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Abstract

Effectively presenting epitopes on immunogens, in order to raise conformationally

selective antibodies through active immunization, is a central problem in treating pro-

tein misfolding diseases, particularly neurodegenerative diseases such as Alzheimer’s

disease or Parkinson’s disease. We seek to selectively target conformations enriched
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in toxic, oligomeric propagating species while sparing the healthy forms of the pro-

tein that are often more abundant. To this end, we computationally modelled scaf-

folded epitopes in cyclic peptides by inserting/deleting a variable number of flanking

glycines (“glycindels”), to best mimic a misfolding-specific conformation of an epitope

of α-synuclein enriched in the oligomer ensemble, as characterized by a region most

readily disordered and solvent-exposed in a stressed, partially denatured protofibril.

We screen and rank the cyclic peptide scaffolds of α-synuclein in silico based on their

ensemble overlap properties with the fibril, oligomer-model, and isolated monomer en-

sembles. We present experimental data of seeded aggregation that supports nucleation

rates consistent with computationally predicted cyclic peptide conformational similar-

ity. We also introduce a method for screening against structured off-pathway targets

in the human proteome, by selecting scaffolds with minimal conformational similarity

between their epitope and the same solvent-exposed primary sequence in structured

human proteins. Different cyclic peptide scaffolds with variable numbers of glycines

are predicted computationally to have markedly different conformational ensembles.

Ensemble comparison and overlap was quantified by the Jensen-Shannon Divergence,

and a new measure introduced here—the embedding depth, which determines the ex-

tent to which a given ensemble is subsumed by another ensemble, and which may be a

more useful measure in developing immunogens that confer conformational-selectivity

to an antibody.

Keywords

cyclic peptides; epitope scaffolding; molecular dynamics; ensemble similarity; protein mis-

folding; virtual screening.

1 Introduction

A key step in the development of a therapeutic antibody or active vaccine is the immunization

strategy (1 ), namely, the choice of protein epitope and how it will be presented to an animal

or human immune system. Both primary sequence and conformation of the epitope determine

the particular protein morphologies to which the resulting antibodies will be selective.

Nowhere has conformational-selectivity been more important to immunotherapies than in

protein-misfolding diseases (2 ). For this class of diseases, an effective antibody must be able

to spare healthy protein and discriminate misfolded protein species that lead to molecular

and cellular pathology (1 ). Since the primary sequences of healthy and aberrant protein

are generally the same, barring splice variants and perhaps post-translational modifications,

the efficacy of an antibody is then due to its selective preference for binding to a misfolded

conformation over healthy in-vivo “native” conformations.

For many proteins involved in misfolding disease however, the native conformational

ensemble is intrinsically disordered (3 ). Examples include amyloid-β (Aβ), tau protein, α-
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synuclein, and the low-complexity domains in FUS and TDP43. Raising an antibody that

avoids the majority of diverse conformations of an intrinsically-disordered protein’s ensemble

is a challenge. For example, a peptide consisting of a contiguous fragment of native primary

sequence tethered to an immunogen such as keyhole limpet hemocyanin (KLH) will likely

exhibit overlap in its presented ensemble with the ensemble of isolated native monomer.

Many neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s dis-

ease (PD), chronic traumatic encephalopathy (CTE) and amyotropic lateral sclerosis (ALS),

spread throughout the brain via a prion-like mechanism involving soluble oligomers (1 , 4 –

11 ) Soluble oligomers contain roughly 4-40 chains of protein, which exist in a misfolded

conformational ensemble that is conformationally labile and very difficult to experimentally

characterize. We computationally model some key aspects of the oligomer ensemble using

molecular dynamics, in order to predict disease-specific epitopes.

Cyclic peptides, a subclass of macrocycles, are polymers of amino acids that have been

conjugated to form a ring-like topology (Fig. 1). They have been increasingly used as ther-

apeutics, often as small molecule drugs to bind targets (12 –16 ). They have also been used

as immunogens (17 –22 ) to raise oligomer-selective antibodies in Alzheimer’s disease using

the method that we describe here (19 , 23 , 24 ).

In this paper, we do not address the non-trivial problem of misfolding-specific epitope

prediction, which we have treated elsewhere (25 ) (see Methods Section 3.1). We focus instead

on the problem of how to properly present a predicted epitope to the immune system of an

animal (or human, in the case of active immunization), so that the resulting antibodies

generated by the animal are selective to disease-specific forms of the protein.

We start from computationally generated ensembles of the α-synuclein fibril, isolated

monomer, and stressed, partially disrupted proto-fibril as defined below, which is used as

a model for the toxic oligomer—a species we wish to target with conformationally selec-

tive antibodies. The α-synuclein oligomer model was generated computationally. Although

oligomer structures involving select portions of the primary sequence constrained into pep-

tide macrocycles have been crystallized (26 ), no full-length α-synuclein oligomer structure or

ensemble, or partial length α-synuclein oligomer structure containing our epitopes of interest,

has been experimentally characterized at this time. We briefly review the epitope prediction

method described in (25 ), which is applied here to an α-synuclein protofibril. Given an epi-

tope and an oligomer model, we then construct various cyclic peptide immunogen constructs

of that epitope by varying the number of glycines flanking the epitope on the N- and C-

termini, which we term “glycindel” scaffolds. Here we introduce only glycines as extrinsic

amino acids, as they are relatively non-immunogenic, which avoids potential immunological

targeting of regions outside of the epitope of interest. Within this restricted space of extrinsic

sequence and structure, we determine the optimal scaffolding of the cyclic peptide construct,

by maximizing the overlap with the stressed fibril ensemble and minimizing the ensemble

overlap with either the monomer or the unstressed “native” fibril. We also minimize the

tendency of antibodies to a scaffolded epitope to elicit off-pathway targeting, by minimizing

the conformational similarity to unrelated structured proteins in the human proteome that
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contain the epitope’s primary sequence. Using the above features as screening criteria, we

used a ranking method we have developed previously (27 ) involving multi-criteria decision

making analysis to systematically rank the scaffolds from best to worst. Such a ranking

allows for the experimentalist to construct a reduced number of cyclic peptide scaffolds that

are most likely to have the desired features of eliciting antibodies with conformationally

selective binding to toxic oligomer species.

The pipeline of the in silico screening method is given in Fig. 9. Each step is described

in the Methods. In the Results, we visually depict the projection of simulated ensembles

in reduced conformational space, and we formalize the ensemble overlap. We then develop

the above-described method to find off-pathway targets for a given scaffold, and rank 48

candidate cyclic peptide scaffolds. We show that the same similarity metrics used in the

glycindel ranking can also explain the seeding activity of cyclic peptides. We finally discuss

the non-trivial question of weight assignments for ranking candidates, alternate scaffolding

methods, the validity of the virtual screening method, the benefits of in silico screening

to facilitate more efficient in vitro and in vivo screening, and the sensitivity or robustness

of epitope prediction depending on the structural model of the fibril used in the epitope

prediction algorithm.

Figure 1: Cyclic peptide renderings for cyclo(CGTKEQGGGG), a scaffold of TKEQ. (a)
2D representation of the cyclic peptide. (b) 3-dimensional rendering of the cyclic peptide in
licorice, also showing the surface of the TKEQ epitope. Colors are assigned by residue name,
with glycine in white, cysteine in yellow, threonine in dark pink, lysine in cyan, glutamate
in light pink, and glutamic acid in orange. (c) Ball and Stick (CPK) rendering with color
assigned by the atom identity.
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2 Results and Discussion

Using our previously developed epitope prediction algorithm (25 ), amino acid sequence

EKTKEQ (residues 57-62 in α-synuclein) was predicted as a misfolding-specific epitope (28 )

(Fig. 10). To dissect the key amino acids in this epitope, we have analyzed three separate

contiguous sequences subsumed by the epitope, namely EKTK, KTKE and TKEQ.

2.1 Comparing ensembles in reduced conformational space

In order to determine epitope scaffolds that may be capable of eliciting antibodies that are

conformationally selective to soluble oligomers, the conformational ensemble of an epitope in

a cyclic peptide scaffold is compared with three other ensembles of the epitope, namely, the

monomer, fibril, and the stressed (partially disordered) fibril. The stressed fibril is taken as

a proxy for the conformational ensemble of the epitope in a soluble oligomer, as successfully

demonstrated previously (23 , 24 ). A desired cyclic peptide scaffolded epitope construct that

is oligomer-selective would have high ensemble similarity to the stressed fibril, and as well,

low ensemble similarity to the equilibrium fibril and isolated monomer.

To determine the similarity between the four epitope ensembles (i.e. scaffold, stressed

fibril, fibril, and monomer), we first generated these ensembles by performing molecular

dynamics (MD) simulations (see Methods Section 3.3). The conformational similarity of the

epitope between ensembles is quantified in a reduced conformational space of the epitopes

(see Methods Section 3.4). For example, Fig. 2 shows the structural distributions in 1D

for the four ensembles of epitope TKEQ, in two scaffolds. The two scaffolds chosen for this

illustration are cyclo(CGTKEQGGGG) or (1,4)TKEQ, which stands for 1 glycine N-terminal

to the TKEQ epitope and 4 glycines C-terminal to the epitope, and cyclo(CGGTKEQGGG),

or (2,3)TKEQ.

Although information may be lost when projecting high dimensional ensembles to lower

dimension, the distributions in Fig. 2 do illustrate how the ensembles overlap. The fibril

ensemble consists of a predominant sharp spike because of its rigid structure. On the other

hand, the monomer ensemble is broadly distributed because it is natively unstructured and

conformationally diverse. The stressed fibril ensemble distributes around the fibril ensemble

because it is generated by forcing the partial unfolding of fibril by biased MD. Each cyclic

peptide scaffold possesses a different distribution. As well, the stressed fibril, monomer, and

fibril ensembles are slightly different in each case of Fig. 2, because all structural distributions

are distance distributions based on RMSD, which are different for each scaffold ensemble.

