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Abstract 

Rapid and up-to-date drug susceptibility testing is urgently needed to address the threat of 

multidrug resistant tuberculosis. We developed a composite machine learning system to 

predict susceptibility from whole-genome sequences for 13 anti-tuberculosis drugs. We trained, 

validated and externally tested the system, and assessed its performance against a previously 

validated mutation catalogue, existing molecular assays, and World Health Organization Target 

Product Profiles. 174,492 phenotypes and 26,328 isolates from 34 countries were studied. The 

sensitivity of the model was greater than 90% for all drugs except ethionamide, clofazimine and 

linezolid. Specificity was greater than 95% for all drugs except ethambutol, ethionamide, 

bedaquiline, delamanid and clofazimine. The machine learning system was more sensitive than 

the mutation catalogue and molecular assays. For rifampicin-resistant samples, it  correctly 

predicted a pan-susceptible second-line regimen with 98% accuracy. The proposed system can 

help guide therapy and be updated automatically as new resistance determinants emerge. 
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Background  

In 2019, 10 million individuals were diagnosed with a Mycobacterium tuberculosis infection and 

1.4 million died
1
. The problem of multidrug resistant tuberculosis (MDR-TB) - defined as 

resistance to isoniazid and rifampicin – has been described by the World Health Organization 

(WHO) as a global health crisis
1
. Despite advances in diagnostics and treatment, MDR-TB 

remains under-detected and treatment success remains stubbornly below 60% globally
1,2

. The 

SARS-CoV-2 pandemic is expected to set back the progress that has been made by years
3
. 

The WHO has called for universal drug susceptibility testing (DST)
4
. Culture-based DST is too 

slow, expensive and technically challenging to offer a realistic solution. Molecular assays can 

rapidly detect resistance to rifampicin, isoniazid and a subset of second-line drugs, but are 

limited in the number of resistance-conferring mutations they can detect
5
, constraining their 

sensitivity, although more for some drugs than for others. Some countries already rely on 

whole-genome sequencing (WGS) to identify susceptibility to first-line drugs
6
, but nowhere are 

routine diagnostic algorithms advanced enough to dispense with culture-based DST where it is 

available for second-line, new and repurposed drugs
7
. Indeed, no algorithm has yet been 

demonstrated to meet the WHO Target Product Profile (TPP) thresholds for clinical application 

for drugs now recommended to treat MDR-TB
8–11

. 

Artificial intelligence and machine learning algorithms have been suggested as potential 

solutions where molecular determinants of resistance are either unknown or complex, such as 

gene-gene interactions, while allowing for real-time updating as new resistant samples are 

collected
12–19

. Here, we compare the performance for priority anti-tuberculosis agents of a 

previously validated mutation catalogue with a composite machine learning DST system using 

WGS data. We assess the extent to which machine learning can bridge the gap between the 

already good performance of catalogue-based predictions for some drugs and what is needed 

to dispense with routine phenotypic DST for anti-tuberculosis agents in general. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2021. ; https://doi.org/10.1101/2021.09.14.458035doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.458035
http://creativecommons.org/licenses/by/4.0/


Results 

Dataset characteristics 

A total of 174,492 phenotypes from 26,328 isolates were studied across two large datasets. The 

CRyPTIC dataset derived phenotypes from 96-well broth microdilution plates for 10,859 isolates 

from 22 countries. Lineages 1 to 4, 6 and Mycobacterium bovis were represented, with lineage 

4 (50%, 5,436/10,859) and lineage 2 (35%, 3,745/10,859) the most common. 28% of samples 

(3,033/10,859) were MDR. Phenotypes were available for three first-line antibiotics (isoniazid, 

rifampicin, ethambutol), plus rifabutin, and nine second-line antibiotics used against MDR-TB: 

two fluoroquinolones (moxifloxacin, levofloxacin), two injectable agents (amikacin, kanamycin), 

ethionamide, and four new or repurposed drugs (bedaquiline, linezolid, clofazimine, 

delamanid). Prevalence of resistance ranged from 1% for bedaquiline, to 47% for isoniazid 

(Table 1). For each new and repurposed drug, a minimum of 69 resistant samples were 

available. Pyrazinamide was not present on the microdilution plate for technical reasons. 

