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Highlights 

 Soil bacteria and fungi from >50 pastures were analysed using DNA metabarcoding 

 Duration of pasture since ploughing impacted fungal community composition 

 Bacteria were more associated with soil physicochemical properties than fungi  

 Plant effects on soil microbes were through interactions with soil chemistry 

 Microbial indicators of soil health were disproportionately fungal taxa  

 

Abstract 

Pasture is a globally important managed habitat providing both food and income. The way in which 

it is managed leads to a wide range of impacts on soil microbial communities and associated soil 

health. While there have been several studies comparing pasture farming to other forms of land use, 

we still have limited understanding of how the soil microbial communities vary between pasture 

farms and according to management practices. Here we present the results of a field survey across 

56 UK livestock farms that are managed by members of the Pasture fed Livestock Association, using 
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amplicon sequencing of the 16S and ITS regions to characterise the soil bacterial and fungal 

community within fields that have been under pasture for differing durations. We show that grazing 

management intensity has only limited effects upon microbial community structure, while the 

duration of pasture since ploughing (ranging from 1 year to over 100 years) impacted the fungal 

community structure. The impact of management duration was conditional upon soil 

physicochemical properties, particularly pH. Plant community effects on upon soil bacterial and 

fungal composition appear to also interact with the soil chemistry, highlighting the importance of 

plant-soil interactions in determining microbial community structure. Analyses of microbial 

indicators revealed proportionally more fungal taxa that responded to multiple ecosystem health 

associated properties than bacterial taxa. We also identified several fungal taxa that both acted as 

indicators of soil health related properties within our dataset and showed differentiation between 

grassland types in a national survey, indicating the generality of some fungal indicators to the 

national level. Members of the Agaricomycetes were associated with multiple indicators of soil 

health. Our results show the importance of maintaining grassland for the development of plant-soil 

interactions and microbial community structure with concomitant effects on soil and general 

ecosystem health. 

Keywords: Pasture; grass-fed; microbial composition; microbial indicators; Agaricomycetes;   

Introduction 

How we manage our soil health is of increasing importance, as we balance increasing food demand 

with the need to maintain soil lifespans and simultaneously provide valuable ecosystem services 

such as carbon storage (Bossio et al., 2020; Evans et al., 2020). Livestock farming takes up large areas 

of land and contributes approximately 15% of anthropogenic greenhouse gas emissions, however it 

is globally important for both nutrition and income security (Gerber et al., 2013; Smith et al., 2013). 

Balancing the demands of livestock farming while maintaining and promoting ecosystem health to 

ensure production of both food and ecosystem services from these systems for future generations 
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requires innovative farming practices coupled with whole-system evaluation of the effects of these 

different farm managements upon ecosystem and soil health (Kibblewhite et al., 2008). Soil 

biodiversity is a key component of soil health, as it underpins a variety of ecosystem functions 

(Bardgett & van der Putten, 2014; Delgado-Baquerizo et al., 2020). Land use intensity is known to 

influence soil ecological communities, with more intense land use types leading to reductions in 

diversity and biomass and changes in microbially-mediated soil functions (Neal et al., 2021; Tsiafouli 

et al., 2015). Soil microbial communities also respond to land use, however unlike soil animals they 

can show less consistent changes in diversity and composition between differing types of grassland 

and arable systems (George et al., 2019).  

Pasture systems have been found to have greater microbial biomass, enzyme activities and differing 

microbial compositions to crop systems (Acosta-Martínez et al., 2010; Chen et al., 2018; Walkup et 

al., 2020). In comparison to forests, however, pasture systems can show lower biomass and 

functional diversity, which has been related to both differences in vegetation diversity and plant 

litter inputs (Cardozo Junior et al., 2018; Chen et al., 2018; Silveira Sartori Silva et al., 2019). Many of 

these differences in microbial communities’ responses to land use may be related to changes in soil 

physicochemical properties, for example soil pH is known to be a strong driver of microbial 

community diversity, composition and activities (George et al., 2019; Griffiths et al., 2011; 

Hendershot et al., 2017). Lauber et al. (2008) found that changes in soil pH and C:N ratios explained 

the variation in bacterial and fungal communities respectively across pasture, crop and forest land 

uses. Soil structural properties are also known to both influence and be influenced by microbial 

activities, e.g. the microbial contribution to aggregate formation, stabilisation and eventually 

degradation has been extensively reviewed (Lynch & Bragg, 1985; Oades, 1993; Totsche et al., 2010). 

However, we are still starting to unfold the mechanisms underlying the interacting microbial, 

chemical and structural responses to land use practices within differing environmental contexts, and 

how much of this information is transferable to inferring responses within land use types to 

management changes.  
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Certain management decisions made within pasture farming have been found to have an impact 

upon soil microbial communities. In particular, fertilisation of grasslands can alter soil microbial 

composition and biomass (Leff et al., 2015; Walkup et al., 2020). An observational study of pasture 

types across New Zealand also found that dairy pasture shows distinct bacterial communities 

compared to other types of pasture use (Dignam et al., 2018). The composition of the plant 

community in pasture systems has also been found to influence soil fungal community composition 

(Zheng et al., 2016), although plant community composition was found to have limited impact upon 

microbial biomass and activities across a variety of Brazilian pasture systems (Cardozo Junior et al., 

2018). 

The Pasture fed Livestock Association (PFLA) was set up in 2009 by a group of British farmers who 

wished to promote the human health benefits of purely grass-fed cattle products, and who created a 

set of certification standards for pasture-fed ruminant livestock (Pasture for Life Association, 2020; 

Vetter, 2020). While the initial motivations of the Association were related to the potential health 

benefits of grass-fed beef and dairy products (Daley et al., 2010; Haskins et al., 2019), the PFLA 

standards also include provisions for the protection of wildlife, reduction of inputs and maintenance 

of general ecosystem health. These considerations are particularly important due to the higher land 

use and thus potentially higher greenhouse gas emissions associated with grass-fed cattle. However, 

this may be counteracted by the tendency for grass-fed cattle to be reared on land unsuitable for 

crops and potential gains in biodiversity and other ecosystem-related functions, compared to more 

intensive production systems including grain-fed cattle or arable systems (Clark & Tilman, 2017). It 

will also depend on levels of inputs, such as mineral fertilisers and pesticides which are very low on 

PFLA farms. Within this work we examine the impact of pasture management intensity and duration 

upon soil microbial communities through analysis of 56 PFLA farms across Great Britain. We combine 

bacterial and fungal community composition measurements from DNA sequencing with detailed 

farm management data from farmer surveys, soil physicochemical measurements and plant surveys. 

