evaluation by receiver operating characteristic (ROC) and Precision-Recall (PR) 

curves analysis resulted Area under curve (AUC) values of 0.64 and 0.63 respectively (Figure-

3).  

Stroke can influence many pathways 

To reduce false-positive hits, pathway enrichment analysis was done using 190 genes 

(Supplementary Table-T11), a subset of PSA gene symbols that were manually curated and 

already known to be associated with stroke. Analysis with Reactome, WikiPathways, and KEGG 

resulting 53, 32, and 35 unique pathways enriched with aforementioned stroke-associated genes 

(Supplementary Table-T12, Table-T13, and Table-T14). However manual curation of these 

lists of pathways showed promising results with WikiPathways and Reactome which were 

presented in Figure-4 and Supplementary Figure-S4. Findings for the genes associated with 

biological Network pathways including Kegg and Reactome are reported in Figure-4. 

 

Discussion  

Emerging evidences from published meta-analysis and GWAS studies suggests that several 

genetic variants (MTHFR, MMP9, PDE4D, CYP4A11, ALOX5P, NOTCH, NINJ2, FGB, 

eNOS, PITX2, ZFHX3, HDAC9, ABO, etc) have been identified, even though the extent of the 

effect of each variant is regarded as inter-varying within different populations including Asian, 
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Caucasian, African.[1, 1, 7, 14, 35–39, 39–44] The findings, however, are often unclear and hard 

to interpret. Genetic association studies in diverse stroke populations negate matters of the 

restricted patient population by the a priori choice of a functionally relevant gene and its relation 

with a specific phenotype. Improving patient outcomes in stroke requires a rapid and accurate 

prediction of stroke and its subtypes. The genetic signature could help it to distinguish or 

calculate the incidence of hemorrhagic and ischemic stroke along with its subtypes and may also 

help in the prognosis of further risk of stroke recurrence.  

Our findings are confined specifically to predict the associated genes for the predisposition of 

ischemic or hemorrhagic stroke. A prognostic panel of 9 genes signature consisting of 

CYP4A11, ALOX5P, NOTCH, NINJ2, FGB, MTHFR, PDE4D, HDAC9, and ZHFX3 can be 

designed and treated as a diagnostic marker to predict individuals who are at the risk of 

developing stroke with their subtypes. Developing this genetic markers panel seems to offer hope 

of significantly better sensitivity and specificity may provide a quick and reliable assessment 

with revolutionize stroke management. It will also reduce cost and timing for preventing the 

stroke incidence in susceptible individuals having a chance of developing stroke with LVD, SVD 

and CE subtypes and HS. These genetic markers could also have the potential to enter into a 

routine clinical use despite their obvious promise by only single validation of our findings. 

 

Limitations 

The current study has certain limitations in spite of these interesting results. Meanwhile the 

datasets fused were from the published studies in patients with stroke, misdiagnosis or 

misclassification of stroke subtypes could have potentially influenced our findings. Also, we 
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could not access the original SNP genotype data, we had to use summary data from published 

stroke GWAS and candidate gene studies, which prohibited us to address the common genetics 

of complex traits and could have affected our results. Moreover, as the various testing 

corrections we used in our statistical analyses may be inadequate to clarify all biases, 

permutation testing should be used to adjust the results at the single SNP level. Furthermore, we 

needed transcriptomic and epigenetic data, which may contribute to the identification of 

additional potential causal mechanisms and links. False positives are highly expected since the 

method was predicting the genes using PubMed title and abstracts. However, false positives in 

our findings were rectified using manual curation. 

Conclusion 

A novel text data-driven method was developed to identify genes associated with stroke types 

and their subtypes. Our findings might offer certain directive implications for further exploring 

the diagnostic and prognostic genetic markers to empower the molecular targeting treatment for 

stroke prevention. 
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Figure 1: Prediction of the genes associated with stroke and its sub-types using normalized 

pointwise mutual information (nPMI) and document frequency (nDF) calculated from PubMed 

database. The outermost track of the circus plot represents the selected human gene symbols 

(#440) based on the nDF cut-off. The next two inner tracks with different colours show the nPMI 

and nDF values respectively; the colour codes are as follows: symbols associated with ischemic 

stroke: orange, hemorrhagic stroke: green, both stroke types: cyan and unclassified: magenta. 
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nPMI and nDF values of the genes related with ischemic stroke have been presented in the next 

two orange inner tracks. Similarly, the two innermost green tracks displays nPMI and nDF 

values of the genes related with hemorrhagic stroke. The height of the bars indicates the nPMI 

and nDF values. The transcriptional regulatory links have been created between the transcription 

factors and pointing towards their target genes in different colours with codes: blue: activation, 

red: repression, yellow: unknown based on the manually curated database TRRUST (v2). 