Where two drugs of the same class were studied, we report results for the one present in WHO 

guidelines or the most commonly prescribed in primary results (amikacin, rifampicin, 

moxifloxaxin), and for the other in the supplementary appendix (kanamycin, rifabutin and 

levofloxacin). A second, independent dataset used Mycobacteria Growth Indicator Tube 

(MGIT)-derived phenotypes and included 15,469 isolates from 22 countries, 21% of which were 

MDR (3,189/15,469). The independent set included phenotypes for all antibiotics except 

new/repurposed drugs and rifabutin (Table 1). 

Machine learning in the CRyPTIC dataset  

We developed a machine learning system comprising two complementary predictors (Figure 1),  

a kmer-based, hypothesis-free, genome-wide supervised machine learning algorithm and an 

algorithm associating mutations with phenotypic resistance (Methods). To assess the 

performance of the machine learning system on the widest possible set of antibiotics, it was 

initially trained on 75% of the CRyPTIC dataset (8,146 randomly selected isolates). Predictions 

were made for the remaining 25% (2,713 isolates) (Table 2). For first-line drugs, the sensitivity 
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of the machine learning system was 95% for isoniazid (1,119/1,173), 97% for rifampicin 

(906/931) and 95% for ethambutol (387/406), with specificity 99% (1,195/1,207), 98% 

(1,287/1,315) and 88% (1,326/1,501) respectively (Figure 2). For second-line drugs against 

MDR-TB, sensitivity was 96% for moxifloxacin (251/261), 92% for amikacin (146/158) and 88% 

for ethionamide (271/309), with specificity 96% (1,377/1,438), 99% (2,068/2,090) and 89% 

(1,694/1,901) respectively. Although there were comparatively few phenotypically resistant 

isolates, sensitivities for bedaquiline, delamanid, clofazimine and linezolid were 94% (15/16), 

90% (18/20), 87% (20/23) and 57% (16/28), at the cost of low specificity (71%, 55%, 72% and 

96% respectively). Importantly for clinical decisions on whether a drug should be given, the 

negative predictive value for resistance prediction was above 98% for all drugs except isoniazid, 

where it was 96%, noting that the low prevalence of resistance to new and repurposed drugs 

(0.7-1%) was a major contributor to high negative predictive value. We simulated the negative 

predictive value of the system for each drug for difference resistance prevalences (Figure 3). 

We assessed whether results were affected by the split of training and test data, batch effects, 

or training and testing on genetically-related samples from the same site, by repeating the 

experiment using a “leave-one-site-out” cross-validation approach, sequentially using each site 

as the test set, and training the model on the remaining 10 sites (Table S1). Performance was 

similar across all first- and second-line drugs with the exception of new and repurposed drugs, 

where sensitivity decreased (67-73%) and specificity increased (73-78%) using the leave-one-

site-out approach. A high proportion of samples resistant to these agents were from the same 

South African site (31/69 resistant to bedaquiline, 55/105 to clofazimine) causing variability 

when this specific site was used to train or test.  

Machine learning in the independent dataset 

We further assessed the system’s performance in a large independent dataset where 

phenotypic DST was based entirely on MGIT, thus testing the generalizability of the machine 

learning system trained on CRyPTIC broth microdilution plates. We re-trained the machine 

learning system using the entire CRyPTIC dataset; predictions on the independent dataset were 

similarly accurate to those above (Table 3). For first-line drugs, sensitivity was 95% for isoniazid 
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(3,216/3,397), 98% for rifampicin (2,957/3,021) and 94% for ethambutol (1,765/1,877), with 

specificity 99% (9,493/9,602), 98% (10,298/10,502) and 92% (10,758/10,502) respectively. For 

second-line drugs, sensitivity was 93% for moxifloxacin (288/311) and 88% for amikacin 

(266/302), with specificity of 96% (2,072/2,168) and 95% (2,403/2,535) respectively. Negative 

predictive value was greater than 98% for all drugs. There were no phenotypes to new or 

repurposed drugs in the independent dataset to make predictions for.  