We compare our microbial data to microbial data taken from a variety of grassland types across the 
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British landscape within the Countryside Survey of Great Britain to evaluate if there are common 

indicators of grassland type relating to management (Carey et al., 2008). Our hypotheses were: 

1. Soil bacterial and fungal communities under PFLA management relate to both current 

management and the duration of these management practices 

2. Plant composition impacts on soil microbial composition through changes in key plant 

species cover (e.g. Lolium perenne) 

3. Taxa that responded to management practices and soil health indicators on the PFLA farms 

would also show differentiation between grassland types in the broader dataset 

 

Methods 

Field survey 

In total 56 PFLA member farms were surveyed across Great Britain, in the summer of 2018 (May to 

early September).  Soil and vegetation were sampled using protocols from the Countryside Survey 

(CS), see Emmett et al. (2008); Maskell et al. (2008); and Wood et al. (2017) to enable comparison 

with data collected as part of the survey in 2007. Sampling took place within a single field with the 

exception of one farm on which data was collected from two fields of differing land use history, 

hence n=57. The sampling location was determined pre-survey and validated with the farmer on site 

(to check that an atypical field had not been selected), and included a 200m2 plot surveyed for 

vegetation composition and a soil core taken from a central point within the square. Farmers were 

interviewed to collect detailed management data about the current and historical uses of the field, 

and to ascertain other relevant variables including age of pasture since plough, type of grazing, 

fertilisation regime and organic status. Plots were allocated to grassland Broad Habitat types, 

hereafter referred to as ‘grassland types’ (Improved, Neutral, Acid and Calcareous) according to the 

CS field habitat key by surveyors in the field (Jackson, 2000; Maskell et al., 2008). Plant Ellenberg 
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scores were calculated for each plot based on averages of the different Ellenberg scores as identified 

for each plant species present within PLANTATT (Hill et al., 2004). 

  

Soil physicochemical properties 

Soil physicochemical properties were measured following the methods of Emmett et al. (2008). In 

brief, a single soil core (15cm depth and 7cm diameter) was taken from for each plot and tested for 

soil organic carbon, total carbon, total nitrogen, pH, Olsen P, total P, electrical conductivity, bulk 

density, aggregate stability, clay, silt and sand content. Soil pH and electrical conductivity were 

measured in a 1:2.5 weight suspension in deionised water with a pH meter (Corning 220) and a 

conductivity meter (Jenway 4510) respectively and pH was also measured in a 0.01 M CaCl2 solution. 

Soil organic carbon was measured by loss on ignition, while total soil carbon and soil nitrogen were 

measured by an Elementar Vario-EL elemental analyser (Elementaranalysensysteme GmbH, Hanau, 

Germany). Soil phosphorus is measured both as total P and using the Olsen-P method. Soil texture 

was measured by laser granulometry with the Beckman Coulter LS 13 320 as described in Seaton et 

al. (2020). Aggregate stability was measured using wet sieving with a Eijkelkamp apparatus, where 

2g of aggregates were immersed in deionised water within a sieve of 250μm aperture and agitated 

for half an hour then dried and weighed (weight A). The remaining aggregates are then immersed in 

NaOH and agitated for another half hour, then dried and weighed again (weight B). Aggregate 

stability is calculated as (weight A – weight B)/initial weight. 

Soil microbial community characterisation 

DNA was extracted from 0.2 g of soil using the PowerSoil-htp 96 Well DNA Isolation kit (Qiagen, 

Hiden, Germany) according to manufacturer's protocols. For bacterial 16S rRNA amplicons the dual 

indexing protocol of Kozich et al. (2013) was used for MiSeq sequencing (Illumina, San Diego, US) 

with each primer consisting of the appropriate Illumina adapter, 8-nt index sequence, a 10-nt pad 

sequence, a 2-nt linker and the amplicon specific primer. The V3–V4 hypervariable regions of the 
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bacterial 16S rRNA gene were amplified using primers 341F (Muyzer et al., 1993) and 806R (Yu et al., 

2005), CCTACGGGAGGCAGCAG and GCTATTGGAGCTGGAATTAC respectively. Amplicons were 

generated using a high-fidelity DNA polymerase Q5 Taq (New England Biolabs, Ipswich, US). After an 

initial denaturation at 95 °C for 2 minutes PCR conditions were: denaturation at 95 °C for 15 

seconds; annealing at 55 °C for 30 seconds with extension at 72 °C for 30 seconds, repeated for 30 

cycles; final extension of 10 minutes at 72 °C was included.  

Fungal internal transcribed spacer (ITS) amplicon sequences were generated using a 2-step 

amplification approach. Primers GTGARTCATCGAATCTTTG and TCCTCCGCTTATTGATATGC (Ihrmark 

et al., 2012) were each modified at 5’ end with the addition of Illumina pre-adapter and Nextera 

sequencing primer sequences. After an initial denaturation at 95°C for 2 minutes, PCR conditions 

were: denaturation at 95°C for 15 seconds; annealing at 52°C for 30 seconds with extension at 72°C 

for 30 seconds; repeated for 25 cycles. A final extension of 10 minutes at 72°C was included.   

PCR products were cleaned using a ZR-96 DNA Clean-up Kit (Zymo Research Inc., Irvine, US) following 

manufacturer’s instructions. MiSeq adapters and 8nt dual-indexing barcode sequences were added 

during a second step of PCR amplification. After an initial denaturation 95°C for 2 minutes, PCR 

conditions were: denaturation at 95°C for 15 seconds; annealing at 55°C for 30 seconds with 

extension at 72°C for 30 seconds; repeated for 8 cycles with a final extension of 10 minutes at 72°C. 

Amplicon concentrations were normalized using SequalPrep Normalization Plate Kit (Thermo Fisher 

Scientific, Waltham, US) and amplicon sizes determined using an 2200 TapeStation (Agilent, Santa 

Clara, US) prior to sequencing each amplicon library separately using MiSeq (Illumina, San Diego, US) 

with V3 600 cycle reagents at concentrations of 6 and 12 pM (16S and ITS respectively) with a 5% 

PhiX control library.  