From the degree of overlap or similarity between a scaffolded cyclic peptide ensemble and

the other ensembles, we can assess whether the scaffold has the potential to raise oligomer-

selective antibodies while sparing fibril and monomer.

For example, both (1,4)TKEQ and (2,3)TKEQ scaffold ensembles have very low overlap

with the fibril ensemble (3% and 8% respectively) (see Methods Section 3.5). Also, they

both have high overlap with the stressed fibril, where (2,3)TKEQ is somewhat higher than
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(1,4)TKEQ (68% and 47%). The above (low fibril overlap, high stressed fibril overlap) are

desired properties of a conformationally selective immunogen. On the other hand, the scaf-

folds also have high overlap with isolated monomer ensemble, with (2,3)TKEQ having much

higher overlap than that in (1,4)TKEQ (74% and 47%). High overlap with the monomer

ensemble is not a favorable property because of the possibility of targeting healthy protein.

Näıvely from the 1D overlap measure, (1,4)TKEQ may be better than (2,3)TKEQ, since

it has a higher ratio of stressed fibril ensemble overlap to monomer ensemble overlap (1.0

for (1,4)TKEQ vs. 0.92 for (2,3)TKEQ). However, with a more rigorous similarity measure

analysis allowing for higher projected dimensions, and the ranking algorithm in Section 3.8,

(2,3)TKEQ actually ranks higher than (1,4)TKEQ.

The similarity or overlap between ensembles is rigorously quantified by two measures,

Jensen-Shannon Divergence (JSD) and embedding depth (see Methods Section 3.6). JSD

is a measure that represents the dissimilarity between two ensembles, which has been used

previously to compare protein ensembles (29 , 30 ). Embedding depth represents the extent

to which a given ensemble is subsumed by another, i.e. to what extent conformations in

one ensemble are contained within another ensemble. It is a non-reciprocal measure that is

introduced in Methods Section 3.6.1 to compare protein conformational ensembles (see also

Ref. (31 )). For example, the embedding depth of the fibril ensemble within the stressed fibril

ensemble in Fig. 2a is 0.338, because fibril conformations are contained within the stressed

fibril ensemble. Note that embedding depth between two identical ensembles is 0.5, so 0.338

has represented a large degree of embedding. On the other hand, the JSD between the

two ensembles is 0.984, which represents two almost completely dissimilar ensembles. The

efficacy of a scaffold to target a conformational species may thus likely be better represented

by the embedding depth than the JSD.

2.2 Scaffold screening criteria and scaffold ranking

In Section 2.1, we showed that the various similarity measures that we had defined between a

scaffolded cyclic peptide epitope and other ensembles can be optimized within the glycindel

sequence space by varying the number of flanking N-terminal and C-terminal glycines (See

Methods Section 3.2). The ensemble overlap of a given epitope with other ensembles can be

tuned by changing the scaffolding residues. We thus computationally constructed 4×4 = 16

scaffolds for each epitope, corresponding to the epitope being flanked by anywhere between

1 and 4 glycines on each terminus or “side”, or 16×3 = 48 total for epitopes EKTK, KTKE,

and TKEQ.

Fig. 3 shows the results for three α-synuclein epitopes; EKTK, KTKE and TKEQ, illus-

trating changes that can occur in ensemble similarity across all 48 scaffolds, as measured by

Jensen-Shannon Divergence JSD (see Methods Section 3.6.2), embedding depth DA|B (see

Methods Section 3.6.1) and off-pathway target criteria OP (see Methods Section 3.7), by

varying the number of flanking N-terminal and C-terminal glycines. Detailed values are in

Table S1. The changes in the values corresponding to the fibril ensemble (JSDcyclic-fibril, and
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(a) (1,4)TKEQ scaffold (b) (2,3)TKEQ scaffold

Figure 2: The equilibrium ensemble distributions for the TKEQ epitope projected by the
multidimensional scaling (MDS) method (32 ) onto the first MDS dimension. For a given
epitope, different cyclic peptide scaffolds possess different distributions, which will result
in different overlap with the other three ensembles. By comparing the degree of ensemble
overlap, the conformational selectivity of a scaffold can be assessed. The scaffolds shown are
(1,4)TKEQ in panel (a), and (2,3)TKEQ in panel (b).

Dcyclic-in-fibril) are all very small on the scale of the plots, so they appear to remain unchanged

across all scaffolds. In practice, this means that these two criteria do not contribute signifi-

cantly to the ranking between scaffolds. For epitopes EKTK and KTKE, there is a generally

decreasing trend of JSD with increasing scaffold length (total residue number in the cyclic

peptide), and a generally increasing trend for D with increasing scaffold length. These trends

are less significant for epitope TKEQ. We address this phenomenon further in Section 2.4.

The difficulty in manually assessing good scaffolds from multiple similarity measures led

us to apply a systematic ranking method for the selection of the best performing scaffolds.

The performance of each scaffold is assessed by 7 ranking criteria, including JSDcyclic-fibril,

JSDcyclic-monomer, 1-JSDcyclic-stress, 1-Dcyclic-in-fibril, 1-Dcyclic-in-monomer, Dcyclic-in-stress and OP (the

off-pathway target criterion). We formulate the ranking such that large values in all crite-

ria are desired, so we thus subtract some JSD values from 1 is to convert dissimilarity to

similarity, and we subtract some and D values from 1 to convert similarity to dissimilarity.

Scaffolds are ranked using the SMAA-TOPSIS algorithm (27 ) using these 7 criteria (see

Methods Section 3.8). In the ranking algorithm, each criterion is assigned a weight for its

relative importance; The weights used here are given in Table 1. Since JSDcyclic-monomer

and 1-Dcyclic-in-monomer both represent the effect of monomer dissimilarity, the importance of

monomer in the ranking amounts effectively to the sum of the two weights. The same applies

to 1-JSDcyclic-stress and Dcyclic-in-stress, as well as JSDcyclic-fibril and 1- Dcyclic-in-fibril. Thus, the

importance respectively for fibril, monomer, stressed fibril, and off-pathway target criteria

are 2, 2, 1, 1.5. The ranking for all 48 scaffolds is shown in Table S1. Such a ranking provides
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a therapeutic development strategy to predict which cyclic peptide scaffolds may be most

promising to use in an active immunization for antibody generation to oligomer targets of

α-synuclein.

Figure 3: Measures for the rankings of all 16 epitope scaffolds, for three overlapping 4 residue
sub-epitopes of EKTKEQ in α-synuclein (top of each column). (a) Scaffolded cyclic peptide
ensemble dissimilarity to monomer (triangle), fibril (star), and stressed fibril (circle) ensem-
bles, as measured by Jensen-Shannon Divergence (JSD), showing the changes in ensemble
overlap with varying numbers of flanking glycines. (b) Scaffolded cyclic peptide ensemble
embedding depth within the monomer (triangle), fibril (star), and stressed fibril (circle)
ensembles, showing the changes in ensemble embedding with varying number of flanking
glycines. (c) Normalized off-pathway targeting values (OP) for scaffolds with varying num-
ber of flanking glycines. Higher values indicate there is less predicted off-pathway targeting
by a given scaffold. The ranks of the top 10 scaffolds are indicated in the figure panels, along
with the rank for the highest ranking scaffold (15) for epitope KTKE.

2.3 Embedding depth as a similarity measure compared with JSD

The various ensemble similarity measures are compared with each other in Fig. 4, which

shows matrices of the Pearson’s correlation coefficient values, across all the scaffolds in
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Table S1. JSD and embedding depth D are compared for all scaffolds, along with three

other scaffold properties: Root Mean Squared Fluctuation of the epitope (RMSF), scaffold

total residue length, and the ranking of each scaffold. JSD is calculated between ensembles

by weight averaging values from 3 to 11 dimensions as described in Section 3.6.2; Embedding

depth D is calculated in 3-dimensions (3D) as described in Section 3.6.1. The three JSDs

(JSDcyclic-stress, JSDcyclic-fibril, JSDcyclic-monomer) have mutually positive correlations, as shown

in the top-left 3 × 3 matrices in Fig. 4a, b and c. This indicates that these JSD values

may have implicit dependencies on one another and may contain some degree of redundant

information. For epitope TKEQ, the JSD correlations between cyclic peptide ensembles and

fibril, stressed fibril, and monomer ensembles may result at least in part from their flexibility,

i.e. more flexibility of a cyclic peptide allows more conformational diversity, allowing in turn

for more similar conformations to the other ensembles, reducing the JSD. Conversely, a rigid

scaffold would have a narrow structural distribution, and thus minimal overlap with any of

the other ensembles, resulting in larger JSD. The JSD values of various scaffolds thus have

strong negative correlation with the RMSF for this epitope (8th column/row in Fig. 4c). This

anticorrelation of RMSF with JSD is recapitulated partially by the (weaker) correlation of

RMSF with D. This effect may indicate a systematic deviation of conformational similarity

for scaffolds of this epitope, and may suggest better targeting can be achieved for EKTK

and KTKE, where the anti-correlation of JSD with RMSF is less significant.

Embedding depth can help elucidate the implicit effects of scaffold rigidity. A rigid

scaffold that is deeply embedded within the stressed fibril would be a desirable candidate.