Comparison to the mutation catalogue, molecular assays and target product profiles  

We next compared predictions from the machine learning system with those from a validated 

mutation catalogue
20

 in the independent set (Table 3). For first-line drugs, sensitivity for the 

catalogue was 94% for isoniazid (3,177/3,397), 97% for rifampicin (2,936/3,021) and 89% for 

ethambutol (1,676/1,877), with specificity of 99% (9,525/9,602), 99% (10,394/10,502) and 96% 

(11,185/10,502) respectively. These results were consistent with the previously described 

performance of this catalogue that led to its clinical implementation for DST to first-line drugs 

in several countries
7
. Nevertheless, these sensitivities were lower than those from the machine 

learning system, which was superior by 1% for isoniazid and rifampin, and by 5% for 

ethambutol (p<0.001). The improved sensitivity of the machine learning system came at a small 

cost in specificity which was 1% lower for rifampin and 4% lower for ethambutol (p<0.001). The 

machine learning also system proved more sensitive than the catalogue for moxifloxacin (93% 

vs 86%, p<0.001), amikacin (88% vs 85%, p<0.001) and ethionamide (84% vs 50%, p<0.01), with 

1% lower specificity for moxifloxacin, 3% for amikacin and 21% for ethionamide (p=0.003). 

Higher sensitivities can be obtained using the catalogue if predictions are only made on isolates 

containing genomic variation that is known to the catalogue
20

 instead of making predictions for 

all isolates (Methods). However, returning “indeterminate” predictions where novel variation is 

seen in candidate genes in an isolate does not align with recent WHO TTP that require a 

minimum indeterminate rate of less than 10% for DST implementation
10

. This rate would have 

been 6% for isoniazid, 2% for rifampin, 10% for ethambutol, 9% for moxifloxacin, 14% for 

amikacin and 36% for ethionamide in the independent test set – all of which were counted as 

susceptible in the analysis above. The machine learning system has the advantage of providing 
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predictions for all isolates (Table S2). We examined phenotypically resistant samples where 

novel variation is seen in candidate genes. In these, the machine learning system correctly 

predicted 41/106 isolates phenotypically resistant to isoniazid that were missed by the 

catalogue, 81/94 for ethambutol, 12/15 for moxifloxacin, 2/11 for amikacin and 9/12 for 

ethambutol. The specificity of the machine learning system for isolates that would have been 

called “indeterminate” by the catalogue ranged from 88% for ethambutol to 99.7% for rifampin 

(Table S3). 

As most patients in the world have little, or no access to phenotypic DST, we compared the 

performance of the machine learning system against the expected combined performance of 

Xpert MTB/RIF and Xpert XDR for the independent set in anticipation of its wider uptake to 

address the WHO’s call for universal DST. The sensitivity of the machine learning system was 4% 

higher than Xpert for isoniazid (95% vs 91%, p<0.001) and rifampicin (98% vs 94%, p<0.001), 7% 

higher for moxifloxacin (93% vs 86%, p<0.001) and 3% higher for amikacin (88% vs 85%, 

p=0.030). Specificity was no more than 1% lower for each drug, with the exception of amikacin 

(95% vs 98%). Therefore, if 1,000 isolates were resistant to a second-line quinolone or an 

injectable drug, the machine learning system would accurately find between 30 and 113 

phenotypically resistant isolates predicted as ‘not resistant’ by Xpert, at the cost of calling 

between 0 and 34 phenotypically susceptible isolates ‘resistant’ (Table 2). 