Illumina demultiplexed sequences for 16S and ITS are available at the European Nucleotide Archive 

under PRJEB46195 primary accession code, sample accession codes ERS7103229 to ERS7103287. 

Previously generated amplicon data (generated utilising the same amplicon primers and DNA 
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extraction methodology as this study) from the GB Countryside Survey of 2007 (data will be made 

available on the ENA by acceptance), was bioinformatically processed in parallel, allowing 

comparison of this sample set to a national survey. Each amplicon and sequencing run were 

processed separately in R using DADA2 (Callahan et al., 2016), with a Cutadapt (Martin, 2011) step 

added for ITS sequences. Forward 16S amplicon reads were truncated to 250-nt. Sequences with Ns 

and error greater than maxEE=1 were removed. Sequences were dereplicated and the DADA2 core 

sequence variant inference algorithm applied and actual sequence variants (ASVs) generated. 

Chimeric sequences were removed using removeBimeraDenovo at default settings. ASVs were 

subject to taxonomic assignment using assignTaxonomy at default settings with GreenGenes v13.8 

(DeSantis et al., 2006; McDonald et al., 2012) training database.  

ITS amplicon reads we pre-processed using Cutadapt to remove primer sequences and negate read-

through risk. Using DADA2 reads were then truncated to 205-nt and 160-nt (forward and reverse, 

respectively). Sequences with Ns and error greater than maxEE=5 were removed. Using default 

settings sequences were dereplicated into ASVs, denoised, merged, chimera checked and assigned 

taxonomies using Unite v7.2 (Kõljalg et al., 2005) training database.  

Fungal sequences were matched against funguild to get information on trophic modes (Nguyen et 

al., 2016). ASVs that occurred in negative controls were removed from the results and the sequence 

tables were limited to ASVs identified as bacteria, minus chloroplast and mitochondrial ASVs, and 

fungi respectively. 

Statistical analysis 

All samples were rarefied to 22000 reads for bacteria and 5000 reads for fungi, resulting in keeping 

all 57 samples. Rarefaction was repeated 10 times and the average result taken for richness, 

Shannon diversity, Simpson diversity and the average occurrence matrix. The impact of pasture age 

(an ordered factor) upon microbial richness, LOI, Olsen P and L. perenne cover was tested by fitting 

Bayesian ordinal regression models in the brms package (Bürkner, 2017; Bürkner & Vuorre, 2019). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.13.460094doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.460094
http://creativecommons.org/licenses/by-nc-nd/4.0/


The impact of field management and plant and soil properties upon the microbial composition was 

explored using Bray-Curtis distance to summarise the rarefied communities (McKnight et al., 2019). 

This included NMDS with the associated envfit function for numerical variables, multivariate 

homogeneity of group dispersions using the betadisper function and distance-based redundancy 

analysis (dbRDA) using the capscale function with 99999 permutations all in the vegan package 

version 2.5-7 (Oksanen et al., 2020).  

Variation partitioning was performed on the NMDS scores when done for 4 dimensions, with the soil 

structural metrics, soil chemical data, plant community composition, and the farm management data 

as predictors. Soil structural data included aggregate stability, bulk density, sand, silt and clay. Sand, 

silt and clay were all converted using a centred log ratio transformation and then the first 4 scores 

from principal component analysis (PCA) on the centred, scaled data used in varpart. Soil chemical 

data included pH in water, conductivity, total carbon, total nitrogen, Olsen P and was also 

represented using the first 4 axis scores of PCA. The plants identified at each plot and their total 

cover was used to construct Bray-Curtis distances for a principal coordinates analysis (PCoA) which 

was run using the ape package (Paradis & Schliep, 2019). Select categorical farm management data 

properties were included in the variation partitioning from the axis scores from a 4-dimensional 

multiple correspondence analysis (MCA) built using the MASS package (Venables & Ripley, 2002).The 

farm management data included in the MCA were: permanent or temporary pasture; age of pasture 

since plough (<20, 20-50 and >50 years); type of grazing (mob, set stocking, or paddock/strip); 

organic status; winter grazing (yes/no/sometimes); fertiliser use (mineral with liming, mineral only or 

manure); sheep presence.  

The DeSeq2 package (Love et al., 2014) was used on the unrarefied data to identify indicator taxa of 

field age (using cutoffs of 20 year or 50 years), organic carbon (LOI), Olsen-P and Lolium perenne 

cover. Each of these variables were fit to the data in a model including pH and then only the taxa 
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that responded to the variable of interest at p < 0.05 extracted. All analysis was done in R version 

4.0.2 (R Core Team, 2020).  

 

Results 

In total, 31340 bacterial ASVs were recovered across all samples, 9 archaeal ASVs and 6756 fungal 

ASVs. Due to the low numbers of archaea these were discarded from further analyses. Median read 

depth in the bacterial samples was 41000, with a range between 23000 and 118000. One bacterial 

sample failed to amplify DNA (6 reads total) and was discarded. Median read depth in the fungal 

samples was 23500, with a range between 5200 and 36000. After rarefaction median bacterial 

richness was 1195 (range between 818 and 2420 IQR 1064-1510) and median fungal richness was 

264 (range between 147 and 470. IQR 225-296). The majority of the bacteria were within the 

proteobacteria and the acidobacteria phyla, while the majority of the fungi were in the 

sordariomycetes (supplementary figure 1). 

