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Abstract

As genetic circuits become more sophisticated, the size and complexity of data

about their designs increases. This data captured goes beyond monolithic genetic se-

quences and towards circuit modularity and functional details, which are beneficial for

analyzing circuit performance and establishing design automation techniques. How-

ever, the accessibility, visualisation and usability of design data (and metadata) have

received relatively little attention to date. Here, we present a method to turn circuit

designs into networks and showcase its potential to enhance the utility of design data.

Since networks are dynamic structures, initial graphs can be interactively shaped into

sub-networks of relevant information based on requirements such as abstraction, hierar-

chy and protein interactions. Additionally, several visual changes can be applied, such

as colouring or clustering nodes based on types (e.g., genes or promoters), resulting in

easier comprehension from a user perspective. This approach allows circuit designs to

be coupled to other networks, such as metabolic pathways or implementation protocols

captured in graph-like formats. Therefore, we advocate using networks to structure,

access and improve synthetic biology information.
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Introduction

The design and implementation of genetic circuits1,2 that allow cells to perform predefined

functions lies at the core of synthetic biology.3,4 For example, the engineering of Boolean

logic circuits5 that use cascades of transcriptional regulators is a field that regularly scales

up both complexity and functionality. Other types of circuits are routinely engineered,

such as switches,6 counters7 and memories;8 using not only transcriptional, but also post-

transcriptional, processes.9 Different host organisms such as bacteria,10 yeasts11 and mam-

malian12 cells are used to test circuits in several applications, ranging from pollution control13

to medical diagnosis.14 Furthermore, the functionalities of genetic circuits will only improve

as scientists control the information processing abilities of living substrates: signal noise,15,16

metabolic dynamics,17,18 context-circuit interplay,19,20 stability21 and more.22

Due to the cyclical nature of synthetic biology projects combined with complexity and

size, successful implementation and testing can be challenging without a well-conceived de-

sign and solid understanding. Mathematical and computational tools,23 automation meth-

ods,24,25 knowledge-based systems26,27 and repositories28 assist circuit design to minimise the

iterations within the design-build-test-learn life-cycle. These processes generate a consortium

of information beyond unitary DNA sequences, such as modularity, hierarchy, implementa-

tion instructions, dynamical predictions and validation strategies. However, this information

is often overlooked, which threatens to undermine the success of such endeavours.

Data formats have emerged that effectively capture and represent increasingly complex

designs. A leading example is the development of the Synthetic Biology Open Language29

(SBOL) that can be used to represent both structural (e.g. DNA sequences) and functional

(e.g. regulation interactions) information. Also, the GenBank30 format, overwhelmingly

used to formalize and share genetic sequences, allows simple annotations to be defined. The

overarching challenge is to access, use, visualize and analyse this information so that genetic

designs become dynamic data structures easy to manipulate. This challenge underpins this

work, where we propose networks to help solve these problems.
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What has been termed network biology31 deals with the quantifiable representation of

complex cellular systems in graphs and the study of them in order to characterise functional

behaviour. Indeed, the analysis of interaction maps (a type of network) can reveal previ-

ously unknown mechanistic details. Graph theory methods can assist the interrogation of

network structures in several ways32 for circuit designs, where dynamic querying produce

sub-networks of particular interest hidden within design formats. In order to build networks

out of circuit designs, data is represented in the form of nodes (individual points of data)

and edges (relationships between the data).33 For example, a repression relationship edge

would link two nodes representing a regulator protein (e.g. aTc) and its cognate promoter

(pTet). The relevance of this approach is enhanced by the emergence of high-throughput

techniques and workflows34,35 that generate (and use) large data sets.

Visualising complex information is a challenge within synthetic biology mainly because

a one-size-fits-all approach is often not feasible, i.e. a single representation of a multi-

dimensional dataset cannot satisfy the requirements of all involved members. For example,

take the glyph approach,36 where each genetic part is displayed on a linear sequence. While

this allows researchers to generate diagrams to visualize and communicate abstract designs,

an experimentalist cannot access information regarding nuanced sequence data, or an infor-

matician cannot explore the provenance of a specific genetic part. In contrast, the presented

network visualisations can be dynamically adjusted according to specific requirements, such

as highlighting proteins, interactions or hierarchy. Here, we demonstrate how network tech-

niques can be applied to the analysis of genetic circuit design data. While the focus is

primarily on displaying designs into comprehensible visualisations, many graph-based ap-

proaches are combined to produce the final visualized output.
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Results and discussion

Establishing networks from design files. Figure 1 shows the process of visualising and

structuring the data encoded within a genetic circuit design. We used the design of the NOR

logic gate built by Tamsir and colleagues.37 This gate outputs 1 (i.e., target gene expressed)

if both inputs are 0, and outputs 0 (i.e., target gene not expressed) in any other case. The

NOR circuit is a frequently built device,5,38 since any logic function can be achieved by

assembling NOR gates only.