Compared across scaffolds for a given epitope as in Fig. 4, an anticorrelation between Dc|s and

RMSF would be ideal for oligomer targeting. This is not observed for any of our epitopes,

but the correlations are not significant for EKTK and KTKE, (p = 0.33 and p = 0.25) while

for TKEQ the significance of the correlation of 0.76 is p = 0.0007. It is also worth noting

that we are integrating a significant amount of information when investigating correlations

across all scaffolds for a given epitope, in order to compare one epitope with another. The

variance scaffold to scaffold for a given epitope is sufficiently large to allow for highly ranked

scaffolds for any of the epitopes. That said, the median rankings for EKTK, KTKE, and

TKEQ are 10.5, 37.5, and 25 respectively, and 9 of the top 10 scaffolds are for EKTK.
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Figure 4: Correlation matrices of the ensemble comparison metrics JSD and D, and three
other scaffold properties: Dynamic flexibility (RMSF) of an epitope, total residue length of
the cyclic peptide scaffold, and the ranking, for α-synuclein epitopes (a) EKTK, (b) KTKE,
and (c) TKEQ. The number in each square is the Pearson correlation coefficient.

2.4 Scaffold properties and their impact on performance

The top 5-ranked scaffolds—(1,3)EKTK, (2,3)EKTK, (3,2)EKTK, (1,2)EKTK, and (2,3)TKEQ—

all have substantially lower JSDcyclic-stress than JSDcyclic-monomer, higher Dcyclic-in-stress than

Dcyclic-in-monomer, and high off-pathway (OP) target values (less off-pathway target sever-

ity) (Fig. 3 and Table S1). JSDcyclic-fibril is approximately 1 for all scaffolds, and likewise

Dcyclic-in-fibril ≈ 0, so these screening criteria cannot discriminate scaffolds.

We found that scaffolds with more residues tend to have smaller JSDs, and larger embed-

ding depths D (Fig. 3 and Fig. 4 “length” row/column). The trend is particularly apparent

for EKTK scaffolds. It is likely that this trend is due to scaffold rigidity, since larger cyclic

peptides have less structural constraint and more flexibility, allowing them to have higher

overlap with the other disordered ensembles. On the other hand, while RMSF correlated

positively with peptide length for all epitopes, only TKEQ achieved statistical significance

(Fig. 5a), suggesting that the primary sequence of the epitope is as important as scaffold

size in determining its dynamics and flexibility, and thus its potential similarity to other en-

sembles. As another indicator that primary sequence determines epitope properties, scaffold

size itself does not correlate significantly with a scaffold’s ranking performance for TKEQ

and EKTK (Fig. 5b), primarily because it is the relative overlap with the stressed fibril and

monomer ensembles that determines the ranking. For KTKE, the correlation of scaffold size

with ranking is such that smaller scaffolds tend to perform significantly better (Fig. 5b),

mostly because the strongest trend with increasing scaffold length is increased overlap with

the monomer ensemble (Fig. 3), which is an undesirable trait. The rankings themselves for

KTKE are generally lower than those for the other two epitopes.

Plotting the scaffold rank vs. the difference in the JSDcm−JSDcs, as well as the difference

Dc|s−Dc|m (Fig. 5c,d) gives an indication of the importance of the relative overlap between the
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stressed-fibril vs. the monomer ensembles. Both abscissae in Fig. 5c,d are plotted as desirable

quantities—the larger the value, the better the performance (higher rank or lower numerical

rank value). For epitopes EKTK and KTKE, there is a significant correlation between a

scaffold’s rank and these relative overlap measures. For epitope TKEQ, the correlation is

not significant however, essentially because the variation in the off-pathway (OP) target

criterion strongly affects the ranking for this epitope. This can be seen by retaining only

those TKEQ scaffolds with OP above a threshold such as 0.85 for example, and measuring

the correlation for this reduced, filtered dataset. This reduced dataset consists of 11 out of

16 scaffolds and yields r = −0.68, p = 0.019 in Fig. 5c and r = −0.88, p = 0.0002 in Fig. 5d.

Figure 5: Epitope-dependent correlation between (a) RMSF and scaffold length (number
of residues in the scaffold), (b) ranking and scaffold length, (c) rank and the quantity
JSDcm−JSDcs, and (d) rank and Dc|s−Dc|m, for α-synuclein epitope scaffolds. The Pearson
correlation coefficient, r and the corresponding p-values are given for EKTK (green trian-
gles), KTKE (purple circles) and TKEQ (blue stars) scaffolds. The shaded areas around the
fitted lines are the 68% confidence intervals corresponding to the standard errors.

Some epitopes tend to have better performance than others. EKTK and TKEQ scaffolds
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are generally ranked higher than KTKE scaffolds. As mentioned above, the median rankings

for EKTK, TKEQ and KTKE are 10.5, 25, and 37.5 respectively. For the top 20 scaffolds,

there are 12 EKTK scaffolds, 6 TKEQ scaffolds, and only 2 KTKE scaffolds, and 9 of the

top 10 scaffolds are for EKTK, with only one TKEQ scaffold ranked 5th (Fig. 3). The poor

performance of KTKE scaffolds appears to be due to their systematically lower structural

similarity to the stressed fibril than to the unstructured monomer ensemble, as shown in

Fig. 3. The higher monomer similarity may itself be due to the higher conformational

flexibility (RMSF) of KTKE scaffolds, which is roughly twice as high on average as the

RMSF of epitopes EKTK or TKEQ (Fig. 5a). I.e. flexibility in the scaffold construction

could favor greater similarity to the monomer ensemble, because the monomer ensemble is

inherently more conformationally diverse than that of the stressed fibril.

Since a cyclic peptide has an inherent curvature which may more strongly resemble the

conformations of an epitope in a turn or bend, the averaged virtual bond angles representing

the local curvatures of epitopes in the stressed fibril ensemble are calculated and compared.

The virtual bond angle is defined as π− 6 Cα
i−1C

α
i C

α
i+1 in the kink model (33 –35 ), where Cα

i

is the Cα atom of the ith amino acid. This angle has been shown to represent curvature in

the continuum limit (36 ). However, the curvature of KTKE (1.13±0.14) is not significantly

lower than that of EKTK (1.18 ± 0.18) or TKEQ (1.10 ± 0.16). As a result, the curvature

itself does not explain the lower performance of KTKE.

2.5 Finding potential off-pathway targets

It is desirable to avoid off-pathway targets to minimize unwanted side-effects. To find the

prevalence of unwanted targets in the proteome for a given epitope, we search through the

RCSB database of resolved protein structures, to find proteins that might be potential off-

pathway targets of antibodies that could be generated by each cyclic peptide scaffold (see

Methods Section 3.7).

To illustrate the procedure, we demonstrate the off-pathway target analysis of (1,4)TKEQ

scaffold here. Fig. 6a shows the scaffold ensemble for (1,4)TKEQ, projected on the first MDS

coordinate, along with all entries of the human proteome having known PDB strutures and

containing TKEQ motifs. The degree a PDB entry is embedded in the cyclic peptide ensem-

ble is quantified as the embedding depth Doff-target-in-cyclic, and is recorded as a percentage.

Note that Fig. 6a is only for visualization; The formal calculation of embedding depth,

Doff-target-in-cyclic, is performed in 5 dimensions (5D). Nevertheless, we can see from this figure

that the epitope in the context of the various PDB structures is conformationally distinct

from the epitope in the context of the cyclic peptide.

Fig. 6b indicates the distribution of the SASA for the (1,4)TKEQ ensemble, along with

the SASA of TKEQ for all PDB entries in the human proteome with TKEQ motifs. The

SASA of the scaffolded cyclic peptide ensemble ranges from 400Å2 to 600Å2, and serves as

a good reference from which to compare. The fraction of the cyclic peptide ensemble that

has lower SASA than a given PDB entry is defined as f(SASAoff-target-exceed-cyclic).
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We apply cutoff thresholds of 5% for both Doff-target-in-cyclic and f(SASAoff-target-exceed-cyclic)

to all PDB entries containing the epitope. In the case of (1,4)TKEQ, two PDB entries

(1XQ8 (37 ) and 2KKW (38 )) show both noticeable structural similarity (Doff-target-in-cyclic >

5%) and solvent exposure (f(SASAoff-target-exceed-cyclic) > 5%) relative to the (1,4)TKEQ

ensemble (Fig. 6c and (1,4) entry in Fig. S2c). Other off-pathway targets identified for all

scaffolds can be found in Fig. S2. Many off-pathway targets, including 1XQ8 and 2KKW

above, are themselves deposited structures of monomeric α-synuclein. Fibril PDB entries of

α-synuclein are excluded from the off-pathway target criterion calculation to avoid double

counting the contribution of fibril to the ranking. Of the many α-synuclein fibril structures

in the PDB, the only one identified as an off-pathway target by the above cutoff criteria

was 2N0A, which happens to be the PDB entry we used to generate the fibril ensemble

and perform epitope prediction. On the other hand, the structured monomer entries still

contribute to the off-pathway target criterion because they are distinct from the simulated

monomer ensemble. These monomer PDB entries are partly structured (containing α-helices)

by binding to micelles (e.g. PDB 2KKW and 1XQ8), and are thought to be involved in

various aspects of α-synuclein physiology (37 –42 ). Thus, membrane-bound PDB monomer

structures are treated separately from the unstructured isolated monomer ensemble.