Impact of environmental properties 

Microbial richness showed variable and limited responses to soil and plant environmental variables, 

while composition showed greater relationships (supplementary figure 2, Table 1). Fungal and 

bacterial richness showed differing responses to gradients in plant and soil properties, and were 

slightly negatively correlated with each other (Spearman rank correlation -0.05). Fungal richness 

increased with soil pH, and showed no relationship with plant richness or soil organic matter while 

bacterial richness decreased with soil pH and increased with both plant richness and soil organic 

matter (supplementary figure 2). Both bacterial and fungal richness had a small number of high 

diversity outliers, however these were not the same sites in both cases. The bacterial and fungal 

community compositions were analysed using NMDS ordination and each soil and plant variable fit 

to that ordination using a linear fit, which revealed that soil pH was the strongest predictor of 
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bacterial and fungal community composition, with R2 of 0.85 and 0.65 for bacteria and fungi 

respectively (Figure 1, Table 1). Plant Ellenberg R (an index of plant responses to pH) and soil 

electrical conductivity (EC) were the next two most strongly associated variables for both bacteria 

and fungi (Table 1, see supplementary tables 1 and 2 for the full envfit results). For bacteria, whilst 

the first NMDS axis was largely explained by pH (Figure 1), soil structural components such as 

organic matter content, aggregate stability, and bulk density were orthogonal to the pH axis (Table 

1). For fungi, pH also explained most of the variation along the first axis of the NMDS, whilst soil 

aggregate stability, clay content and legume species richness were orthogonal to the pH axis (Table 

1). Soil organic matter and total carbon showed no significant relationship with fungal community 

composition, although they were both significantly associated with the second NMDS axis for the 

bacterial community. Some effect of pasture age is visible in the NMDS plot, especially once the 

gradient in soil pH is accounted for (Figure 1). 
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Figure 1: Ordinations of bacterial and fungal community compositions with the points coloured by 

pH and with shapes representative of the age of pasture. The bacterial NMDS stress was 0.11 and 

the fungal NMDS stress 0.17. 
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Table 1: Relationships between plant and soil parameters and the NMDS for bacteria and fungi as 

given by a linear regression upon the ordination scores, showing only variables that are correlated 

with either bacteria or fungi with R2 values greater than 0.15. For the full results see supplementary 

tables 1 and 2. 

Variable 

Bacteria Fungi 

NMDS1 NMDS2 R2 p NMDS1 NMDS2 R2 p 

pH (CaCl2) -0.965 0.262 0.849 0.001 -0.979 0.206 0.651 0.001 

pH (DIW) -0.954 0.300 0.809 0.001 -0.955 0.296 0.643 0.001 

Ellenberg R -0.675 0.738 0.450 0.001 -0.995 -0.103 0.480 0.001 

Soil EC -0.847 0.532 0.371 0.001 -0.981 0.194 0.315 0.001 

Total N -0.264 -0.965 0.364 0.001 -0.869 -0.495 0.059 0.237 

LOI -0.195 -0.981 0.353 0.001 -0.827 -0.562 0.022 0.588 

Ellenberg F 0.221 -0.975 0.276 0.002 0.504 0.864 0.102 0.065 

Total C -0.348 -0.938 0.274 0.002 -0.999 -0.034 0.055 0.273 

Bulk density 0.076 0.997 0.194 0.009 -0.068 0.998 0.026 0.531 

Stability 0.326 -0.946 0.152 0.016 0.314 -0.949 0.228 0.003 

Ellenberg N -0.725 0.689 0.114 0.055 -0.618 0.786 0.301 0.001 

Plant PCoA axis 1 -0.507 0.862 0.111 0.055 -0.499 0.866 0.267 0.001 

Olsen P -0.972 0.237 0.074 0.177 -0.487 0.873 0.206 0.008 

Clay -0.248 -0.969 0.096 0.088 -0.166 -0.986 0.159 0.018 

L. perenne cover -0.603 0.798 0.047 0.311 -0.392 0.920 0.197 0.006 

Legume richness -0.135 0.991 0.032 0.468 0.046 -0.999 0.198 0.006 

 

Variation partitioning comparing the relative correlations of soil microbial composition with soil 

chemistry, soil structure, plant community and farm management showed that soil chemical 

properties (pH, total C, total N, Olsen P and conductivity) explained the largest amount of variation 

across both bacterial and fungal communities (Figure 2). The second largest proportion of variation 

was explained by the joint influence of plant community and soil chemistry, followed by soil 

chemistry and soil structure in both bacteria and fungi. Plant community composition also explained 

~4% of variation directly for the fungal community while it showed limited influence on its own for 
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bacteria. Soil structure (sand, silt, clay, aggregate stability) was also important for both bacterial and 

fungal communities, although to a lesser extent, explaining 1-2% of variation by itself and ~5% 

combined with soil chemistry. However, farm management properties as represented by the MCA 

ordination scores (pasture type, age, type of grazing, organic, winter grazing, fertiliser use, sheep 

presence) explained only a small amount of variation for fungi and bacteria and removing it from the 

variation partitioning increased the residual variation by only ~1 percentage point.  

 

Figure 2: Proportion of variation in bacterial and fungal 4-dimensional NMDS scores explained by the 

different components. Chemistry and structure are the PCA scores of the soil chemical and structural 

components respectively. The plant component is represented by PCoA scores of the plant 

community and the farm component the MCA scores of key farm management variables including 

pasture age. Components that have multiple descriptors in the legend key are the joint variation 

explained by those named components together, and “Everything” is the variation explained by all of 

the components together. 
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Examination of the ordination scores for the soil chemical, soil structural, plant community and farm 

management data enables us to explore how these different components are represented within 

the variation partitioning presented in Figure 5. All five soil chemical properties measured were 

clearly represented in the ordination, with total C and total N showing a strong association with each 

other and pH, Olsen P and conductivity all being orthogonal to carbon in the first two axes and then 

each explaining independent variation in the third and fourth axes (Axes 1 to 4 explained 53%, 21%, 

17% and 8% of variation respectively, Figure 3a, supplementary figure 3a). The soil structural 

parameters showed a clear separation primarily of the sand gradient (axis 1 explained 70% of 

variation), with aggregate stability being the major determinant of the orthogonal second axis (axis 2 

explained 17% of variation, Figure 6b, supplementary figure 3b). The ordination of the plant 

communities showed that the major drivers of plant composition differences across the farms were 

differences in the covers of Lolium perenne, Agrostis stolonifera, Trifolium repens and Holcus lanatus 

(Relative eigenvalues of first four axes were 0.29, 0.11, 0.09 and 0.07 respectively, Figure 3c, 

supplementary figure 3c). The ordination of the farm management data achieved less explanatory 

power than the other three ordinations (first four axes explained 10%, 9%, 8% and 7% of variation 

respectively), as expected within MCA analysis, however the analysis did separate out organic 

farming on the first axis, older (>50 year old), often organically managed (if not certified), pastures 

on the second axis, and uses of lime and mineral fertilisers on the third and fourth axes respectively 

(Figure 3d, supplementary figure 3d). This indicates that the farm management effects included 

within the variation partitioning above are largely related to fertilisation, with a small inclusion of 

pasture age effects. 
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Figure 3: The first and second axes of the soil chemical PCA (a), soil structural (b), plant PCoA (c), and 

farm management MCA (d). Farms are represented by numbers, variable effects are represented by 

red arrows for a, b and c and centroids in d. 

