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SUMMARY 

Development of efficient therapies for COVID-19 is the focus of intense research. The cytokine 
release syndrome was underlined as a culprit for severe outcomes in COVID-19 patients. 
Interleukin-6 (IL-6) plays a crucial role in human immune responses and elevated IL-6 plasma 
levels have been associated with the exacerbated COVID-19 pathology. Since non-structural 
protein 10 (NSP10) of SARS-CoV-2 has been implicated in the induction of IL-6, we designed 
Peptide (P)1, containing sequences corresponding to amino acids 68-96 of NSP10, and examined 
its effect on cultured human cells. Treatment with P1 strongly increased IL-6 secretion by the 
lung cancer cell line NCI-H1792 and the breast cancer cell line MDA-MB-231 and revealed 
profound cytotoxic activity on Caco-2 colorectal adenocarcinoma cells. Treatment with P2, 
harbouring a mutation in the zinc knuckle motif of NSP10, caused no IL-6 induction and no 
cytotoxicity. Pre-treatment with plant-produced human anti-inflammatory cytokines IL-37b and 
IL-38 effectively mitigated the induction of IL-6 secretion. Our results suggest a role for the zinc 
knuckle motif of NSP10 in the onset of increased IL-6 plasma levels of COVID-19 patients and 
for IL-37b and IL-38 as therapeutics aimed at attenuating the cytokine release syndrome. 
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Inflammation, COVID-19, SARS-CoV-2, IL-37b, IL-38, chloroplast expression, recombinant 
proteins.   
 
 
 