Figure 1: Visualising design data of a NOR logic gate. A. NOR logic function and genetic di-
agram, with inputs (arabinose; aTc) and output (YFP). B. Displaying all design information
(including metadata) in network format. The network is unreadable but computationally
tractable. C. A network is generated from the same design where only the physical elements
(i.e. DNA and molecular entities described) are shown. D. Depending on their role, the
network is adjusted to display colours for the nodes for visualisation purposes. Roles (e.g.
promoter, proteins) are automatically clustered by the same colour. For clarity purposes,
labels were not included.

The functional diagram for the NOR gate (Figure 1A top) is often represented with the

specific names of the input and output compounds. In this case, the inputs are the inducers

arabinose (Ara) and anhydrotetracycline (aTc), and the output reporter yellow fluorescent

protein (YFP). The genetic visualisation (Figure 1A bottom) is usually labelled with names

for specific DNA parts, three promoters in this example. While these representations serve

a purpose, they offer only single insights into larger data structures. Figure 1B shows the

results of building a network with all the available data and metadata. Although this net-

work is visually meaningless because the significance of nodes and connections is lost, the
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graph is established, and computational manipulation is easy to perform based on specific

requirements.39 The network of Figure 1C is a view into the data that focuses on physical

elements only (e.g., DNA and molecular entities) and omits metadata details. By presenting

a single perspective, overall cognition is increased, but it is visually incoherent since the

position of nodes–its layout—is random. The layout, which determines the arrangement

of nodes combined with other features such as colour, size and shape,40 provides a visual

representation of information that ensures clarity and understanding. When a simple ra-

dial layout (Figure 1D) (e.g., nodes do not overlap) is combined with node clustering and

colouring depending on types and roles, it results in a final visual output that is considerably

clearer than fig:Figure1B.

Dynamic abstraction levels. The design of a biological system implies dealing with

complexity. Therefore, it is crucial to abstract away superfluous details to describe and com-

municate the design with clarity.41 Nevertheless, what is an appropriate level of abstraction

for a circuit design? The answer depends on two primary factors: what information needs to

be communicated, e.g., structural or functional, and the requirements of the person consum-

ing the information, e.g. Bioinformatician or wet lab scientist. Precisely, a vital advantage of

a network structure is its inherent ability to arrange itself—dynamically—into several levels

of abstraction.

Interaction networks provide a high-level metric with the potential to scale, and this view

into the data has been chosen to display dynamic abstraction. Figure 2 shows an interaction

network of a NOR gate design at three different levels of abstraction. While the design is, of

course, the same—that is, the file is not modified—the resulting network can differ depend-

ing on user needs. The network in Figure 2A displays all molecular, genetic, element types

and relational information. Half of that information is encoded into the colour scheme of

the graph; for example, node yfp is a coding sequence (yellow) that leads to the production

of (yellow edge) YFP, which is a protein (red node). The arrangement of the nodes is far
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Figure 2: Adjusting network abstraction levels. A. The NOR gate design is turned into a
network with all molecular and genetic elements (nodes); and interactions between entities
(edges). B. Path-based analysis over the initial graph clusters nodes within the same hi-
erarchical path, reducing complexity while retaining information flows. For instance, Ara,
Ara-araC and pBAD are simplified into a single pBAD node. C. Maximum abstraction into
input-output data. The colour scheme is constant regardless of abstraction levels.

from random; it helps transmit information concerning the flow of information. In this case,

information flows from inputs (upper nodes) to outputs (lower node). This network can be

adjusted to remove all non-genetic elements (Figure 2B), limiting the information to only

the DNA sequences described in the design (e.g., promoters and genes). Even in this case,

relational information remains; for instance, the coding sequence araC represses the pro-

moter node BBa J23117. Here, the abstraction level hides specific mechanistic information

about the regulatory protein that performs repression and implicit activation. In order to

increase abstraction by reducing superfluous connections, we used graph theory methods and

transitivity-based algorithms (see Methods) that estimate the costs of different paths across

the network to cluster related nodes,42 leading to a lower detailed but more straightforward

network. Finally, the highest level of abstraction is to show input and output elements only

((Figure 2C), which allows for quick communication of circuit performance while abstract-
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ing away all implementation details and internal workings. This over-simplification may

be excessive for a relatively simple design but could benefit more extensive and complex

structures.