 

Impact of land management 

The direct relationship between farm management practices and soil physicochemical properties, 

vegetation composition or microbial communities varied depending on the environmental 
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properties considered. Of the 57 fields sampled, 46 had been under the current land use (permanent 

pasture) for over 10 years with 16 of these farms having been under the current land use for over 50 

years. There were also roughly equal proportions of mob grazing, set stocking and paddock/strip 

grazing (15, 18, and 16 fields respectively), and only a small number of fields receiving mineral 

fertiliser (10, compared to 19 receiving organic fertiliser). There were no significant trends with 

pasture age in soil organic matter, plant available phosphorus, cover of Lolium perenne or microbial 

richness (Figure 4). On average cover of L. perenne, Olsen P and fungal richness were lower in the 

oldest fields, however the 95% confidence interval of the monotonic age effect parameter crossed 

zero in all cases (L. perenne cover: -7.94 to 0.21, Olsen P: -3.86 to 0.65, fungal richness: -10.44 to 

3.52). LOI and bacterial richness both had their 50% confidence interval cross zero. There were no 

trends in fungal trophic mode proportions over the different age categories (supplementary figure 

4). 

 
Figure 4: Differences in soil carbon, Olsen P, Lolium perenne cover, bacterial richness and fungal 

richness with pasture age and grassland type. Each field is represented by a single point, coloured by 

grassland type. The average, and standard deviation, of each field age category is represented by a 

black square and vertical lines. 
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Pasture age (<10, 10-20, 20-50 and >50 years) had no significant effect on bacterial community 

composition (dbRDA p = 0.10, Figure 5a). However, the fungal communities showed significant 

differences between field age categories (dbRDA p = 0.004, Figure 5b). Figure 5b shows a separation 

out of the youngest and very oldest pastures, the latter perhaps being partly driven by higher 

variance in the oldest category of farms (betadisper p = 0.04). There is more separation by age 

apparent in Figure 5 compared to Figure 1 due to dbRDA being a method of constrained ordination, 

versus NMDS being unconstrained ordination, and therefore representing changes in microbial 

composition that are not occurring in the two primary axes of overall variation. There was no 

significant impact of grazing type (mob, set stocking or paddock/strip) on either bacterial or fungal 

communities (dbRDA, p = 0.43 and p = 0.16 respectively, supplementary figure 5). Fertilisation 

regime (mineral, organic or none) had no significant effect on bacterial composition but did show 

differences in the fungal composition (p = 0.10 and p = 0.035 respectively, supplementary figure 6). 

These results also reflect the higher variance in community composition across the no fertiliser 

fields, which comprised 57% of the fields sampled (betadisper p < 0.001). 

 

Figure 5: The first two axes of the dbRDA based on age of pasture for bacteria (a) and fungi (b) 
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Indicator taxa 

Indicator taxa analysis identified hundreds of bacterial and fungal taxa as potential indicators of 

pasture age once differences in soil pH were accounted for (868 bacterial taxa and 450 fungal taxa, 

corresponding to 2.8% and 6.7% of all taxa respectively).  Both bacteria and fungi had more taxa that 

responded to the pasture age cut-off of >50 years old than that of >20 years old. Some of these taxa 

also responded to changes in carbon, Olsen P or Lolium perenne cover once soil pH had been taken 

into account (Figure 6). However, these trends were not always consistent, for example there were 

hundreds of taxa that were indicative of both younger fields and differences in carbon concentration 

but some of these increased with increasing carbon and some decreased (~40% fungi decreased and 

~20% bacteria decreased). The only bacterial taxon which was higher in both older farm categories 

and also higher in organic carbon soils was a member of the Micromonosporaceae family, and also 

decreased in response to L. perenne cover and Olsen P content. The taxonomic breakdown of the 

indicators was broadly similar to that of all the taxa, with read counts over 10 for both bacterial and 

fungal classes, however the Agaricomycetes made up 23% of the PFLA quality indicators compared 

to 16% of the PFLA data overall, and 17% of the PFLA data with read count above 10 (supplementary 

figure 7). Overall the proportion of Agaricomycetes was positively associated with LOI, unlike the 

other four most common fungal classes and the Glomeromycetes (Figure 7). 
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Figure 6: The counts of the different overlaps between the indicators of habitat, L. perenne cover, 

Olsen P, LOI and pasture age once the pH gradient is accounted for in bacterial (top) and fungal 

(bottom) communities represented by an upset plot. The total number of taxa that significantly 

respond to each soil or farm quality indicator is given by the horizontal bars to the left of the plot. 

Each vertical line within the plot represents a certain overlap of indicator taxa groups, the overlap 
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identity is given by the conjoined dots while the total number of taxa within that overlap is given by 

the length of the vertical bar and the number above the bar. For example, the leftmost vertical bar in 

panel b (coloured b) represents the 205 fungal taxa that respond solely to pasture age (indicated by 

the single blue dot within the age row in the below matrix) while the rightmost vertical bar 

represents the 17 fungal taxa that respond to habitat, L. perenne, Olsen P, LOI and pasture age 

(indicated by the conjoined blue dots bridging the five rows of the below matrix). Both of these 

vertical bars are included in the total indicator for age count in the horizontal bar to the right. 

Indicator overlaps that respond to age are coloured blue, all others are coloured black. 

 

 

Figure 7: The differences in fungal class proportion across the LOI gradient. The agaricomycetes were 

positively associated with LOI (R2 = 0.22, p < 0.001 with and without the high LOI outlier), while all 

other relationships were non-significant (p values of 0.55, 0.94, 0.43, 0.64 and 0.94 for each class in 

alphabetical/panel order). 
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Comparison to grassland soils in the wider GB landscape 

In order to assess the generality of the indicators of soil health identified above the PFLA indicators 

were compared to indicators of grassland type within the Countryside Survey, of which there were 

23 bacterial and 127 fungal taxa that showed differences between Neutral and Improved grassland 

once pH was accounted for. Of these, 12 bacterial taxa and 76 fungal taxa were more abundant in 

Neutral grassland than in Improved. A small number of these taxa also showed responses to either 

field age or other properties potentially indicative of field quality within the PFLA data (Figure 6). 