INTRODUCTION 
 
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a highly transmissible 
pathogenic coronavirus. It is responsible for the coronavirus disease 2019 (COVID-19) 
pandemic, resulting in threats to human health worldwide(WHO, 2020). The pathogenesis of the 
SARS-CoV-2 in humans varies in manifestation from mild cold-like symptoms to severe 
respiratory failure(Hu et al., 2020). Upon binding to epithelial cells in the respiratory tract, the 
virus starts to replicate and eventually migrates down to the alveolar epithelial cells in the lungs, 
where its replication increases significantly, inducing strong immune responses(Pedersen and 
Ho, 2020), (Tang et al., 2020). This increase in replication is accompanied by the "cytokine 
storm", which brings about respiratory distress syndrome and respiratory failure. The resulting 
over-exuberant immune response is considered the main cause of death in COVID-19 patients 
(Tian et al., 2020). With the newly emerging variants of the SARS-CoV-2 virus displaying 
resistance towards neutralizing antibodies, hence threatening the efficacy of vaccines(Liu et al., 
2020b), alternative therapeutic approaches are more needed than ever. 
The likelihood of a more severe manifestation of the viral infection in COVID-19 patients 
appears to correlate with the plasma levels of certain cytokines(Pedersen and Ho, 2020). Of a 
particular interest is the pleiotropic cytokine Interleukin-6 (IL-6) and its role in SARS-CoV-2 
infections, and viral infections in general(Velazquez-Salinas et al., 2019). It has been well-
established that the levels of IL-6 increase during the acute phase of infection with vesicular 
stomatitis virus (VSV) and this increase was associated with higher virulence in pigs(Velazquez-
Salinas et al., 2018). Hospitalized patients infected with Andes virus (ANDV) displayed 
significantly elevated levels of IL-6, and the magnitude of the increase correlated with the 
severity of symptoms(Angulo et al., 2017). In vitro studies in cells revealed that a recombinant 
Spike (S) protein of SARS-CoV strongly induced production of IL-6 in murine 
macrophages(Wang et al., 2007). IL-6 knockout mice showed high mortality when challenged 
with sub-lethal doses of H1N1 influenza virus, while WT mice recovered from the 
infection(Dienz et al., 2012). Importantly, the serum levels of IL-6 are markedly increased 
during the SARS-CoV-2 infection and IL-6 was proposed to be a reliable predictive biomarker of 
the severity of the COVID-19 in hospitalized patients(Pedersen and Ho, 2020), (Conti et al., 
2020a), (Chen et al., 2020; Liu et al., 2020a). Produced by various cell types, IL-6 induces a 
signaling cascade involving the JAK/STAT3 pathway to regulate transcription of a multitude of 
genes involved in cellular signaling and regulation of gene expression(Mauer et al., 2015; Wang 
et al., 2013). With its crucial involvement in both pro- and anti-inflammatory processes, IL-6 
was attributed a central role in the regulation of immune responses(Scheller et al., 2011). 
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Certain proteins of the SARS-CoV-2 virus have been implicated in inducing the increase of IL-6 
including the S protein, Nucleocapsid (N) protein, and Non-Structural Protein 10 
(NSP10)(Gordon et al., 2020). The effects that some of these proteins exerted on IL-6 have been 
known since their homologous counterparts were discovered in SARS-CoV(Wang et al., 2007). 
The NSP10 protein in coronaviruses appears to constitute a cofactor in the methyltransferase 
complexes it forms with NSP14 and NSP16(Wang et al., 2015).  The crystal structure of the 
NSP10/NSP16 complex of SARS-CoV-2 was solved in a recent study(Krafcikova et al., 2020).  
Previously, peptides derived from the NSP10 sequence involved in the interaction with NSP16 of 
Murine Hepatitis Virus (MHV) were reported to be successful inhibitors of NSP16 2’-O-
Methyltransferase activity in vitro, as well as rescuing mice infected with MHV(Wang et al., 
2015). Peptides derived from the region of NSP10 that interacts with NSP16 of SARS-CoV virus 
were demonstrated to inhibit the 2’-O-methyltransferase activity in cell-free biochemical 
assays(Ke et al., 2012). While the potential of NSP10-derived peptides of SARS-CoV to inhibit 
2’-O-methyltransferase has not been tested in cell culture, the full length NSP10 protein is 
known to induce increases in IL-6 levels (Gordon et al., 2020). Interestingly, the region of the 
NSP10 protein that forms the interaction surface with NSP16 contains a zinc “knuckle” motif. 
Such motifs are known to correlate with activation of IL-6. In osteoarthiritic mice, the 
suppression of the ZCCHC6 protein containing this domain correlated with a reduction in IL-6 
expression(Ansari et al., 2019). On the other hand, expression of ZCCHC6 in osteoarthritis 
chondrocytes correlated with an increase in IL-6(Akhtar et al., 2014). 
Elucidating the molecular mechanisms underlining SARS-CoV-2-induced pathology and 
searching for potential efficacious treatments to COVID-19 represent the urgent focus of the 
worldwide scientific community. The regulation of the bodily inflammatory responses is exerted 
by an intricate network of various types of mediator molecules produced by and exchanged 
between different cells of the immune system (Cronkite and Strutt, 2018). The IL-1 cytokine 
superfamily plays a crucial role in immune system homeostasis, various autoimmune 
pathologies, and autoinflammation(Mantovani et al., 2019). Two relatively recently discovered 
members of the IL-1 cytokine superfamily, IL-37 and IL-38, exhibit profound anti-inflammatory 
activities(Nold et al., 2010),(Lin et al., 2001). A plethora of scientific studies aimed at 
elucidating the biological roles of these cytokines demonstrated their pivotal action in both 
innate and adaptive immune responses, anti-tumor activity, and their essential involvement in 
mechanisms underlying diverse pathological conditions and autoimmune disorders, thus 
positioning those two cytokines as promising candidates for development as prospective 
therapeutic agents(Mei and Liu, 2019),(Allam et al., 2020),(Yang et al., 2019),(Ummarino, 
2017),(Xu and Huang, 2018),(Xie et al., 2019). The use of both IL-37 and IL-38 has been 
proposed as a valid therapeutic approach looking to mitigate SARS-CoV-2 infection-
associated immunopathology and control the acute detrimental pulmonary inflammation seen in 
COVID-19(Conti et al., 2020b). Recent clinical findings linked the elevated plasma levels of IL-
37 as an early response in SARS-CoV-2–infected patients with a positive clinical prognosis and 
earlier hospital discharge, whereas lower IL-37 early responses predicted severe illness. Higher 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.14.460246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460246
http://creativecommons.org/licenses/by-nc/4.0/


4 
 

blood IL-37 levels in those patients correlated with reduced IL-6 and IL-8 levels. Furthermore, 
ACE2-transgenic mice infected with SARS-CoV-2 showed alleviation of lung tissue damage, 
when treated with recombinant IL-37(Li et al., 2020a). Importantly, the use of Tocilizumab (a 
neutralizing antibody raised against human IL-6) has been reported to be safe in human trials, 
albeit with mixed results of efficacy, suggesting exploration of other therapeutic routes for IL-6 
mitigation(Masiá et al., 2020).  
In the current study we employed two peptides, P1 and P2, derived from the SARS-CoV-2’s 
NSP10 protein region that forms the interaction surface with NSP16. The sequence of P1 was 
completely homologous to NSP10’s amino acids 68-96, while P2 contained the amino acid 
substitution, Histidine80 to Arginine (H80R), which was designed to disrupt the zinc knuckle 
motif. Both peptides were engineered with an N-terminal 14 amino acid sequence corresponding 
to the protein transduction domain of the HIV’s Trans-Activator of Transcription (TAT) protein 
to allow penetration of the cell membrane. Based on previous studies demonstrating a role of full 
length NSP10 in stimulating the secretion of IL-6 lung epithelial A549 cells(Li et al., 2020b) ,we 
hypothesized that treating cultured human cells with the designed peptides P1 and P2 could help 
elucidate the involvement of the zinc knuckle motif of the viral NSP10 in increased IL-6 
secretion. Interestingly, upon application of the peptides onto human lung cells a profound 
induction of IL-6 secretion was observed in the case of P1, but not P2. We further hypothesized 
that the increases in IL-6 secretion could be mitigated by the use of recombinant anti-
inflammatory cytokines, such as IL-37b and IL-38. We found that treatment with recombinant 
IL-37b and IL-38, produced in engineered tobacco plants, significantly reduced the levels of IL-6 
induced by P1 in human lung cells, demonstrating their potential application as treatment against 
the cytokine storm caused by COVID-19.  
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RESULTS 
 