The WHO TPP for rapid molecular DST assays require a minimum sensitivity of 95% for 

rifampicin, 90% for isoniazid and fluoroquinolones and 80% for other second-line agents; a 

specificity of 98% for all drugs; and a minimum indeterminate rate of less than 10%. In the 

CRyPTIC dataset, the machine learning system met the minimum TPP sensitivity threshold for 

all drugs, with the exception of linezolid (sensitivity 57%). Specificity thresholds were met for 

isoniazid, rifampicin, levofloxacin and amikacin, but were not met for ethambutol (88%), 

moxifloxacin (96%), ethionamide (89%) and new and repurposed drugs (55-72%) - although 

they still outperformed the specificity of the catalogue and existing molecular assays for each 

(Table S4). The machine learning system met the requirement for indeterminate results for all 

drugs as it provides predictions for all samples. 
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Full drug regimen prediction for rifampicin-resistant isolates 

While most DST focuses on predicting susceptibility to individual drugs, clinicians are left with 

the task of assembling a full regimen themselves. This is especially challenging for rifampicin-

resistant and MDR-TB, where new WHO guidelines recommend the inclusion of new and 

repurposed drugs like bedaquiline and delamanid for which there is no widely-used DST.  

We therefore trained the machine learning system to predict an entire treatment regimen, 

designed according to the latest WHO guidance
20

. A total of 50 possible regimens were 

considered, including all combinations of group A, group B and group C drugs meeting WHO 

standards (Figure 1, Table S5)
21

. As only the CRyPTIC dataset included phenotypic DST data for 

new and repurposed drugs, we used the machine learning system trained on the original 75% of 

CRyPTIC to predict regimens for the rifampicin-resistant isolates in the original 25% test set.  

Sufficient phenotypic data were available for 768/931 rifampicin-resistant isolates to assess at 

least one potential regimen for treatment of MDR-TB. The machine learning system predicted a 

fully susceptible regimen composed of 4 to 5 drugs of groups A to C
21

 for 482 of these 768 

isolates, and was correct in doing so for 472 (98%). In 8 of the 10 remaining regimens, only one 

drug in each regimen was phenotypically resistant (Table S6). The system predicted some 

phenotypic resistance in every potential regimen for the 296 other isolates, of which 139 (47%) 

isolates had a phenotypically susceptible regimen. Prevalence of bedaquiline, linezolid and 

clofazimine resistance was 1-2% (9, 7 and 14 samples respectively). Considering each drug 

individually in phenotypically rifampicin-resistant isolates, the sensitivity for moxifloxacin, 

levofloxacin and amikacin was respectively 98% (229/233), 96% (256/267) and 96% (133/139), 

and specificity 90% (357/398), 96% (393/408) and 99% (642/652). Sensitivity for bedaquiline 

and linezolid was 100% (9/9 and 7/7 respectively), and specificity was 78% and 51% (Table S7).  

Discrepancy analysis 

We reviewed individual cases where the machine learning system made an incorrect prediction 

in the CRyPTIC dataset. Where a phenotypically resistant isolate was predicted to be 

susceptible (false negative), we interrogated the predictions from the two subcomponents of 
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the machine learning system for evidence of a predicted increase in median inhibitory 

concentration (MIC), albeit still below the cutoff. For isoniazid, 54/1173 phenotypically resistant 

samples were predicted to be susceptible in the test set. One or other of the subcomponents of 

the machine learning system (ML or the algorithm) predicted an MIC above the baseline or near 

the epidemiological cut-off for 16 of these 54 false-negatives (30%), while it only predicted an 

elevated MIC for 46 of the 1,195 true negatives (4%). For ethambutol, 13/19 (68%) false 

negatives were predicted to have a higher MIC from at least one of the two subcomponents, 

compared to 437/1,287 (34%) true negatives. Higher predicted MIC in false-negative samples 

were similarly found in rifampicin (19/25), ethionamide (24/38), levofloxacin (1/22), 

moxifloxacin (1/10) and amikacin (3/12). For each drug, MIC increase occurred more in false 

negatives than true negatives, with the exception of levofloxacin (Table S8). 

Discussion 

We assessed the extent to which machine learning can bridge the gap between the good 

performance of catalogue-based predictions and what is needed to dispense with routine 

phenotypic DST not only for first-line drugs but for almost all other anti-tuberculosis drugs too. 