Figure 6: Off-pathway target analysis for (1,4)TKEQ. (a) Structural ensemble distribution of
cyclic peptide (1,4)TKEQ in 1D along the first MDS component of the ensemble, along with
the projected embedding of potential off-pathway targets. Most of the off-pathway targets
are located at the periphery of the scaffold distribution. The actual calculation is performed
in 5D. Structures of PDB entries 2KKW and 1XQ8 are rendered in ribbon schematics,
and the epitope is rendered in red Van der Waals surface. (b) The SASA distribution of
(1,4)TKEQ, along with the SASA for the off-pathway target structures. (c) Only 1XQ8 and
2KKW show both noticeable structural similarity (Doff-target-in-cyclic(5D) > 5%) and SASA
exposure (f(SASAoff-target-exceed-cyclic) > 5%)
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2.6 Cyclic peptides with predicted conformational similarity to

experimentally determined fibrils most effectively seed fibril

aggregation

Conformational cyclic peptide scaffolds showed seeding activity in ThT aggregation as-

says (Fig. 7). Cyclic peptides that were predicted to have the highest conformational sim-

ilarity to fibrils showed the most effective seeding activity. This supports the ranking by

conformational similarity method proposed here. The two replicates of seeding experiments

in Fig. 7 showed dramatically different patterns of the aggregation. The data for both runs

were well-fit by an aggregation model including primary nucleation, elongation, and frag-

mentation (Fig. S4). The rapid upswing of the aggregate concentration in run2 is due to a

much larger global fragmentation rate than run1 (krun1
− = 1.479×10−5 conc−1hr−2 vs. krun2

− =

2765 conc−1hr−2).

Because the experimental assay is agnostic to α-synuclein fibril structure, the conforma-

tional similarity was investigated for multiple fibril structures of α-synuclein in the PDB.

The embedding depth Df |c of multiple PDB fibrils in each cyclic peptide ensemble is calcu-

lated. Different cyclic peptides may seed different fibril structure morphologies or strains.

We also assume the nucleation rate as determined by the model fitting may vary between

different replicates (experimental runs), due to a number of experimental factors including

evaporation and low signal for run 1, as mentioned in the Methods, as well as the possibility

that a different fibril morphology may drive aggregation in each replicate.

We calculate the embedding depth Df |c of 32 α-synuclein fibril structures deposited on

the RCSB PDB and containing the sequence motif “EKTKEQ”. The procedure of the depth

calculation is the same as treating each fibril PDB as an off-pathway target. Embedding

depth is averaged over all instances of the epitope in each chain (typically 2 or 3 depending

on the sequence), and over all chains in the fibril. Table S2 summarizes the values of Df |c
between each of the 32 fibril structures and each of the cyclic peptide ensembles for the 6

cyclic peptides examined in the seeding assay. The depth of the PDB fibrils in the monomer

(the last column in Table S2) is also calculated, which provides the background nucleation

propensity for all the cyclic peptide seeds.

We readily notice from Table S2 that the embedding depth of fibrils in peptides P21 and

P48 is essentially zero, and these are also the worst nucleating seeds in the assay in run1, and

are the worst and 2nd worst seeders on average. We also notice that the embedding depth

of fibrils in peptide P2 is clearly the highest, and it is also the best seeder in the experiment.

This conclusion is robust across both replicates of the experiment, despite variability in other

aspects such as nucleation rates (Fig. S4).

When averaged over all fibrils, 〈Df |c〉 shows good agreement with the nucleation rate,

especially in run 1 (Table S2). This suggests the possibility that multiple fibril morphologies

or strains may be seeded by the cyclic peptides, commensurate with their embedding depth.

From the embedding depth analysis in Table S2, fibril structures that may be predicted to

perform better at seeding aggregation can be identified as having a monotonic increase in
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Df |c in the same rank order as the increase in observed nucleation rate kn. We may also

predict a fibril structure is a reasonably good seeder if it has no more than 1 violation of

this increasing trend. We found that run1 and run2 shared three of these candidate seeding

structures (6OSM, 6CU7, and 6OSJ). This number does not reach statistical significance

however (the expected number of shared structures under the null hypothesis is 2.18; p-

value of having 3 shared better seeder is 0.090).

As mentioned above, the two replicates of the experiment (run 1 and run 2) had different

degrees of evaporation rate and signal, and showed variability in nucleation rates and global

fragmentation rates. However, both had the same positive (P2) outlier (Fig. S4). In addition

to experimental variability, this may also be due to different fibril morphologies that were

nucleated stochastically in each of the experiments. As well, expecting our similarity metrics

to perfectly explain the seeding experiment would implicitly assume that the cyclic peptides

should act as on-pathway fibril seeds. However, this property is not equivalent to the ranking

criteria that were used above. This discrepancy is discussed further in Section 2.10 below.

The imperfect correlation between predicted fibril conformational overlap and observed nu-

cleation rates in these experiments may be due to the fact that the cyclic peptides can also

template off-pathway oligomer formation, which could frustrate the formation of fibrils, lead-

ing to lower fluorescence signal (14 ). Further experiments extending the preliminary data in

this pilot study would be necessary to elucidate the molecular seeding mechanisms at play.

The criteria in the assay for seeding aggregation are distinct from the criteria for ranking

cyclic peptides as immunogens for oligomer-selective antibodies. The above seeding exper-

iment is thus not an ultimate proof of the ranking method described in this paper, which

would be the successful production of conformation-specific antibodies using the computa-

tional methods to select top candidates from a pool of candidate antigen-presenting peptides.

Rather, the analysis of the seeding experiment provides a plausible explanation of the seeding

activity through the same similarity metrics used in the glycindel ranking.

Figure 7: Two replicate experiments (run1 and run2) of seeded aggregation, as probed by
ThT fluorescence. Curve fitting is obtained from the AmyloFit server (43 ).
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2.7 Weighting the importance of ensemble properties

Ranking the peptide “glycindel” scaffolds here involved extensive conformational analysis

and a ranking procedure with weighted criteria based on this analysis. Assigning appropriate

weights for each criterion is a non-trivial task, which depends on biological intuition, and

analyzing the consequences arising from screening criteria with a given set of weights. For

this specific ranking, we put twice the weight on dissimilarity from the fibril and the monomer

than similarity to the stressed fibril. We chose this weighting scheme because the stressed

fibril ensemble generation process contains more prior assumptions, in which we hypothesize

that a partially disordered fibril ensemble is enriched in oligomer-selective conformational

epitopes.

The fibril ensemble is obtained by generating the “native basin” ensemble of the solid-

state NMR resolved structure (PDB entry 2N0A). The monomer ensemble is obtained by

generating disordered conformations of an isolated monomer of α-synuclein. The confidence

in the accuracy of the fibril ensemble and monomer ensemble are greater than that of the

stressed fibril oligomer model ensemble. The off-pathway target criteria have a slightly higher

weight than the similarity of stressed fibril, because minimal off-pathway target effects are

desired and are key feature of monoclonal antibody therapy.

2.8 Other possible scaffold design strategies

The in silico screening method introduced in this paper can generally be applied to

various different scaffolding methods. There are many other scaffolding methods that have

been previously developed (44 –48 ) besides cyclizing the epitope with a variable number of

glycine residues. Apart from these methods, several possible extensions of glycindel cyclic

peptide scaffolding method may be directly implemented. For example, proline can be used

for scaffolding in addition to glycine, since it is relatively inert chemically compared to

other amino acids, and it is also able to constrain the cyclic peptide ensemble by adding

conformational rigidity (49 ), which may be exploited to bias the scaffolded ensemble more

effectively towards the stressed fibril ensemble. Large-scale computational design, which

explores a vastly larger phase space of possible sequences, may also be implemented, e.g.

through Rosetta (44 , 50 ). We have not pursued these design methods here, mainly because

of the criterion to avoid antigenic sequence outside of the epitope of interest.

While not common, epitopes of disease-specific antibodies may occasionally involve two

or more requisite, discontiguous segments along the primary sequence of the peptide chain.

Such a scenario arises, for example, in the anti-tau antibody zagotenemab, whose murine

precursor was raised from purified paired helical filaments as an immunogen (51 ). Selective

presentation of discontiguous epitopes can be facilitated by structural fixation of peptides,

e.g. using cysteine–benzyl bromide chemical linkages (52 ). The antibodies raised by cyclic

peptide glycindel scaffolds would not have this property. Many other disease specific anti-
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bodies in clinical development for Parkinson’s disease (53 ) as well as other neurodegenerative

diseases (1 ) similarly target contiguous epitopes.

Cyclic and multicyclic peptide mimics of antibodies have been developed to help re-

solve the challenges of high production cost, structural stability issues, and low cellular

uptake efficiency (54 –56 ). Cyclic peptide loop length has also been varied and performance

compared between 3 cyclic peptide constructs, to best mimic an anti-idiotypic/antireceptor

antibody (57 ), and cyclic peptide mimics of transthyretin (TTR) have shown cyclization

and loop length dependence in their efficacy to block Aβ aggregation (15 ). The confor-

mational similarity methods and ranking method that we have developed here should have

direct application to these areas of research. Cyclic peptide ensembles can be constructed ab

initio, while collecting ensembles for larger protein complexes (e.g. an antibody with given

paratope sequence) would typically require an experimentally resolved structure or reliable

prediction such as an AlphaFold model (58 ).

Different carrier proteins that conjugate to the scaffolded epitope such as nanoparti-

cles or lipid micelles have also been successfully implemented previously (59 –62 ). Sim-

ilarly, a linear peptide epitope of CGTKEQGGGG conjugated to a much larger carrier

can be simulated as a peptide with cysteine SG atom spatially fixed at x = 0, and a

boundary constraint such that it is forbidden to access the half-space region x < 0. Such

a peptide in fact exhibits desirable ensemble overlap properties (Densemble-in-monomer=0.142,

Densemble-in-stress=0.207, Densemble-in-fibril=0.000). Thus, conjugating on a non-interacting sur-

face might be sufficient to modify the ensemble of the epitope to mimic the model oligomer.

The above possible extension strategies are interesting future tests for computational and

experimental studies.