Within the bacterial data there were only 4 taxa that showed a response to both CS grassland type 

and a PFLA soil property, this included two Acidimicrobiales which showed higher prevalence in 

farms over 50 and soils with higher organic carbon and matched at 100 and 99% sequence similarity 

respectively to a CS taxa that showed higher prevalence in Neutral grassland. The other two taxa 

were more prevalent in Improved grassland in CS, one a member of the SMB53 genus was less 

common at higher levels of organic carbon and the other a member of the MBNT15 order was more 

common where there was high organic carbon and Olsen P. 

Within the fungal data there were many more common indicators of grassland type and soil quality, 

however these often showed contradictory responses to the differing soil quality indicators. Both 

Cuphophyllus borealis a facultative saprotroph/Symbiotroph and Gibellulopsis piscis a probable 

facultative plant pathogen preferred Improved to Neutral grassland in CS and were less commonly 

found in older farms (>50 years) in PFLA. However, C. borealis was also less common at high Olsen P 

and L. perenne cover in the PFLA farms. Leohumicola minima and Fusarium culmoram both showed 

preference for Improved grassland in CS and increasing L. perenne cover in PFLA. Thelebolus 

spongiae (probable saprotroph/Symbiotroph) showed a preference for Improved grassland in CS and 

lower organic carbon in PFLA; while a member of the Clavaria genus showed a positive response to 

Neutral grassland in CS and higher organic carbon in PFLA. All other taxa that were indicators of both 

grassland types in CS and a field quality property in PFLA were only identified to coarser taxonomic 

levels. The five taxa that showed higher presence in Neutral grassland compared to Improved 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.13.460094doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.460094
http://creativecommons.org/licenses/by-nc-nd/4.0/


grassland plots in CS and also responded to a PFLA property (increasing with age or carbon) were all 

members of the Agaricomycetes, with the 4 identified to order level being Agaricales (this includes 

the Clavaria identified above). All others were not identified to a more detailed taxonomic level. 

However, it should also be noted that Agaricales is a common order, and in fact 13 Agaricale taxa 

showed higher prevalence in Improved grassland in CS while 28 showed higher prevalence in Neutral 

grassland. None of the 13 Agaricale taxa that were more abundant in Improved grassland also 

responded to a property within the PFLA data. 

Discussion 

Across the farms within our analysis we found pasture age since plough impacted fungal community 

structure, as well as specific bacterial and fungal taxa, while fertilisation and grazing regime showed 

lower impacts. Fungal community composition, and to a lesser extent richness, showed trends over 

the pasture age gradient sampled. The stronger relationship between pasture age and microbial 

composition compared to microbial diversity is consistent with previous findings showing greater 

changes in microbiome composition versus diversity in response to soil management (Neal et al., 

2021). There were also hundreds of taxa identified as being more abundant in either younger or 

older pastures. In particular there were greater differences in microbial taxa in pastures that had 

been established for over 50 years compared to younger pastures, demonstrating the importance of 

long-term farm management in determining microbial community structure. Pasture age influences 

plant rooting, community structure, soil structure and chemical properties (Faville et al., 2020; 

Löfgren et al., 2020; Tozer et al., 2016). In longer established pastures plant/soil interactions are 

better established, and we also found plant and soil chemistry interactions to be important for both 

bacterial and fungal community composition. The age gradient across our fields represents a variety 

of potential soil and plant changes, which will be modulated by farming practices as well as local 

environmental conditions. 
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Variability in grassland management practices, such as fertiliser applications, across the fields may 

obscure the changes we’d expect to see over the pasture age gradient, however we found only 

limited evidence for effects of management decisions such as grazing intensity and fertilisation 

inputs. This perhaps reflected the practices supported by the PFLA and the fact that only a minority 

of plots were classified as Improved grassland (9 out of 56), on which you would expect practices  

such as liming and fertilisation to influence soil properties and plant communities (Eze et al., 2018; 

Goulding, 2016). Our variation partitioning results do indicate that any impact of liming or 

fertilisation upon bacteria and fungi are likely fully mediated by changes in the soil physicochemical 

properties. Therefore, while we have not found strong evidence for a direct link between 

fertilisation and liming and microbial structure this does not necessarily mean that changes in 

fertilisation and liming are having no effect, as these management practices influence soil chemistry 

which we have found to be strongly associated with microbial community structure. It is likely that 

the impacts of fertilisation and liming upon soil chemistry and thus microbial community are 

influenced by the underlying soil type and climatic conditions at each farm (Goulding, 2016). 

Previous analysis has found limited effect of rotational grazing or differences in stocking rates upon 

soil properties, which was consistent with our lack of evidence for an impact of grazing regime upon 

microbial communities (Pyle et al., 2019).  

Pasture age had limited effects upon plant and soil properties within our dataset, likely due to the 

range in environmental conditions covered by our survey. Previous studies have found declines in 

soil available phosphorus with increasing pasture age (Asner et al., 2004; Löfgren et al., 2020). While 

the trend was non-significant we did find lower Olsen P in older fields, likely due to the length of 

time since fertilisation. The lack of consistent trend in soil organic matter with pasture age may be 

related to the high variability in soil types and farm location, which are known to have big impacts 

on soil carbon (Hewins et al., 2018). While pasture has been found to have higher soil carbon than 

arable fields (Lin et al., 2020), previous examinations of soil carbon stocks over a range of pastures of 

different ages have found no significant effect of pasture age upon soil carbon due to variability in 
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soil parent material and management practices, in line with our results (Derner & Schuman, 2007; 

Orgill et al., 2015). Other studies which have shown a decrease in soil carbon with pasture age are 

less comparable as the previous land cover was woodland, and the woodland to pasture transition is 

markedly different from the within-pasture types and arable to pasture transition, generally 

associated with increases in soil carbon which are common to our sites (Asner et al., 2004; Lin et al., 

2020).  