We trained a machine learning system to predict susceptibility to 13 antituberculosis agents 

using whole genome sequencing data, and tested its performance on a large independent test 

set. We followed best practice guidance for studies evaluating the accuracy of rapid 

tuberculosis drug-susceptibility testing (DST)
8
. The machine learning system fully met WHO 

target product profiles (TPP) for three priority drugs in the CRyPTIC dataset - rifampicin, 

isoniazid, and amikacin - and met sensitivity but not specificity targets for ethambutol, 

moxifloxacin, ethionamide and new and repurposed drugs. For linezolid, no targets were met.  

For drugs where the WHO-endorsed molecular GeneXpert assay is available (rifampicin for 

Xpert MTB/RIF, and isoniazid, fluoroquinolones, aminoglycosides and ethionamide for Xpert 

MTB/XDR), our system significantly increased the sensitivity and negative predictive values on 

the independent test set compared to the expected performance of these assays, at a small 

cost to specificity. There are several explanations, including that the assays only look at eight 
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genes and promoter regions and exclude rare variants therein
5
, while the machine learning 

system is able to explore genome-wide features, leverage interactions between features and 

assess lineage and genetic background through genome-wide features. 

The WHO guidelines for MDR-TB management recommend giving all patients on long MDR-TB 

regimens bedaquiline, linezolid and clofazimine
21

. Our sensitivity and specificity for these three 

drugs fall below WHO TPP requirements. Sensitivity of 93%, 90% and 87% in the CRyPTIC set for 

bedaquiline, delamanid and clofazimine likely reflect the very low prevalence of resistance 

(15,18 and 20 resistant samples respectively), while also explaining the high negative predictive 

values of >99% for all three drugs. As more resistant isolates are collected, the sensitivity and 

specificity of the machine learning system will almost certainly increase, and negative predictive 

value decrease, as seen for other drugs. Nevertheless, a test with negative predictive value 

>99% and sensitivity 70% would still provide value to clinicians who currently have no other test 

for these new and repurposed drugs and hence treat their patients empirically in the absence 

of reliable, rapid and robust molecular or genotypic DST
22

. Even imperfect test performance 

could still play a key role in preventing the amplification and dissemination of resistance. 

A key benefit of our genome-wide approach over molecular DST is the ability to update and 

train automatically as new resistant samples are added. This is critical as resistance to existing 

and new agents like bedaquiline emerge, avoiding the expensive multi-phase multi-year 

development times of molecular assays
10,23

, or the need to update catalogues through expert 

review
20

. The U.S. Food and Drug Administration (FDA) recently released a regulatory 

framework for ‘live’ modifications to artificial intelligence and machine learning-based software 

as a medical device
24

 and has recently provided clearance or approval for several such 

diagnostic devices
25

, paving the way for clinical implementation and dissemination. 

We note several further novelties and benefits of our systematic approach. First, by combining 

machine learning with algorithmic catalogue generation we leverage existing knowledge, 

including known genes associated with resistance, avoiding a common complaint against pure 

machine learning systems. Second, a prediction can be made for all isolates, while previous 

published catalogue-based methods that met clinical thresholds required the exclusion of 4-
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10% of samples with unknown mutations in candidate genes
7
. Third, using kmers from 

sequencing reads allows for genome-wide analysis while being robust to potential errors or 

variability in genotype mapping or variant calling, known to affect prediction of transmission 

inferences and resistance prediction
26

. A vcf file filters out sites called with low confidence, 

while the machine learning approach uses all kmers from reads and therefore can use them as 

training features.  Fourth, the model predicts MIC as an intermediate step. Although we have 

focussed on predicting binary DST results so that we can perform external validation on MGIT 

data,  the predicted MICs would allow treatment to be individualized both in terms of drug 

selection and dosing, potentially improving outcomes given associations between sub-threshold 

MICs and outcome
27

. MIC predictions could also be used to assess confidence in a susceptibility 

prediction and mitigate future errors, with isolates without any predicted elevation less likely to 

be resistant than isolates with a sub-resistant increase in MIC. Fifth, by using an interpretable 

supervised machine learning algorithm, we provide a list of features used for prediction, which 

in turn can be used as hypotheses for potential causal mutations, when combined with protein 

analysis. 