Figure 3: A hierarchical network of increasing abstraction, from modules to parts. A.
The digitalizer43 synthetic circuit showcases the hierarchical information encoded within the
design file. B. The resulting network is where bottom nodes are single DNA parts, and nodes
in higher levels represent modules, the top node being the entire circuit. Circuit building
details are highlighted within the network, e.g. restriction sites or sequence to couple lacI to
msf-GFP. Functional details are also displayed as the strategy to change the msf-GFP gene
using NheI and EcoRI restriction sites. Edges represent hierarchical direction.

Hierarchical trees. Structuring genetic parts into a hierarchical tree of modules44 is cru-

cial for scaling up circuit complexity and one of the design principles to turn biology into

an engineering discipline. A tree is a fundamental network topology that can display a hi-

erarchical representation of arbitrary depth. Different abstraction layers can be visualized

simultaneously–the top node with the highest abstraction level and the bottom nodes where

most details are described. As the size of genetic circuits increases, hierarchical networks

facilitate the structural organization of information.

Figure 3 shows the hierarchical network corresponding to the digitalizer genetic circuit.43
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This device is far more complex than the previous NOR logic gate, both in terms of in-

teractions and dynamic performance, therefore ideal for showcasing the use of hierarchical

representation. The goal of the digitalizer circuit is to minimize the leakage expression of a

specific gene of interest while maximizing the full production. That is to say, to enlarge its

dynamic range. The circuit (Figure 3A) is based on two negative interactions, between the

regulatory protein LacI and a small RNA, and offers the ability to plug and play any gene

of interest the user wants to digitalize—the reporter gfp gene is used for characterization.

Its hierarchical tree (Figure 3B), which is automatically built from the design file, displays

the conceptual modules into which single parts are structured. This information is often

particular for each circuit- even similar or identical circuits- since it follows the authors’ con-

ceptual framework. In this case, the top module represents the whole device and is broken

down into four modules, which are, in turn, leading either to final parts (e.g., promoters Pm

and P A1/04S) or to smaller sub-modules (e.g., GFP cassette).

Specific structural details that refer to implementation strategies are essential in those

genetic circuits whose goal is to let users modify parts of them. The digitalizer circuit is an

example where the user is meant to switch the reporter gene by his/her gene of choice. By

browsing through the network in Figure 3B, the user can find a module where the reporter is

included (named GFP cassette) and the hard-coded procedure for cutting out the gene (i.e.,

restriction sites NheI and EcoRI) without looking at the genetic sequence of the design.

Protein interaction maps for representing the function. The interaction between its

proteins better describes the functional performance of a genetic circuit than by the structural

details of its DNA sequence. Therefore it is essential to complement sequence-based designs

and visualisations with regulatory information. Interaction networks can provide a higher-

level understanding by visualising regulatory proteins and abstracting relationships. For

example, the mechanisms that allow a regulator to bind its cognate promoter and repress a

downstream gene’s expression into another regulator can be abstracted away into a simple
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Figure 4: Displaying the protein interaction graph within a complex circuit design. A
Boolean gene circuit 0x875 used in this case study. The circuit couples 5 NOR logic gates
(top diagram) and uses eight regulatory proteins, five genes and ten promoters (bottom
diagram). B. Full network with all design information. C. Network with only protein
(nodes) and interaction (edges) information. Edges represent negative regulation. This view
provides a more functional understanding than networks with DNA-only elements.

.

network with two nodes (one per regulatory protein) linked by an arrow. While this network

lacks structural information at the sequence level (e.g., implementation details), it maximises

the functional aspect of the circuit.