Soil chemical properties proved to be the key determinant of bacterial and fungal richness and 

composition within our data, although some soil structural and plant metrics also showed 

associations with microbial composition. Consistent with many previous studies of soil bacterial and 

fungal communities, soil pH was the variable most associated with community composition (George 

et al., 2019; Griffiths et al., 2011). Surprisingly, while soil carbon showed some association with the 

bacterial communities there was no relationship between soil carbon and fungi. We also found that 

soil electrical conductivity was strongly associated to both bacterial and fungal communities. This 

may be related to the fact that soil solution composition has a direct effect in the 

attractive/repulsive forces at the clay scale causing the clay particles to come together into 

microaggregates, the higher the electrical conductivity the more stable the aggregates will be, 

providing a better substrate for the microfauna to thrive (Lebron & Suarez, 1992; Shainberg & Letey, 

1984). Soil structure showed some influence on the bacterial and fungal communities, in particular 

aggregate stability showed associations with the 2nd axis of the ordination for both bacteria and 

fungi indicating that the soil structural influence on microbial compositions is orthogonal to the pH 

influence. Aggregate stability is known to be related to microbial communities and their activity, and 

while we have no detailed pore structural information it is likely that this is a strong determinant of 

microbial community structure and activity in our soils (Tecon & Or, 2017). It is also plausible that 

bacterial and fungal communities are influencing soil structure and soil chemistry, through carrying 

out a variety of functional processes and resulting in soil-microbe feedback mechanisms (Frac et al., 

2018; Neal et al., 2021; Totsche et al., 2010).  
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While we found only some evidence for direct associations between the plant community and the 

microbial community we found that interactions between the plant community and soil chemistry 

were very important in determining microbial community structure. These interactions may reflect 

the difficulty in separating out the inter-correlated responses of soil properties and plant 

communities to environmental and management factors. For example, Löfgren et al. (2020) found 

that changes in plant communities over a >200 year pasture age gradient were often associated with 

changes in soil chemistry, particularly phosphorus and to a lesser extent nitrogen. It has also been 

found that plant community properties are more representative of historical, rather than current,  

soil conditions, particularly in metrics such as the Ellenberg scores (Wamelink et al., 2002). 

Therefore, the plant-soil interactions we have found to be important in determining bacterial and 

fungal community structure could be better representing an integrated long-term soil condition 

measurement than true plant-soil interactions, e.g. Ellenberg N could be better associated with the 

average soil fertility over the past few years rather than the current soil fertility. 

We found that fungi were more responsive than bacteria to various factors including: management, 

plants and soil chemistry. Several of these factors interacted with each other, as identified within 

our variation partitioning analysis (Figure 5) leading to the need to condition analysis upon the 

differences in soil pH in order to identify microbial taxa that respond to soil quality indicators across 

the wide range of farms. This is consistent with our understanding that the impact of farm 

management decisions is context-dependent (Hannula et al., 2021; Kibblewhite et al., 2008). Soil pH 

was more associated with bacterial composition than fungal composition, consistent with previous 

studies of microbial composition in temperate habitats (George et al., 2019). Broad-scale bacterial 

community composition was better explained within the variation partitioning than broad-scale 

fungal community composition. Bray-Curtis distance responds more strongly to the dominant 

members of the community (McKnight et al., 2019), and it is possible that strong effects of soil 

chemistry and pH upon soil bacterial composition are driven by a relatively small number of pH-

responsive dominant bacterial taxa. Notably, there were proportionally many more fungi than 
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bacteria that responded to multiple drivers within the farms in the indicator analysis (Figure 7). 

There were also several unexpected and inconsistent responses of indicators to the different pasture 

quality indicators, where a single taxa responded in opposite directions to two indicators, potentially 

relating to relatively narrow regions of optimal niche space for the microbial taxa and suggesting 

routes for further investigation. Hence, changes in the soil fungal community and key fungal taxa 

may prove a better integrator of soil condition in pasture farms than changes in the bacterial 

community. 

Within the indicator analysis the Agaricomycetes, and particularly the Agaricales, emerged as a 

particularly responsive group to changes in key pasture health-related properties such as soil organic 

matter. The agaricomycetes are ecologically diverse, including a variety of mushroom-forming fungi 

that obtain nutrients from saprotrophy, symbiotrophy and the occasional pathotrophy, including 

many ectomycorrhizal taxa (Sánchez-García et al., 2020; Tedersoo et al., 2010). Ectomycorrhizal 

fungi are important to various aspects of plant and soil health, as they can enhance nutrient uptake, 

protect plants against pathogens and pollutants, and also have various implications for soil carbon 

cycling (Kumar & Atri, 2018; Tedersoo & Bahram, 2019). While the various agaricomycetes are 

responding differently to different properties it may be possible to identify a small number of 

different taxa as key indicators of soil condition. As agaricomycetes are mushroom forming, this 

offers the opportunity for in-field mushroom surveys to evaluate soil condition, previously suggested 

as a method for evaluating forest health (Egli, 2011). 

The agricultural sector in the UK and elsewhere is currently experiencing drastic changes related to 

both changes in consumer habitats and subsidy structure. Both cattle and sheep numbers have 

decreased in the UK in the past few decades (Defra, 2021), and these farms have been judged to be 

more at risk from changes to agricultural subsidies than arable farms (Arnott et al., 2019). Farmers 

show large variation in both their exposure to innovative farming practices and their willingness to 

change (Arnott et al., 2021). The farms we have surveyed within this work are part of the Pasture for 
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Life Association which promotes innovative grazing techniques and brings together farmers that 

engage in practices that promote ecosystem health (Vetter, 2020). They represent a range of 

sustainable farm management practices across a wide range of environmental conditions, and our 

results show how the impact of management decisions upon soil bacteria and fungi are dependent 

upon, and mediated by, the soil chemistry. This highlights the importance of considering local 

conditions when monitoring and evaluating the impact of farm management on soil health. Our 

results also indicate that we have to consider the longevity of sustainable farming practices, and 

provide long-term stable support to maintain sustainable farming practices over the timescales 

required to support soil health. 
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Supplementary materials 

 

 

 

Figure 1: Bacterial phyla (top) and fungal class distributions across the farms, with farms ordered 

along the x axis from high to low plant community species richness/other quality indicators 
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Figure 2: Bacterial and fungal richness against soil pH (a,d), plant richness (b,e) and organic carbon 

(c,f). Spearman rank correlations were -0.25, 0.35, -0.32, 0.37, -0.07 and 0.03 for a to f respectively. 
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Figure 3: The third and fourth axes of the soil chemical PCA (a), soil structural (b), plant PCoA (c), and 

farm management MCA (d). Farms are represented by numbers, variable effects are represented by 

red arrows for a, b and c and centroids in d.  
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Figure 4: Fungal trophic mode proportion by pasture age. The mean and standard deviation are 

shown by black dots and vertical lines, with each field being represented by a grey dot randomly 

jittered on the x axis behind. 
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Figure 5: The first two axes of the dbRDA of the bacterial (a) and fungal (b) communities regressed 

against grazing regime. Results were non-significant with F2,46 = 0.990 and p = 0.427 and F2,46 = 1.105 

and p = 0.166 for fungi. 