A study limitation is the use of a previously published literature-derived catalogue, rather than 

the more cutting-edge, recently published WHO-endorsed catalogue
20

. This was impossible as 

the WHO catalogue was developed using samples from both the CRyPTIC and independent 

datasets. Second, we were unable to access an external dataset with sufficient resistance to 

perform independent validation of predictions to bedaquiline, linezolid, delamanid and 

clofazimine. Consequently, we report performance only in the CRyPTIC dataset (which does 

contain DST for these compounds in large numbers) using MIC data and both a train-test 

approach and cross-validation of models tested on each site and trained on all other sites. 

Third, we report the performance of GeneXpert in silico, but clinical performance of the actual 

method might differ. Fourth, the use of kmers from raw sequencing reads, while extremely 

effective on existing datasets, might not translate directly to new sequencing methods in the 

future, such as third-generation long-read sequencing with Oxford Nanopore, given the 

different format of reads. Fifth, regimen prediction for RR-TB was calculated using a simple 

union of individual drug predictions; training a novel system explicitly for regimen prediction, 
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rather than individual drug prediction, would provide additional benefits, including accounting 

for potential gene-gene and drug-drug interactions influencing the efficacy of entire regimens.  

In summary, this study demonstrates that WGS can now be used to provide clinically actionable 

susceptibility prediction for many drugs recommended for the treatment of susceptible and of 

MDR-TB, using an composite machine-learning system. This study shows how a machine 

learning system can be used to help guide therapy, and can be straightforwardly updated as 

increasing numbers of resistant samples to new and repurposed drugs are collected. 

 

Methods 

Study design 

We performed a training, validation and external testing study of a mutation catalogue and a 

machine learning system to predict susceptibility to 13 anti-tuberculosis antibiotics using 

whole-genome sequencing (WGS). We trained and tested the system on 10,859 isolates from 

11 laboratories in 22 countries collected by the CRyPTIC consortium. Phenotypes were 

determined using the UKMYC broth microdilution system
28

. We then assessed how this system, 

trained on UKMYC-derived phenotypes, would perform against a commonly used DST method 

in independent samples. For this we made predictions for an external set of isolates used to 

derive the WHO catalogue of drug resistant mutations
28

. We selected only those samples that 

had been phenotypically characterized by Mycobacteria Growth Indicator Tube (MGIT), namely 

15,239 M. tuberculosis complex isolates from 22 countries (Table 1 for an overview and Table 

S9 for a detailed description of each dataset).  

Whole-genome sequencing 

All isolates were whole-genome sequenced using Illumina next-generation sequencing, with 

sequencing protocols varying between sites as previously described
28

. Sequencing reads were 

trimmed and mapped to the reference genome H37Rv, and variants called using Clockwork 
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(v0.8.3) a bespoke processing pipeline built for CRyPTIC and optimized to detect both single 

nucleotide polymorphisms (SNPs) and insertions and deletions (indels). Prior to mapping and 

calling, raw nucleotide kmers from sequencing reads were set aside for training the machine 

learning predictor. 

Phenotypic drug-susceptibility testing 

Phenotypic drug susceptibility testing (DST) for the CRyPTIC training and test set was performed 

across all sites using a standard protocol described elsewhere
28

. Briefly, samples were 

subcultured and inoculated into 96-well broth microdilution plates containing 13 drugs and 

designed by the CRyPTIC consortium and manufactured by Thermo Fisher Inc., U.K.. Between 5-

10 doubling dilutions were used for each drug, and minimum inhibitory concentrations (MIC) 

for each were read after 14 days using three methods for quality assurance. MICs were 

converted to predictions of resistance or susceptibility using epidemiological cutoffs (ECOFFs)
28

. 