2.9 Previous applications of glycindel scaffolds

The glycindel scaffolding method has been applied to raise oligomer-selective antibodies

to Aβ in a previous study (23 ), though we did not pursue a systematic ranking or opti-

mal glycindel in this previous work. In Silverman et al. (23 ), an Aβ epitope containing

the primary sequence SNK and predicted to be selectively exposed on oligomers (63 , 64 ),

was glycindel-scaffolded into two cyclic peptides: Backbone cyclized cyclo(CGSNKGG) and

disulfide-bond cyclized cyclo(CGSNKGC). Ensemble similarity analysis of the two cyclic

peptides showed low overlap with both Aβ fibril and monomer ensembles (23 ), and antibod-

ies raised to the cyclic peptides exhibited oligomer-selectivity. Similarly, in another previous

work (24 ), a predicted oligomer-selective epitope on Aβ (63 ) containing primary sequence

HHQK was glycindel-scaffolded using cyclo(CGHHQKG), which when used as an immunogen

could also raise an oligomer-selective antibody. A systematic test of the screening method

described in this work has not yet been performed; It would involve immunization and an-

tibody generation from both low-ranked and high-ranked glycindels, and a successful test

of conformational selectivity wherein oligomer-selective antibodies arose from highly-ranked

glycindels but not low-ranked glycindels.
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In currently ongoing work, antibodies have been raised to α-synuclein using four highly-

ranked glycindel peptides, cyclo(CGGGEKTKGG), cyclo(CGGGGEKTKGG), cyclo(CGTKEQGGGG)

and cyclo(CGGTKEQGGGG). These antibodies show conformational selectivity toward α-

synuclein oligomer and soluble pre-formed fibrils, while sparing healthy monomer. The above

proposed glycindels are not the top-ranked ones in this study however, since at the time the

antigens were selected, the embedding depth as a screening metric was not developed. The

success of these glycindels based on more preliminary screening criteria implies some plas-

ticity in the ensembles explored by the glycindels, and thus likely some leniency in selecting

the best candidates.

2.10 Evaluating the assumptions of the collective coordinate pre-

diction of the EKTKEQ epitope in α-synuclein

There are several alternative α-synuclein fibril structures with different polymorphs de-

posited in RCSB protein data bank (PDB) (www.rcsb.org) that we could have used for this

study (e.g. PDB entries 6CU7, 6CU8, 6H6B and 6FLT), which raises the question of whether

the same epitopes would have been predicted with these alternative structures. There is a

precedent for some oligomer-selective epitope commonality among polymorphic Aβ fibril

structures (63 ). The single protofilament solid-state NMR structure of the α-synuclein fib-

ril (PDB ID: 2N0A) used here for epitope prediction is similar to both the dominant rod

(PDB ID: 6CU7) and twister (PDB ID: 6CU8) polymorphs for 38 matched residues of the

α-synuclein fibril structures, with an RMSD of 3.5Å and 3.8Å, respectively (65 ). Another

cryo-EM structure of a truncated α-synuclein fibril, which includes the first 121 residues

(66 ), has also been shown to have structural similarity to the rod polymorph with an RMSD

of 2.1Å (65 ). These similarities between the aggregating units of different polymorphs of α-

synuclein suggests that there may be some commonalities in collective coordinate-predicted

epitopes. That said, the fact that these other fibril structures did not appear as strong hits

in our off-pathway analysis suggests that if there was overlap in the exposed epitopes, the

oligomer conformational ensemble would not be well-modelled by any of the cyclic peptides

we investigated. Systematic analysis of the predictions for these structures would have to be

done to validate this hypothesis, and is a topic for future work.

In the context of Alzheimer’s disease, both on-pathway or off-pathway oligomers have

been associated with Aβ-derived toxicity (67 –69 ). A similar situation arises in Parkinson’s

disease, wherein both oligomeric and fibrillar species have been associated with cytotoxic-

ity (70 ). Some studies have shown that at least some off-pathway oligomeric species are

relatively inert, and that oligomers conducive to fibril formation are cytotoxic (71 ), while

other studies have shown that small molecules can alter the conformations of off-pathway

α-synuclein oligomers to species that are non-toxic (72 , 73 ). The issue of optimizing thera-

peutic strategies by targeting on-pathway or off-pathway oligomers is an important one that

is an area of current active research.

Using a stressed fibril for the prediction of oligomer-selective epitopes may appear to
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imply that the predicted epitopes are present in conformations that are on-pathway to fibril

formation. However, the main assumption in the collective-coordinates prediction method

is only that those segments of primary sequence that are prone to exposure in a stressed

fibril will also be prone to exposure (and thus antibody accessible) in an oligomer. To

investigate the generality of such collective coordinate-predicted epitopes, we examine the

solvent accessible surface area (SASA) as a function of sequence for 5 α-synuclein fibril

polymorphs chosen based on their structural dissimilarity (Fig. 8g). The SASA as a function

of sequence index is plotted in Figs. 8a-e, and the region consisting of sequence index 57-62,

corresponding to the collective-coordinates-predicted epitope EKTKEQ, is highlighted in

the figures. The SASA averaged over all 5 structures is also plotted in Fig. 8f, where it can

be observed that the 6 amino acid epitope region has the largest SASA of all such regions

across the primary sequence.

Because distinct fibril morphologies are not observed to readily convert due to large

interconversion barriers (70 ), the above result implies that the epitope is either a.) A generic

on-pathway to fibril epitope, which happens to be largely independent of the particular

aggregated structure, or b.) A generically exposed region of aggregated structures, oligomer

or fibril, based on physico-chemical grounds of charge, hydrophilicity, and weakly stabilizing

interactions. The collective coordinates-predicted epitopes may be more broadly applicable

than the fibril structure from which they were derived, and antibodies to them do not

necessarily select for conformations on-pathway to the fibril. (23 , 24 ) In the context of

natively folded proteins, antibodies to collective coordinates-predicted epitopes of SOD1,

which misfolds and aggregates in SOD1-related ALS, do not target native protein or nearly

folded variants, but rather are selective to pathological inclusions.
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Figure 8: The α-synuclein epitope, EKTKEQ, is found to be highly exposed in
five structurally distinct fibrils. (a-e) Averaged SASA as a function of residue position.
A rolling average window of 6 amino acids was applied. The window that contains EKTKEQ
(residues 57-62), as indicated by the red line, exceeds more than 80% of the other windows
in all fibril structures analyzed. The shaded region contains the rolling average values for
residues 57-62. In each panel, a single chain of each fibril structure is aligned and rendered
to show their structure heterogeneity. (f) The average SASA across all 5 fibrils. The epitope
region has the highest average SASA across the whole structured sequence. (g) The pairwise
local distance test (lddt) (74 ) shows that the analyzed fibrils are all mutually dissimilar.

2.11 The role of glycindels in therapeutic development pipelines

The in silico immunogen screening method developed here provides an additional route

to aid the development and optimization of a peptide immunogen that can be faster and

cheaper than experiments. Experimental screening methods can then be performed on a

subset of top-ranked scaffolds to save available resources. Some examples of downstream

in vitro screening experiments are Thioflavin T (ThT) aggregation assays (24 , 75 , 76 ) (see

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2022. ; https://doi.org/10.1101/2021.09.13.460126doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.460126
http://creativecommons.org/licenses/by-nc-nd/4.0/


Section 2.5), surface plasmon resonance (SPR) assays to measure binding affinity to anti-

bodies and conformational selectivity (27 ), and Förster resonance energy transfer (FRET)

assays (77 ) to measure aggregation tendency, since scaffolds that can trigger aggregation of

normal α-synuclein may have more contribution to the pathology because of greater seeding

propensity. These in vitro assays are typically followed by various in vivo studies as part of

pre-clinical development. The ability to use computationally generated conformational en-

sembles as a screening method for candidate immunogens can aid and accelerate therapeutic

development.

3 Methods

Figure 9: The workflow of in silico screening.

3.1 α-synuclein epitope prediction

In our approach, we operate from the hypothesis that a partially disordered protofibril

ensemble is enriched in oligomer-selective conformational epitopes. That is, similar regions

are exposed in both toxic oligomers and stressed protofibrils. If so, the stressed fibril may

be used to predict oligomer-selective epitopes. This hypothesis is supported by previous in

vitro and in vivo evidence (23 –25 ).
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The EKTKEQ epitope in α-synuclein was predicted by the Collective Coordinate (CC) al-

gorithm, which has been used previously to predict misfolding-specific epitopes in superoxide

dismutase 1 (SOD1) (25 ). The CC algorithm predicts epitopes by identifying local unfolding

events when a global denaturing stress is applied, where regions of a protein or multi-protein

aggregate deviate structurally from their native structural conformation. Three metrics are

used to measure local disorder: increased solvent accessible surface area (∆SASA), loss of

native contacts (∆Q), and increased root mean squared fluctuations (∆RMSF).

The procedure for predicting an epitope involves implementing a global unfolding po-

tential, which biases the system to have 0.65 of its total native contacts. Ten independent

biased ensembles of an α-synuclein fibril structure (PDB ID: 2N0A) using the CC algo-

rithm, as well as a single “native basin” ensemble of the fibril using molecular dynamics

(MD) simulation (25 ), are generated to calculate ∆SASA, ∆Q and ∆RMSF. The “native

basin”ensemble serves as a reference for calculating the above three difference values. Mul-

tiple independent biasing simulations were performed in order to ensure consistency in the

regions of the fibril structure that are observed to have relatively higher values of ∆SASA,

∆Q and ∆RMSF, thereby avoiding predictions based on rare fluctuations that might be

present in a single biased simulation.

Fig. 10 bottom panel shows the sequence motifs larger than 3 amino acids that are pre-

dicted as epitopes by each of the three metrics, for each of the 5 chains in the protofibril

structure (PDB 2N0A). Several epitopes were predicted by each metric; however, the cons-

esus epitope EKTKEQ is predicted by all the three metrics, and was taken as the final

predicted epitope for α-synuclein (Fig. 10 top panel).
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Figure 10: Collective coordinate epitope prediction for α-synuclein, using three criteria of
increased SASA, loss of native contacts, and increased fluctuations (RMSF). Several epitopes
were predicted by each criterion; however, only a single consensus epitope EKTKEQ was
predicted. Chain E is not shown for ∆SASA because no epitope is predicted.