 

 

 

 

Figure 2: Prediction of genes associated with stroke types and subtypes. X-axis represents 

human gene symbols and Y-axis represents different stroke types and subtypes. Sub-types of 

Ischemic stroke (IS) are in blue and Hemorrhagic stroke (HS) are in red. Values of normalized 

Document frequency (nDF) (ranging 0 to 1) and normalized pointwise mutual information 

(nPMI) (ranging -1 to 1) are shown using color bar. Abbreviation of different stroke subtypes are 

as follows: SVD-Small Vessel Disease, CE-Cardioembolism, LAA-Large artery atherosclerosis, 

UDE-Undetermined etiology, ODE-Other determined etiology, ICH-Intracerebral hemorrhage 

SAH-Subarchanoid hemorrhage. 
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Figure 3: Receiver operating characteristic (ROC) and Precision-Recall (PR) curve analysis for 

the evaluation of developed normalized pointwise mutual information (nPMI) based model for 

classification of stroke related genes. Using different normalized document frequency (nDF) and 

nPMI cut-offs ROC and PR curves have been plotted. Area under curve (AUC) values for ROC 

and PR curves are 0.64 and 0.63 respectively. 
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Figure 4: Enrichment analysis for finding the important pathways associated with the predicted 

stroke genes. Analysis has been performed using WikiPathways database. Brown and cyan nodes 

are representing pathways and genes respectively. No. of genes associated with a pathway is 

represented by size of the brown node. Connecting links are in grey color. 
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Table 1: PubMed sample queries used in the present study and respective no. of hits obtained till 

August 2020. 

No. Topic PubMed Advanced queries Total no. of 

records in PubMed 

1 All abstracts all[sb] AND hasabstract[text] 20816630 

2 Stroke related 

abstracts 

(stroke[TIAB] OR Cerebrovascular[TIAB]) 

AND (gene[TIAB] OR genes[TIAB]) AND 

hasabstract[text] 

9626 

3 Hemorrhagic 

Stroke related 

abstracts 

("Intracerebral hemorrhage"[TIAB] OR 

"Hemorrhagic Stroke"[TIAB] OR 

"Subarchanoid hemorrhage"[TIAB]) AND 

(gene[TIAB] OR genes[TIAB]) AND 

hasabstract[text] 

585 

4 Ischemic Stroke 

related  abstracts 

("Ischemic Stroke"[TIAB] OR 

(TOAST[TIAB] AND (Classification[TIAB] 

OR Subtypes[TIAB]))) AND (gene[TIAB] 

OR genes[TIAB]) AND hasabstract[text] 

2738 

5 Large artery 

atherosclerosis 

"Large artery atherosclerosis"[TIAB] AND 

(gene[TIAB] OR genes[TIAB]) AND 

hasabstract[text] 

103 

6 Small vessel 

disease 

"Small vessel disease"[TIAB] AND 

(gene[TIAB] OR genes[TIAB]) AND 

hasabstract[text] 

288 

7 Cardioembolic 

disease 

"Cardioembolic disease"[TIAB] AND 

(gene[TIAB] OR genes[TIAB]) AND 

hasabstract[text] 

117 

8 Other 

determined 

etiology 

"Other determined etiology"[TIAB] AND 

(gene[TIAB] OR genes[TIAB]) AND 

hasabstract[text] 

3 

9 Undetermined 

etiology 

"Undetermined etiology"[TIAB] AND 

(gene[TIAB] OR genes[TIAB]) AND 

hasabstract[text] 

45 

10 Intracerebral 

hemorrhage 

"Intracerebral hemorrhage"[TIAB] AND 

(gene[TIAB] OR genes[TIAB]) AND 

hasabstract[text] 

424 

11 Subarchanoid 

hemorrhage 

"Subarchanoid hemorrhage"[TIAB] AND 

(gene[TIAB] OR genes[TIAB]) AND 

hasabstract[text] 

434 
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