Design of NSP10-derived peptides  
We designed two peptides (P1 and P2) derived from NSP10 from SARS-CoV-2. P1 contains the 
CCHC Zinc finger motif of NSP10. As a control, P2 differed from P1 in only one amino acid at 
position 26 (Table 1), replacing the histidine of the CCHC motif with an arginine (corresponding 
to substitution H80R in full length NSP10). Multi-Conformer Continuum Electrostatics (MCCE) 
calculations suggested that the binding of zinc to the coordination site is greatly affected (by over 
90%) due to this mutation (Supplemental Figure 1).  In keeping with previous work, both 
peptides were conjugated to a 14 amino acid long HIV TAT sequence to allow for cell 
membrane penetration. Figure 1 shows the alignment of the sequences of NSP10 from SARS-
CoV, SARS-CoV-2, MHV and  Middle East Respiratory Syndrome (MERS)-CoV. NSP10 
sequences of SARS-CoV and SARS-CoV-2 are identical with respect to the region of interest, 
while sequences from MHV and MERS-CoV share a Proline to Valine substitution, likely 
altering the conformation dramatically.   
 
SARS-CoV-2 NSP10-derived peptide (P1) induces secretion of IL-6 by human lung cells 
We first determined the effect of peptides P1 and P2 on the secretion of IL-6 in human cell lines. 
As shown in Figure 2, incubation of the human NSCLC cell line NCI-H1792 with P1, but not P2 
or a TAT sequence peptide only, resulted in a more than a 4-fold stimulation (P<0.001) of the 
intrinsic secretion of IL-6. Similar results were obtained with the human metastatic breast cancer 
cell line MDA-MB-231 (Figure 4)  
 
Plant-produced IL-37b and IL-38 effectively attenuate the levels of IL-6 induced by P1  
We next determined the effect of plant-produced anti-inflammatory cytokines IL-37b and IL-38 
on the P1-elicited stimulation of IL-6 secretion by H1792 cells. Pre-treatment with IL-38 resulted 
in pronounced attenuation (-60 %; P<0.001) of IL-6 secretion triggered by P1 (Figure 3). This 
attenuation effect, although less strong, was also observed when cells were pre-treated with IL-
37b (-40%; P<0.05), or with a combination of IL-38 and IL-37b (-50%; P<0.05). Similar results 
were obtained using MDA-MB-231 cells. As shown in Figure 4, the attenuating effect of IL-38 
and IL-37b was dose-dependent. 
 
P1 and P2 cytotoxic activity 
As the next step in the assessment of the biological action of peptides P1 and P2 we determined 
their cytotoxicity profiles, considering that NSP10 was shown to be implicated in multiple 
interactions with various host cell and viral proteins(Bouvet et al., 2014). Since Caco-2 cells are 
now routinely used in studies to examine potential drugs against SARS-CoV-2 due to viral 
preference for replication(Cagno, 2020), we tested the toxicity of P1 and P2 against Caco-2 cells. 
Our results showed that while P2 had no detectable toxicity at concentrations up to 200 µM, P1 
displayed a Cytotoxic Concentration (CC50) of 11µM.  
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DISCUSSION 