 

Figure 6: The first two axes of the dbRDA of the bacterial (a) and fungal (b) communities regressed 

against fertilisation regime. Results were non-significant for bacteria at F2,46 = 1.290 and p = 0.102 

and significant for fungi at F2,54 = 1.238 and p = 0.035. 
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Figure 7: The taxonomic breakdown by class of bacterial (a) and fungal (b) indicators of farm 

management or soil quality compared to the wider class distribution. The bars represent all bacteria 

and fungi on the left, followed by all bacteria or fungi with more than 10 reads, and then followed by 

all bacterial and fungal indicators. 
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Table 1: Bacterial NMDS envfit results, arranged in descending order according to R2 value. 

Variable NMDS1 NMDS2 R2 p 

pH (CaCl2) -0.96497 0.26238 0.8485 0.001 

pH (DIW) -0.95388 0.3002 0.8086 0.001 

Ellenberg R -0.67447 0.7383 0.4995 0.001 

Soil EC -0.84651 0.53238 0.3709 0.001 

Total N -0.26413 -0.96449 0.3636 0.001 

LOI -0.19527 -0.98075 0.3533 0.001 

Ellenberg F 0.2211 -0.97525 0.2756 0.002 

Total C -0.34766 -0.93762 0.274 0.002 

Bulk density 0.07565 0.99713 0.1939 0.009 

Stability 0.32554 -0.94553 0.1521 0.016 

Silt 0.06238 -0.99805 0.1518 0.019 

Total P -0.3447 -0.93871 0.1318 0.031 

Plant PCoA axis 3 -0.62636 0.77953 0.1241 0.033 

Ellenberg N -0.72509 0.68866 0.1143 0.055 

Plant PCoA axis 1 -0.50702 0.86193 0.111 0.055 

Grass cover 0.13347 -0.99105 0.107 0.067 

Ellenberg L -0.21589 0.97642 0.104 0.062 

Clay -0.24788 -0.96879 0.0961 0.088 

Plant PCoA axis 4 0.99688 0.07899 0.0921 0.088 

Weed cover -0.21617 0.97636 0.0805 0.105 

Olsen P -0.97163 0.23653 0.0741 0.177 

Sand -0.02838 0.9996 0.0699 0.172 

Forb richness -0.17178 0.98514 0.0634 0.21 

Forb cover -0.12679 0.99193 0.0575 0.248 

Lolium perenne cover -0.60321 0.79758 0.0471 0.311 

Sheep 0.26192 -0.96509 0.0366 0.421 

Plant richness 0.02657 0.99965 0.035 0.417 

Cattle 0.42356 0.90587 0.0333 0.435 

CSM species richness 0.73402 0.67912 0.0331 0.452 

Legume richness -0.1347 0.99089 0.0315 0.468 

Legume cover -0.20849 0.97802 0.0259 0.541 

Plant PCoA axis 2 -0.23582 -0.9718 0.0158 0.668 

Grass richness 0.05643 0.99841 0.0051 0.882 

Bare ground cover -0.9375 -0.34798 0.0028 0.936 
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Table 2: Fungal NMDS envfit results, arranged in descending order according to R2 value. 

Variable NMDS1 NMDS2 R2 p 

pH (CaCl2) -0.97865 0.20555 0.6514 0.001 

pH (DIW) -0.95508 0.29635 0.6427 0.001 

Ellenberg R -0.99466 -0.10318 0.4804 0.001 

Soil EC -0.98106 0.19373 0.315 0.001 

Ellenberg N -0.61825 0.78598 0.3009 0.001 

Plant PCoA axis 1 -0.49935 0.8664 0.2669 0.001 

Stability 0.31395 -0.94944 0.2283 0.003 

Olsen P -0.48701 0.8734 0.2055 0.008 

Legume richness 0.04607 -0.99894 0.1978 0.006 

Lolium perenne cover -0.39181 0.92004 0.1967 0.006 

Clay -0.16572 -0.98617 0.1593 0.018 

CSM species richness 0.61437 -0.78902 0.1413 0.028 

Silt 0.22583 -0.97417 0.1293 0.043 

Sand -0.1286 0.9917 0.1186 0.046 

Bare ground cover -0.08528 0.99636 0.11 0.072 

Ellenberg F 0.50429 0.86354 0.1023 0.065 

Ellenberg L -0.419 -0.90799 0.0825 0.126 

Plant PCoA axis 4 0.99975 0.02238 0.0754 0.15 

Grass richness 0.2109 -0.97751 0.0654 0.199 

Total P -0.99999 0.00523 0.0632 0.21 

Weed cover -0.3488 0.9372 0.0625 0.206 

Plant richness 0.35284 -0.93568 0.0612 0.225 

Total N -0.8692 -0.49447 0.0591 0.237 

Total C -0.99944 -0.03346 0.0551 0.273 

Plant PCoA axis 3 -0.99738 0.07234 0.0502 0.275 

Forb cover -0.13627 -0.99067 0.0487 0.288 

Forb richness 0.0322 -0.99948 0.039 0.392 

Plant PCoA axis 2 -0.44484 -0.89561 0.0356 0.448 

Sheep 0.85609 -0.51682 0.031 0.476 

Bulk density -0.06753 0.99772 0.0255 0.531 

Cattle 0.34364 -0.9391 0.0238 0.529 

LOI -0.82729 -0.56177 0.0219 0.588 

Legume cover -0.24543 -0.96941 0.0137 0.71 

Grass cover 0.814 0.58087 0.011 0.742 
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