3.2 Scaffolding of epitopes

We scaffold epitopes by constructing cyclic peptides containing both the epitopes and a vari-

able number of glycines. We refer to the resulting scaffolds as glycindels. First, the predicted

epitope (EKTKEQ), or a shorter sequence that is subsumed by the epitope such as EKTK,

is flanked on both sides with consecutive glycines. This is implemented computationally by

mutating the native flanking residues to glycine using SCWRL4 (78 ). In addition, one more

residue is mutated to cysteine on the N-terminal side of the sequence. Although, in principle,

other amino acids or a combination thereof can be utilized, our choice of using glycines helps

to focus immunogenic effects to just the epitope, since glycine is relatively chemically inert

compared to other amino acids (79 ), and has minimal immunogenicity (80 ). The cysteine

is present to conjugate the peptides to immunogens such as Bovine serum albumin (BSA) or

Keyhole limpet hemocyanin (KLH) via a disulfide bond, increasing the likelihood of gener-
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ating antibodies to the scaffolded epitope. The topology of the cyclic peptide is obtained by

head-to-tail linkage of the termini using a locally written Python script (https://github.

com/PlotkinLab/Backbone-linkage-of-cyclic-peptides).We refer to a cyclic peptide

epitope with n N-terminal glycines and m C-terminal glycines as cyclo(C-Gn-(Epitope)-Gm)

or (n,m)Epitope. The cyclized peptide is then energy minimized in GROMACS using steep-

est descent algorithm, before running equilibrium MD simulations.

3.3 Generation of ensembles

Generally, we collect four different equilibrium molecular dynamics (MD) ensembles for each

epitope. These correspond to the epitope in the context of an isolated monomer, the fibril, the

stressed fibril oligomer model, and the cyclic peptide scaffold. We perform MD simulations

with the open-source GROMACS (81 ) package and the community developed PLUMED

library (82 ). The force field used here for all ensemble sampling is CHARMM36m (83 ),

which is a modified version of CHARMM36 with improved modeling for disordered proteins.

Each epitope ensemble is obtained specifically as follows.

3.3.1 Fibril ensemble

The conformational sampling starts from an existing experimentally resolved α-synuclein

structure determined by solid-state NMR (84 ) (PDB ID: 2N0A). A protofibril composed

of 5 chains (chains A-E of 2N0A) is solvated in 150mM Na and Cl aqueous solution, such

that the system is neutral. After 50ps constant volume (NVT) and 150ps constant pressure

(NPT) equilibrium simulations under positional restraints on heavy atoms, we perform an

equilibration MD simulation up to 100ns until the convergence is seen from RMSD during

the simulation. A 20ns equilibration MD continued from the previous 100ns simulation

is then performed, for collecting the “native basin”ensemble of the fibril, from which we

sample snapshots at 20ps intervals. Only configurations of the middle chains (chain B-D)

are collected in the ensemble, in order to reduce edge effects in the simulation. In total,

the regularly spaced sampling results in 3003 configurations in the fibril ensemble obtained

by this procedure. The above procedures of solvation and NVT-equilibration and NPT-

equilibration are also implemented for the other ensembles described below, before the MD

production runs.

3.3.2 Stressed fibril ensemble

The stressed fibril ensemble is a partially disordered fibril ensemble used to predict confor-

mational epitopes similar to what might be presented by the oligomer. To generate this

ensemble, a time-dependent global bias potential V (Q, t) is implemented to partially unfold

the α-synuclein fibril, where

V (Q, t) =
1

2
k(Q−Qc(t))

2 (1)
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Q in equation (1) is a collective coordinate defined as the normalized count of the native

contacts (25 ): Native contacts are pairs of heavy (non-hydrogen) atoms within 4.8Å of each

other that are in different amino acids labeled by primary sequence residue index α, β, that

satisfy |α − β| ≥ 3, and persist over 5 percent of the time in the first 100ns of equilibrium

fibril simulation. Formally, the collective coordinate Q for any structure characterized by a

set of heavy atom distances, rij, is defined as follows:

Q =

∑N
ij Qij(rij)∑N

ij 〈Qij(rij)〉native
(2)

where

Qij(rij) =
1− (

rij
r0

)n

1− (
rij
r0

)m
(3)

where we take r0 = 4.8Å, n = 6 and m = 12. Equation (3) approaches a step function

for large m and n (for m > n), but is smooth and differentiable (25 ), which is a desirable

property for the contact function. A contact function Qij(rij) is defined for each heavy-atom

pair i, j in the list of native contacts, which rapidly goes to one when rij is slightly lower than

r0 and rapidly goes to zero when rij is slightly larger than r0. The quantity in the numerator

of Q in equation (2) is the sum of Qij in an arbitrary structure, where
∑N

ij is summation

over the native contact list, and the quantity in the denominator is the Boltzmann average

of the Qij in the fibril “native basin” ensemble. Thus, Q is typically a number between zero

and unity.

Qc(t) in equation (1) stands for the target value of the collective coordinate, Q. It is a

time-dependent quantity that starts from a value corresponding to the counts of all native

basin contacts in the fibril metastable equilibrium ensemble (Qc = 1), which is then taken

to linearly decrease with time, from Qc = 1 to Qc = 0.65 over 50 ns. Afterward, the bias is

held fixed at Qc = 0.65 for 150ns. During the last 50ns of this second period when Qc is held

fixed at 0.65, snapshots from the stressed fibril ensemble are collected at an interval of 15ps.

The above process is repeated 10 times, including the ramp down and subsequent biased

equilibration and sampling, to average the stochastic unfolding process of the protofibril

and obtain a reliable biased ensemble. The capping chains at the ends of the fibril are

discarded to avoid edge effects, yielding a total ensemble consisting of 50ns/15ps ∗ 3 chains ∗
10 repeats = 100000 sampled structures. A subset with 3500 configurations is randomly

sampled from the total structural ensemble for efficiency of the calculation. In order to

obtain an ensemble of the epitope that is partially disordered and exposed to solvent, we

add on additional constraint on SASA of the epitope in the ensemble, as follows. Among the

3500 configurations, we further discard those structures that have a lower epitope SASA than

the equilibrium epitope SASA, generating a stressed fibril ensemble with exposed epitope

consisting of 3407 configurations. We note that at this point the epitope has already been

predicted, and the above calculations are for comparison of the stressed/exposed protofibril
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ensemble with cyclic peptide scaffold motifs.

3.3.3 Monomer ensemble

Since α-synuclein is an intrinsically disordered protein (IDP) (85 ), its equilibrium ensemble is

relatively difficult to sample sufficiently by normal MD simulation (86 ). We have previously

developed a method for generating equilibrium ensembles for IDPs (87 ), and have applied

this method to generate equilibrium ensembles for several IDPs such as α-synuclein, Aβ

peptide, and prothymosin α. We have also used the method to model the unfolded ensembles

of natively folded proteins, including disulfide bonded unfolded ensembles such as that for

SOD1 (87 ).

Here, we modify the method in reference (87 ) (which included a coarse-graining step)

to generate an equilibrium monomer ensemble for α-synuclein. We do not employ a coarse-

graining step. The steps involved in our ensemble generation include: 1.) Generation of a

conformationally diverse ensemble via the pivot algorithm and a “crankshaft” move wherein

two randomly selected end points are fixed (87 , 88 ), and 2.) Equilibration of each pivot–

and crankshaft–randomized structure for a short simulation time. The descriptions for these

steps follows.

The initial α-synuclein monomer configuration is obtained by extracting a single chain

from the fibril structure (PDB ID: 2N0A). This structure is then altered by employing a

generalization of the pivot algorithm (89 –92 ), which is an efficient algorithm for generating

ensembles for a self-avoiding random walk, as well as a “crankshaft” move (87 , 88 ) that

randomizes φ and ψ angles between two randomly-selected backbone atoms along the peptide

chain, such that the randomly-selected backbone atoms remain fixed. Pivot moves and

crankshaft moves are attempted with equal probability. If a move results in a steric clash,

it is rejected, and the next randomly selected move is then attempted. We take a simple

approximation wherein φ and ψ are sampled from a (2π periodic) von Mises probability

distribution with mean 0 and variance 1, i.e. ecosφ/(2πI0(1)), where I0 is the modified

Bessel function of order 0. Pivot/crankshaft moves are repeatedly attempted until there

are N successful pivot/crankshaft moves, where N is the length of the chain. This process

completely randomizes the conformation such that information about the original structure

is lost.

After a randomized conformation is obtained, the structure is then solvated in a box

determined by the principal axes wherein the peptide is at closest 1.2 nm from the box edges.

The structure is then energy minimized, equilibrated in explicit modified TIP3P water and

150mM salt in an NVT ensemble for 100ps, and then equilibrated in an NPT ensemble for

300ps. This process generated 1587 different structures as initial configurations. We then

performed a 3ns equilibrium simulation starting from each of the above initial configurations,

collecting a snapshot every 1ns to be added to the monomer ensemble. As a result, we

obtained a monomer ensemble with 4643 configurations (i.e. 93 simulations did not reach

3ns and 16 simulations did not reach 2ns within the simulation wall-clock time, due to
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variable simulation box sizes). IDP ensemble generation is an active area of research and

several other methods of computational ensemble generation have been developed (93 ).