As the plate design was modified during the study, the intersect of both plates was used as the 

MIC phenotype, and concentrations outside both were right-censored or left-censored as 

appropriate (Table S10). Phenotypic DST for the external test set used the BACTEC MGIT 960 

system. 

Susceptibility prediction 

DST for each sample was predicted using two methods: a mutation catalogue previously tested 

and validated in CRyPTIC
7
, and a machine learning system. Although the catalogue had 

previously been tested on first-line drugs, here we used targets assayed by commercial 

molecular assays to expand the catalogue to cover some second-line drugs (Table S13). The 

machine learning system was itself a composite of two complementary predictors (Figure 1). 

The first predictor was a kmer-based, hypothesis-free, genome-wide supervised machine 

learning algorithm. Raw nucleotide kmers (k=31) from sequencing reads (i.e. prior to mapping 

or assembly) were used as features. A total of 1.9 x 10
9
 individual kmers were considered. 

Where <5 kmers were identified for an isolate these were considered sequencing errors (Figure 

S1). We merged features across patterns
29

, applied feature selection using the F-test applied to 

MICs, and trained an optimized tree-based extreme gradient boosting method to allow for 
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rapid training, testing and feature interpretation. After training, the top features relevant to 

each prediction were mapped to H37Rv using bowtie2 for detailed feature analysis (Figure S2, 

Table S11). The second predictor was an algorithm associating mutations with phenotypic 

resistance based on previously described approaches
30

. It focussed on the same pre-

determined list of candidate genes and promotor sequences as used to generate the WHO M. 

tuberculosis drug-resistance mutations catalogue
28

 (Table S12). After the masking of neutral 

mutations using the same process as described
28

, the remaining genetic variation across 

candidate genes relevant to a drug was taken as a unique genetic signature. This included the 

absence of any remaining variation, and where there was just a single remaining mutation. The 

mode MIC from all isolates sharing that unique genetic signature was then taken to predict 

MICs in isolates that shared the same unique signature. If no exact match was made to a 

genetic signature (combination of variants), the highest mode MIC associated with any 

individual mutation in the genetic signature was used to predict the MIC. Where no match 

could be made to any genetic signature described in the training set, the test set phenotype 

prediction was left as ‘U’ (unknown). Both methods’ outcomes were combined into a final joint 

prediction system using an “or” logic gate, in order to optimize sensitivity and negative 

predictive value. Youden’s J statistic was applied to derive the operating threshold of the 

system. Performance on the 25% CRyPTIC test set was estimated by training the system on the 

75% CRyPTIC samples not included in it. Performance on the independent test set was 

generated by training the system on the entire CRyPTIC dataset.  P-values were calculated using 

McNemar chi-square test. To better assess the generalizability of the approach within the 

CRyPTIC dataset and minimize the risk of training and testing on genomically-related isolates, 

we compared main test set results to those from a leave-one-site-out approach, where each of 

the 11 sites was left out in turn for training, but correspondingly used for testing, with 

performance taken as the mean weighted by resistance prevalence. We benchmarked the 

performance of the mutation catalogue and machine learning system against the expected 

performance of Xpert® MDR/RIF and Xpert® XDR (Cepheid, Sunnyvale, U.S.), based on the 

targets they probe (Table S13). “Indeterminate” predictions by the catalogue where a novel 

variation is seen in a candidate gene were counted as susceptible for the purpose of the 
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analysis. Finally, we simulated negative predictive values for each drug for different prevalences 

of resistance. For each drug, we selected 138 samples at random to generate data sets with a 

percentage prevalence of resistance for every 1% between 1-49%, and repeated this 100 times. 