Figure 4 shows the protein interaction map of a circuit consisting of 5 sequentially con-

nected logic gates (4 NOR and 1 OR) that builds a 3-input 1-output circuit. The sequence-

oriented diagram (Figure 4A bottom) offers limited information. For example, it shows the

number of promoters and genes required to synthesise (or assemble) the circuit, but it says

little about its function. The whole graph generated from this circuit design is shown in Fig-

ure 4; while not displaying helpful information, it gives an idea of how much data the design

has. From that data, a new sub-network with only regulators as nodes and their relation-

ships as edges can be easily generated to display the protein interaction map of the circuit

(Figure 4C). In the resulting network, the three input regulators (LacI, TetR and AraC) and

the output protein (YFP) are clear, and information flows are explicitly displayed. Network

topology also makes visualisation easier since nodes are arranged following functional criteria

rather than sequentially. Moreover, the Boolean logic of the network becomes apparent; for
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example, the network contains a final OR logic gate based on the regulators PhiF or BetI

repressing the presence of YFP.

Figure 5: Networks beyond gene circuitry: coupling circuit designs to host metabolic net-
works and circuit-building protocols. A. The network of a gene circuit that uses arabinose
as input can interact with the arabinose degradation pathway. Top figure: abstract network
displaying critical components of a NOR gate and the initial steps of the arabinose pathway.
Bottom figure: linking the corresponding extended networks. B. NOR-gate experimental
protocol formalized as a network structure. The network can be interactively adjusted to
show different levels of abstraction. Nodes represent reagents or sub-protocols, and edges
imply input/output relationships.

Biodesign beyond genetic circuits. The representation of data using networks can

be applied to more aspects of synthetic biology away from (but complementary to) circuit

designs. In what follows, we briefly cover two such aspects, namely metabolic pathways and

experimental protocols, and discuss the potential of networks to provide a general framework

for biodesign efforts.

Genetic circuits run inside a cellular host (except cell-free systems45), which is by no

means an austere environment, as the host context, particularly its metabolism, impacts
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circuit performance, although their interplay is not easy to characterise. A grand challenge

is to scale up the complexity of genetic circuits by including metabolic mechanisms that offer

dynamics beyond the genetic toolkit catalogue.18 As far as the design process is concerned,

a question that needs to be answered is whether we can design merged metabolic-genetic

circuits. To this end, we show in Figure 5A that the descriptions of a NOR logic gate

and a metabolic pathway can dynamically interact if they are encoded into compatible data

structures. Specifically, the NOR logic gate uses arabinose as input, which interacts with

the same node of the arabinose degradation pathway. Having this information within the

same network allows formalising the impact of metabolic dynamics on one of the inputs of

the target genetic circuit.

Finally, we showcase the use of networks for representing experimental protocols. The

goal of all circuit designs is to be built and validated experimentally. However, the formali-

sation of implementation protocols into well-characterised steps and their representation in

standard data structures is still a significant challenge46–48 that deserves more attention.

Figure 5B shows the network that corresponds to the protocol for building and testing the

NOR gate used as an example. Here, we chose (from the many options available) to represent

materials and methods as nodes and information flow as edges. As in other examples, proto-

col graphs can also be adjusted at different levels of abstraction. For instance, the assembly

node (5B top) includes processes such as restriction, purification and ligation—which are

conveniently clustered to provide an overview of the inputs (i.e., what the assembly process

gets) and outputs (i.e., what it returns). This network can be linked to the NOR graph at

the top node of the hierarchy, therefore having genetic circuits and protocol within the same

data structure.
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Conclusion

We have employed a graph-based methodology for representing, visualising, and using cir-

cuit design information. Our approach turns design files into networks, which are dynamic

structures able to be modified on demand according to user specifications.

When molecular entities, relationships, and other information (e.g. types and roles)

are encoded into nodes and edges, a network representation of a genetic design can be

established. We have validated this network approach by showcasing its different features,

such as abstraction and hierarchy, with structural and functional data within several genetic

circuits. The selection of abstraction as a metric to showcase the potential of networks is

rooted in the intrinsic complexity of designs and the need to separate high-value information

from superfluous details for a given purpose—thus improving understanding for a given

individual. We showed that design networks could be automatically adjusted to display

different levels of abstraction, from full molecular representation to input/output information

only and protein interaction maps. These network manipulations are only an initial subset

of possibilities; the vast amount of graph theory methods can directly be applied to design

information to analyse networks for many purposes.