3.3.4 Scaffolded epitope ensembles

The construction of the initial structure used for scaffold simulations is described in Methods

Section 3.2. After minimization, solvation, NVT-equilibrium and NPT-equilibrium simula-

tion, a 300ns MD simulation is carried out, from which an initial ensemble is collected with

constant sampling interval of 40ps. Since the cysteine side chain has to be solvent-accessible

to form a disulfide bond with the carrier protein (KLH or BSA), some configurations were

discarded if the SG atom in the cysteine was buried or if the sidechain of the cysteine pointed

inside the cyclic peptide: The SG atom is defined as buried if its SASA is lower than 70%

of that in an isolated Gly-Cys-Gly tripeptide (80Å2). The cysteine side chain is defined as

inward pointing if its dihedral angle ψ (angle between CB atom and the backbone plane) is

within [-90, 90] degrees. In practice, the scaffolded cyclic peptide ensembles thus processed

have a different number of configurations for each cyclic construct, ranging from 2352 to

5468 configurations. The fraction of the ensemble that satisfied the above criteria varied

from about 39% to 97%.

3.4 Projecting ensemble distributions to lower dimension

We first let N be the sum of the number of structures in all four ensembles: Monomer,

fibril, stressed fibril, and cyclic peptide scaffolds (Here N ranges from 13369 to 16485). We

then construct a pairwise root mean squared deviation (RMSD) matrix that consists of the

RMSD between any two epitope (EKTK, KTKE, or TKEQ) structures in any of the four

ensembles. Each row of the N × N matrix contains the distances (RMSD values) from

one structure. Two rows then constitute a 2-dimensional space giving the distances to two

structures determined by which rows have been chosen. N rows, corresponding to the whole

matrix, thus constitute an N -dimensional space where the location of each of N points,

corresponding to each structure, is determined by the set of distances (RMSD) to all other

structures (including itself). The set of N structures is thus represented by a distribution of

points in an N -dimensional space.

Multidimensional Scaling (MDS) (32 ) or Stochastic Proximity Embedding (SPE) (30 )

was performed on the RMSD matrix to reduce the dimension from N×N to N×D where D is

the desired lower dimension. The value of D depends on the application as described below.

As well, whether MDS or SPE is used depends on the application, and will be described in

detail in Sections 3.5, 3.6, and 3.7 below.

Applying MDS or SPE results in an ensemble of points in a reduced number of D di-

mensions. We then fit the effective distribution of the N points in D dimensions using

kernel density estimation (KDE). (30 ) Since KDE performance worsens exponentially with

higher dimensional data sets as a result of the so-called “curse of dimensionality” (94 ), a
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dimensional reduction step is essential. A particular ensemble, e.g. the monomer structural

ensemble, has a structural distance distribution in the RMSD matrix. This structural dis-

tance distribution has a corresponding KDE distribution of points. We refer to this KDE

structural distance distribution as simply the structural distribution below.

3.5 Calculating ensemble overlap in 1D

We visualize the similarity between two ensembles intuitively by representing them in 1D

(this is not used as a ranking criterion). The overlap is the percentage of a KDE distribution

that overlaps with another KDE distribution. The formula we use here for the overlap is:

Overlap = 1 − 1
2

∫∞
−∞ |P −Q| dx, where x is the first MDS coordinate, and P (x) and Q(x)

are two KDE distributions in this 1D coordinate. For example, for two gaussians of unit

variance and mean separation a, the overlap is 1− erf
(
a/(2
√

2)
)
.

3.6 Ensemble similarity measures

We compare conformational ensembles of the epitope in the four different contexts, including

monomer, fibril, stressed fibril and cyclic scaffold, using two measures: Embedding Depth

and Jensen-Shannon Divergence. These are defined as follows.

3.6.1 Embedding depth

The embedding depth is most easily understood when taken as a measure between a single

structure and a given ensemble. In this context, the embedding depth quantifies how deeply

that structure is embedded within the ensemble, when both structure and ensemble are

projected onto some coordinate metric such as MDS coordinates. The structure-to-ensemble

embedding depth Dδ(x−xo)|P , for a structure characterized by a point at x = xo embedded

in a distribution P (x), is defined as the fraction of the ensemble that has a lower KDE

probability than the particular structure (Fig. 11):

Dδ(x−xo)|P =

∫ ∞
−∞

dxP (x)Θ (P (xo)− P (x)) . (4)

In equation (4), Θ(P ) is the Heaviside step function, which returns 1 if P > 0, otherwise 0.
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Figure 11: Illustration of the embedding depth of the point xo in a multimodal distribution
P (x). The embedding depth of point xo is given by the integral over all parts of the distribu-
tion with probability less than P (xo). Note there are 4 points with the same P (xi) = P (xo)
and thus the same embedding depth.

The mode of a distribution has an embedding depth of one because all of the ensemble

has a lower KDE probability than the mode. On the other hand, outliers of a distribution

have embedding depths close to zero.

The embedding depth of one distribution Q(x) within another P (x) can be found by

integrating equation (4) over the distribution Q(x):

DQ|P =

∫ ∞
−∞
dxQ(x)

∫ ∞
−∞
dx′ P (x′)Θ (P (x)− P (x′)) . (5)

The embedding depth between two distributions is in general non-reciprocal, in that

DQ|P 6= DP |Q. It is straightforward to show that the embedding depth of a distribution

within itself DP |P = 1/2. This follows because the special case of DP |P must be symmetric

(reciprocal), so that switching x and x′ in DP |P must yield the same equation. Therefore,

DP |P =

∫ ∞
−∞

∫ ∞
−∞
dx dx′ P (x)P (x′)Θ (P (x)− P (x′))

=

∫ ∞
−∞

∫ ∞
−∞
dx dx′ P (x)P (x′)

1

2
[Θ (P (x)− P (x′)) + Θ (P (x′)− P (x))]

=

∫ ∞
−∞

∫ ∞
−∞
dx dx′ P (x)P (x′)

1

2
(1) =

1

2
. (6)
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When used to compare two conformational ensembles, DA|B or DA-in-B represents the

extent to which the ensemble A is subsumed by ensemble B. A similar concept in mea-

suring the embedding of one ensemble in the other has been introduced before in the con-

text of statistics (31 ), but we are not aware of such a measure being previously applied

to conformational ensemble comparison. The embedding depth measures used for rank-

ing (Dcyclic-in-stress, Dcyclic-in-monomer, and Dcyclic-in-fibril) are calculated in an MDS-reduced 3D

conformational space, where 95% of the matrix information can be preserved (Fig. S1b).

Discrete, small sample size effects may also be considered for the embedding depth, how-

ever these effects are unlikely to arise in practice for conformational ensembles, which are

typically large enough to achieve convergence.

3.6.2 Jensen-Shannon Divergence (JSD)

The similarity between two different ensemble distributions is measured using the Jensen-

Shannon Divergence (JSD) (29 , 95 , 96 ), which is implemented here using the ENCORE

software (30 ). JSD is a symmetrized and smoothed version of the Kullback–Leibler diver-

gence (97 , 98 ), DKL, which is a difference measure between two distributions. JSD is defined

by

JSD(P,Q) =
1

2
DKL(P,M) +

1

2
DKL(Q,M) (7)

where

DKL(P,Q) =

∫ ∞
−∞

P (x) log

(
P (x)

Q (x)

)
dx (8)

where P (x) and Q(x) are two conformational ensembles in SPE-reduced dimensional space,

and M is defined by the average of the two distributions P and Q: M(x) = (P (x)+Q(x))/2.

The value of the JSD measure depends on the dimensionality of the SPE-reduced space,

with lower dimension tending to have smaller JSD (i.e. more overlap). The JSD values used

for ranking cyclic peptide scaffolds (JSDcyclic-fibril, JSDcyclic-monomer, and JSDcyclic-stress) are

produced by weight averaging the JSD from 3D to 11D by the inverse of the SPE residuals

in each dimension (Fig. S1 for these residuals). By this measure, the higher dimensions

contribute more to the weighted average JSD. The convergence test in Section S.2 shows

that the information loss is about 3% in 3D and the information loss is less than 1% in 11D

for scaffold (1,4)TKEQ for example (Fig. S1). JSD as calculated in equation (7) ranges from

0 to log(2), but in this paper, we normalize JSD to lie between 0 to 1.

3.7 Evaluating off-pathway target criteria

We search through the RCSB database of resolved protein structures, to find potential

off-pathway targets of antibodies that could be generated by each cyclic peptide scaffold.

An off-pathway target of concern meets three conditions: 1.) same primary sequence as

the epitope in the PDB structure, 2.) structural similarity to scaffolded epitope, and 3.)

sufficiently high solvent exposure so that it is likely to be antibody-accessible.
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The first criterion is assessed by finding “hits” when searching through the RCSB database

(e.g. any protein that contains one or more TKEQ motifs). The second criterion is assessed

by the PDB entry’s structural embedding depth in the scaffolded cyclic peptide ensemble.

The embedding depth is calculated in the MDS-reduced 5D space of the RMSD matrix.

The third criterion is assessed by the finding the fraction of the glycindel–scaffolded epi-

tope ensemble with less solvent-accessible surface area (SASA) than the PDB entry (i.e.

f(SASAoff-target-exceed-cyclic)).

The severity of a potential off-pathway target for a given scaffold is determined by

summing, over all PDB structure “hits”, the product of the structural embedding depth

(Doff-target-in-cyclic) and the fraction of cyclic peptide ensemble SASA exceeded (f(SASAoff-target-exceed-cyclic)).

The criterion used for ranking (before a linear rescaling) is the negative of this severity , which

is represented by equation (9) below:

OPunscaled = −
∑

PDB “hits”

Doff-target-in-cyclic × f(SASAoff-target-exceed-cyclic) (9)

By this convention, a higher (less negative) criterion value corresponds to a more favorable

scaffold. Since Doff-target-in-cyclic and f(SASAoff-target-exceed-cyclic) are very small for most RCSB

entries (i.e. most entries are not of significant concern), we employ a cut-off criterion wherein

D and f have to both exceed 5% for the entry to be included in a criteria calculation. Finally,

the criteria are linearly rescaled to be within the range [0,1].