138 corresponds to twice the number of isolates resistant to the drug with the smallest 

resistance prevalence, bedaquiline (69 resistant isolates). 
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Figure 1: Illustration of the machine learning system and regimen prediction workflow 

*Drug names: INH: Isoniazid, RIF: Rifampin, EMB: Ethambutol, MXF: Moxifloxacin, LEV: Levofloxacin, AMI: Amikacin, KAN: Kanamycin, ETH: Ethionamid, RFB: Rifabutin, BDQ: Bedaquilin, CFZ: Clofazimine, DLM: Delamanid, LZD: 
Linezolid
†Other acronyms: RR-TB: Rifampin-resistant tuberculosis; MDR-TB: Multidug-resistant tuberculosis; MIC: Minimum Inhibitory Concentration
†† Guidelines and drug groupings refer to World Health Organization Consolidated Guidelines on Tuberculosis (2020); “In multidrug- or rifampicin-resistant tuberculosis (MDR/RR-TB) patients on longer regimens, all three Group A agents 
and at least one Group B agent should be included […] If only one or two Group A agents are used, both Group B agents are to be included. If the regimen cannot be composed with agents from Groups A and B alone, Group C agents 
are added to complete it.”
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Figure 2: Performance of the machine learning prediction on the independent test set, and 
comparison to the catalogue and molecular assay

*Drug names: INH: Isoniazid, RIF: Rifampin, EMB: Ethambutol, MXF: Moxifloxacin, LEV: Levofloxacin, AMI: Amikacin, KAN: Kanamycin, ETH: Ethionamid, RFB: 
Rifabutin; new and repurposed drugs are not included as they are not present in the independent set
†Other acronyms: Sens: Sensitivity; Spec: Specificity; NPV: Negative Predictive Value; PPV: Positive Predictive Value
†† Areas shaded in red correspond to a sensitivity of 90% and a specificity of 98%; this correspond to the target specificity for all drugs and sensitivity for isoniazid 
and quinolones per the “Target product profile for next-generation tuberculosis drug-susceptibility testing at peripheral centres” of the World Health Organization 
(2021); sensitivity targets are 95% for rifampicinand 80% for other second-line agents
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Figure S1: lllustration of kmer distributions across isolates used as 
features for the machine learning model

This figure illustrates kmer frequency distribution for a subset of 100 kmers for a single isolate. After the generation 
of whole genome sequencing data,  instead of the alignment and variant calling process, each read was analyzed, 
and decomposed into a series of  31-mers. In total, each isolate could be described by 3 to 5 million unique 31-
mers, present an average of 50 to 200 times each. Some kmers are present <5 times - as seen on this figure. This 
is likely the result of a sequencing mistakes.  One of the disadvantages of using kmers from reads, as opposed to 
assembled genomes, is the lack of any error processing. To reduce the influence of sequencing errors on our 
analysis and on the machine learning system, all kmers present five times or fewer were removed from the dataset 
using methodology presented in Earle et al. (2016).
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Figure S2: Illustration of the pipeline for kmer feature analysis after machine learning system 
training

After the machine learning system was trained, a feature analysis was performed to identify potential mutations of interest.  Since our features are patterns of kmers 
(see Figure S3), we follow four steps to achieve this:  (1) rank pattern features by importance, (2) list all kmers corresponding  to  each  pattern,  (3)  map  each 
kmer  to  the  reference  MTB H37Rv reference genome to find its location, and (4) identify mutation for each pattern, and generate final feature list.  The steps are 
illutrated in this figure. Step 1 is performed using feature ranking methods based on weight.  In step 2, we use a custom-built pattern-k-mer mapper to find all kmers 
corresponding to each pattern that was ranked.  Step 3 - the mapping of all kmers to areference genome, requires several tools. We start by converting text kmers 
to a.fastafile format, using the open-source BioPython package version 1.73.  We proceed to  mapping  the fastafile  to  the H37Rv reference  genome  (GenBank  
NC000962.2) using  BowTie2  version  2.3.5.  From the newly generated samfile containing the alignment results, we rank each kmer coordinates in location order,  
identify the mutation location (if present), and finally look-up the gene and protein corresponding to that mutation. We finally compile all the computed genes into the 
original feature table, which constitute our final feature table.  We note that in several cases, kmers without a mutation -i.e.  mapping perfectly to the reference 
genome - will be used by the models.  These are features used by the model to predict susceptibility, rather than resistance, but remain important features to 
consider for feature analysis. Results of this analysis are presented in table S11.
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