The intrinsic modularity of networks allows for coupling genetic circuit designs to other

data types providing these are also represented in graphs. We have demonstrated this in

two different ways. We showed that a genetic circuit that uses arabinose as input could be

automatically coupled to the arabinose degradation pathway graph. By doing this, circuit

designs can be extended to include information from their host context, scaling up the func-

tional description of the device. Secondly, we have represented an implementation protocol

in network format. While this is just a preliminary effort, which deserves further attention,

it shows that protocol networks can also interact with circuit designs for the sake of building

a data structure that can be shared along the design-build-test-learn49 (DBTL) lifecycle.

In short, when data is represented as a graph, merging and clustering potentially disparate

entities becomes a far less challenging task, and the graph could be the key to unifying data
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along the DBTL cycle.

In order to generate high-quality and information-rich networks, designs should cap-

ture as much information as possible. Indeed, networks can only work with the provided

data—networks cannot fabricate entirely new data, only derived from existing sources. While

commonly used formats, such as GenBank, still capture information beyond mere genetic se-

quences, this information can be challenging to manage computationally due to the inherent

informality. Therefore, we advocate using the Synthetic Biology Open Language (SBOL)

since it represents formal information, such as modularity or hierarchy, that cannot be cap-

tured otherwise. However, our approach does not rely on a specific data format and focuses

on representing designs in network structures.

As the complexity of genetic circuits increases, we advocate for networks to manipulate,

analyse and communicate design information. We hope networks can maximise the efficiency

of design automation procedures and help unification by providing standard50 data structures

for merged mathematical, genetic, protocol, and other prominent datasets established during

synthetic biology projects.

Methods

Designs data format and network generation. All design files used in this study were

generated using the Synthetic Biology Open Language29 (SBOL). While SBOL is defined as

Resource Description Framework (RDF) and therefore is graph data, in order to generate

the networks discussed here, SBOL designs were converted into an underlying labelled graph

model that is more suited for graph theory manipulation. The software package to run that

conversion is linked within the Data and software availability section below.

Dynamic network modification. Once a full network is generated from a design, three

overlying methods are applied to produce a final user-defined graph. These methods are

based on three corresponding preset requirements (namely view, layout and attributes) that
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respond to the question of what aspects of a design are the focus. The first one (view)

selects a specific information within a large dataset to provide a predefined perspective. The

processes of producing a view include, but are not limited to, pruning unwanted nodes or

edges, adding new edges between nodes or abstracting smaller parts of the graph into single

nodes to reduce complexity. The second one (layout) assists in providing nodes with spatial

coordinates, i.e., where nodes are physically positioned relative to one another. The goal of

layout adjustments is to minimise the number of edge crossings. The last feature (attributes)

refer to any visual change to nodes or edges, such as colour, size and shape. Highlighting

attributes is essential for comprehension because it allows the addition of extra information

without adding new nodes.

Protocol representation. We used Autoprotocol, a programming language for specifying

experimental protocols. Like SBOL, Autoprotocol is captured in a standard format and

represented as a graph data structure. We converted protocols into networks, and used the

same processes applied to designs, such as defining layouts and other visual additions, for

visualising protocol networks.

Data and software availability. All networks used within Figures have been generated

using our own software package that can be accessed from the next repository: https:

//github.com/intbio-ncl/net_vis_syn_bio. The supplementary data within the reposi-

tory includes full images of many cutdown networks used within Figures, genetic design files,

protocol files and network files containing data to reproduce information views. All data re-

quired to replicate the networks described here can be accessed from: https://github.

com/MattyCrowther/network-visualisation-supplementary.git. SBOL and Autopro-

tocol files can be loaded into the software package provided above, while the specific views

can be loaded into any tool that accepts common network standards such as Cytoscape and

Gephi.
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(34) Goñi-Moreno, A.; Carcajona, M.; Kim, J.; Martinez-Garcia, E.; Amos, M.;

18

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2021.09.14.460206doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460206
http://creativecommons.org/licenses/by-nc/4.0/


de Lorenzo, V. An implementation-focused bio/algorithmic workflow for synthetic bi-

ology. ACS synthetic biology 2016, 5, 1127–1135.

(35) Myers, C. J.; Beal, J.; Gorochowski, T. E.; Kuwahara, H.; Madsen, C.; McLaugh-

lin, J. A.; Mısırlı, G.; Nguyen, T.; Oberortner, E.; Samineni, M., et al. A standard-

enabled workflow for synthetic biology. Biochemical Society Transactions 2017, 45,

793–803.

(36) Beal, J.; Nguyen, T.; Gorochowski, T. E.; Goñi-Moreno, A.; Scott-Brown, J.; McLaugh-
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