Sometimes, the epitope appears multiple times in a single RCSB PDB entry because of

multiple deposited models, multiple chains or repetitive epitope occurrence on a single chain.

If such multiple occurrence happens, the Doff-target-in-cyclic and f(SASAoff-target-exceed-cyclic) in

equation (9) are taken as the average of the values over all epitope occurrences in the corre-

sponding PDB entry.

The search result in the RCSB database will also contain the fibrillar and structured

monomer α-synuclein entries. The fibril entries are excluded from the off-pathway target

calculation, because we have already compared cyclic and fibril ensembles using JSDcyclic-fibril.

We have also compared cyclic and unstructured monomer ensembles using JSDcyclic-monomer,

however monomer structures in the RCSB database are kept because they are assumed to

be at least partially structured due to effects such as peptide-membrane interactions.

Weaker binding of antibodies has occasionally been observed in epitope mapping by

alanine scans, particularly in longer epitopes. This binding to single point mutants occurs

more commonly in the peripheral regions of the epitope, and may generally be an important

consideration. Our epitope lengths are only 4aa however, so mutation of one amino acid

would be a significant 25% change in identity. We thus have not explored single point

mutants in the off-pathway analysis here.
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3.8 SMAA-TOPSIS ranking algorithm

Scaffolds are ranked using an adaptation of the so-called SMAA-TOPSIS algorithms, which

stand for a combination of Stochastic Multi-criteria Acceptability Analysis and Technique for

Order Performance by Similarity to Ideal Solution. (99 ) The ranking algorithm we employ

here uses a cumulative measure of the retention probability that a candidate is retained in

the top n leads (27 ). The method generates a ranking of candidates when multiple criteria

are used for screening the candidates, and when those screening criteria have a unknown

predictive importance a priori. The screening criteria as well as the importance weights for

those criteria are both subject to error, and an exact weight assignment for the importance

of the screening criteria is not needed. Instead, weight distributions are assigned, where

the mean weight w represents the relative importance of each criterion and the standard

deviation of the weight distribution represents the uncertainty in the importance for that

criterion. The weight distribution is taken to be a uniform distribution:

f (w) =


1

2∆
(if w −∆ < w < w + ∆)

0 (elsewhere)
(10)

where w stands for the mean (or center) and ∆ stands for the distribution width. All the

criteria have ∆ = 0.5 in this paper (or equivalently standard deviation σ of 0.288). The

mean weights for each criterion are given in Table 1:

Table 1: Mean weights of ranking criteria.

Criterion Mean weight w
JSDcf 1
JSDcm 1

1 - JSDcs 0.5
1- Dc|f 1
1- Dc|m 1
Dc|s 0.5

Off-target 1.5

subscript c=cyclic, f=fibril, s=stressed fibril, m=monomer. See also Table S1.

The ranking algorithm rescales all screening criteria to unity so weights can be properly

applied. The Ideal Best and Ideal Worst entries are given similarity screening criteria of

either all 1’s or all 0’s respectively; These numbers are given for each scaffold in Table S1.

All 48 scaffolds show strong dissimilarity to fibril, whereas other screening criteria show

more variance (Table S1). The compression of values for JSDcf around unity means that

all scaffolds perform similarly. For this criterion, the ideal worst entry is still taken to be

0 (although no scaffold performed that poorly), rather than the lowest value followed by

a rescaling to 0. This procedure thus prevents insignificant discrepancies between scaffolds
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from being amplified. Similarly, the values of Dc|f are all either essentially zero or very

small, so we take the ideal worst entry to be 1 and the ideal best to be 0, to avoid ranking on

statistically-insignificant differences. A server where the SMAA-TOPSIS algorithm may be

run to rank the users’ own data can be found at http://bjork.phas.ubc.ca. The server can

select and rank candidate leads from multiple competing screening tests that would otherwise

make the selection of leads a nontrivial maximum-likelihood ranking problem. (27 )

3.9 Cyclic peptide synthesis

Cyclic peptides were constructed by solid-phase synthesis (CPC Scientific), using head-

to-tail macrocyclization. Purity was confirmed by reversed-phase high-performance liquid

chromatography (RP-HPLC) as > 95%. Molecular weight was confirmed by electrospray

ionization mass spectrometry (ESI-MS). Solubility in water was confirmed by clear solu-

tion/absence of precipitate at 1 mg/mL. Peptides were conjugated to BSA through a cysteine

side-chain.

3.10 Seeded aggregation experiments

The seeding activity of the conformational peptide epitope glycindel scaffolds was tested

in a thioflavin T (ThT) aggregation assay, by measuring the fibrillogenic aggregation of α-

synuclein monomers with and without the addition of BSA-conjugated cyclic peptide over

time. α-synuclein protein monomer was purchased from R-Peptide (product serial num-

ber: S-1001-1). The initial α-synuclein monomer concentration started from 100µM, and

the system was either seeded with 100nM BSA-conjugated cyclic peptides or unseeded as a

control. A BSA-only control was not performed, however, previous studies of anti-oligomer

antibody binding by surface plasmon resonance have used BSA reference surfaces as nega-

tive controls (23 , 24 ), and BSA has also been shown in previous studies to inhibit (rather

than enhance) the aggregation of transthyretin and Aβ1−40 (100 , 101 ) The cyclic peptides

introduced as additional seeds in this assay are listed in Table S2 (with rankings given in Ta-

ble S1). They are P1 ((1,3)EKTK), P2 ((2,3)TKEQ), P21 ((1,4)TKEQ), P37 ((2,2)KTKE),

P45 ((4,2)KTKE) and P48 ((3,4)TKEQ). The system contains 25µM Thioflavin T, 20mM

Tris-HCl, and 100mM NaCl dissolved in PBS pH 7.4. The reaction volume is 120µl. Incu-

bation temperature is 37◦C. The system was shaken for 20 minutes every 30 minutes prior

to each reading. Fluorescence readout was measured by excitation at 440nm and emission

at 486nm every half hour. Two independent experimental seeding assays were performed.

Conditions in both assays were the same except the plate sealer, which resulted in more

evaporation from samples in run 1, and lower signal for that run. Experimental data is

provided in the Supporting Information.

The relative concentrations of aggregates were normalized by the concentration of the
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p2 peptide and fitted using the AmyloFit server (43 ). The model was chosen to be “Frag-

mentation Dominated, unseeded”, which was chosen as a minimal model that is sufficient to

produce reasonable fitting (Fig. S3). The “unseeded” option here refers to the lack of any

seeding by preformed fibril, and ensures that at the initial time, there is no fibril fragmenta-

tion . Since primary nucleation could be affected by the cyclic peptide seed, the nucleation

rate (kn) was taken as the only parameter that varied across peptides for fitting the model.

On the other hand, the fragmentation rate (k2) was fitted globally, and the critical nucleus

size for primary nucleation (nc), and the number of monomer threshold to trigger secondary

nucleation (n2) were set to the suggested default constant value of 2.

For comparing embedding depth of fibrils in cyclic peptide ensembles in the seeding

assay, α-synuclein fibril structures deposited on RCSB PDB were obtained by searching the

keyword “alpha synuclein fibril” and the sequence motif “EKTKEQ”; This resulted in 32

PDB fibril structures.

4 Conclusion

We proposed a virtual screening method that predicts cyclic peptide immunogen candi-

dates with a desired conformation ensemble that has the potential to raise oligomer-selective

antibodies. This screening method is applied to a pool of 48 cyclic peptide candidates, which

scaffold the α-synuclein epitope in a restricted sequence space using flanked glycines and a

cysteine for immunogen conjugation (“glycindel” scaffolds). The aim was to find cyclic pep-

tide scaffolds that resemble the conformation of the epitope in the context of an oligomer.

These cyclic peptides can then be used as immunogens to raise oligomer-selective antibodies.

Other scaffolding and design strategies may be explored as well, to which the screening and

ranking method developed here may be applied. In ongoing work, several highly-ranked

cyclic peptides from this study have been used in active immunizations for the purpose of

raising such oligomer-selective antibodies.
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6 Abbreviations

Aβ Amyloid-β

AD Alzheimer ’s disease

ALS Amyotropic lateral sclerosis

BSA Bovine serum albumin

CC Collective coordinate

CG Coarse grained

Cryo-EM Cryo-electron microscopy

CTE Chronic traumatic encephalopathy

DKL Kullback–Leibler divergence

FRET Förster resonance energy transfer

JSD Jensen Shannon Divergence

KDE Kernel density estimation

KLH Keyhole limpet hemocyanin

MD Molecular dynamics

MDS Multidimensional scaling

NMR Nuclear magnetic resonance

PD Parkinson’s disease

PDB Protein data bank

RMSD Root mean squared deviation

RMSF Root mean squared fluctuations

SASA Solvent accessible surface area

SOD1 Superoxide dismutase 1

SPE Stochastic proximity embedding

ThT Thioflavin T

7 Associated Content

Supporting Information

The Supporting Information is available free of charge at (URL).

1. Ranking criteria and rankings for α-synuclein epitope scaffolds; Convergence of JSD and

embedding depth; Off-pathway targets for each epitope; Seeding aggregation experiment;

experimental data and analysis (PDF).

2. Seeded aggregation ThT fluorescence data (XLSX).

3. A github repository link to the code required to perform head-to-tail cyclization of

peptide sequences of interest is here: https://github.com/PlotkinLab/Backbone-linkage-of-

cyclic-peptides
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