 
Designed peptides and cellular responses  
The region of NSP10 corresponding to peptide  P1 has previously been shown to inhibit complex 
formation between NSP10 and NSP16 from SARS-CoV(Ke et al., 2012). In another study, 
NSP10-derived peptides from MHV were used to demonstrate reduction in viral pathogenesis in 
cell lines and in mice(Wang et al., 2015). In the present study we have designed the P1 peptide 
based on the sequence of NSP10 from SARS-CoV-2 (identical in NSP10 from SARS-CoV) that 
is homologous to the MHV NSP10 sequence.  
As a part of the NSP10 structure, the sequence of P1 contains a zinc knuckle motif consisting of 
a zinc ion coordinated by three cysteines and a histidine residue. Interestingly, only P1, but not 
P2, stimulated IL-6 production and caused cytotoxicity in our experiments. Peptide P2 differs 
from P1 in only one amino acid, replacing the histidine residue from the zinc finger motif by 
arginine. Our results therefore suggest that the zinc coordination site, which is greatly affected by 
the substitution of His by Arg in peptide P2, is needed for the induction of IL-6 expression. This 
could explain why P2 does not induce IL-6 in the same manner as P1. In a series of experiments 
to be reported elsewhere, we were in fact able to show that a peptide corresponding to a different 
interface region of the NSP10/NSP16 complex did not induce IL-6 and indeed reduced 
replication of SARS-CoV-2 in Caco-2 cells infected with the virus.  
As seen in Supplemental Figure 2, the structure of MERS NSP10, which shares the Proline to 
Valine substitution with MHV, is slightly different from SARS-CoV and SARS-CoV-2 NSP10. 
While no experimental structure of the NSP10 protein of MHV exists, the MERS structure is 
available (PDB: 5YN5) as well as the SARS-CoV-2 NSP10 structure (DPDB ID:6W4H). We 
performed Normal Mode Analysis (NMA) using the DynaMut server on both structures to 
examine the areas of atomic fluctuations. The NMA results showed that MERS NSP10 has more 
deformation energies around the zinc knuckle, making the MERS NSP10 structure less stable 
around the Zinc finger (Supplemental Figure 3). Moreover, the residue corresponding to His80 in 
NSP10 from SARS-CoV, SARS-CoV-2, and MERS is an arginine in MHV. Taken together, this 
could provide an explanation as to why MHV NSP10 does not elicit an increase in IL-6 once 
applied to cells and mice. An alternative explanation could be that the reaction of murine cells is 
different from human cells. An experiment in which the levels of IL-6 are measured in mice and 
Caco-2 cells due to exposure to MHV NSP10-derived peptides, as well as SARS-CoV-2 NSP10-
derived peptides would be beneficial to shed light on this inconsistency.  
 
Possible mechanism of IL-6 induction by the NSP10-derived P1 
Host-virus interactome derived from proteomics and co-immunoprecipitation assays have 
suggested that NSP10 inhibits the NF-κB-repressing factor (NKRF) to facilitate interleukin-8 
(IL-8) induction, and possibly IL-6(Li et al., 2021). This could potentially contribute to 
interleukin-mediated chemotaxis of neutrophils and the over-exuberant host inflammatory 
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response observed in COVID-19 patients(Li et al., 2021). The link between NF-κB and IL-6 
stimulation has been previously well-established. NF-κB is known to regulate an IL-6 mRNA 
stabilizing protein, known as AT-rich interactive domain-containing protein 5a  (Arid5a)(Nyati 
et al., 2017). Toll-Like Receptor 4 (TLR4) induces NF-κB, which in turn activates Arid5a and 
subsequently induces IL-6 expression. While no previous studies examined whether NSP10 has a 
direct role in activating TLR4, the S protein of SARS-CoV-2 has been linked to TLR4(Brandão 
et al., 2020). There have been suggestions in the literature that SARS-CoV-2 non-structural 
proteins affect Toll-Like Receptors in general. In fact, both SARS-CoV and MERS-CoV viruses 
are known to affect TLR4 and TLR3(Totura et al., 2015). However, in the case of SARS-CoV 
and MERS-CoV, the mechanism appears to be protective against the viral infection.   
 
Curbing P1-induced IL-6 expression with plant-produced anti-inflammatory cytokines  
Increased IL-6 expression in cells in response to P1 application could be curbed by treatment 
with recombinant, in planta-produced human cytokines IL-38 and IL-37b. It is reasonable to 
attribute the observed attenuation of IL-6 expression to the biological action of the cytokines, 
since treatment with the control protein GFP, bearing an identical His-tag, did not result in any 
significant attenuation. The anti-inflammatory action of both IL-38 and IL-37b was previously 
reported as dose-dependent, displaying bell-shaped concentration efficiency, with optimal 
concentrations ranging from 10 to 100 ng/mL(Nold-Petry et al., 2015; Van De Veerdonk et al., 
2012). In addition, (Gu et al., 2015) showed that increasing concentrations of IL-37b (up to 500 
ng/mL) applied in LPS-challenged THP-1 cells led to more significant inhibition of TNFα and 
IL-1β expression. In this regard, the pronounced attenuation of the levels of IL-6, an 
inflammation-associated marker, observed in our experiments is in accord with previous reports 
characterizing the anti-inflammatory nature of IL-38 and IL-37b at these concentrations (Cavalli 
and Dinarello, 2018; Gu et al., 2015; Han et al., 2020).  
Despite their binding to a completely different set of receptors, the inhibitory action of both IL-
37b and IL-38 was shown on the intracellular signal transduction pathways of different STATs, 
p38MAPK, ERK1/2 and JNK, as well as NF-κB signaling, outlining a degree of redundancy(Gao 
et al., 2021; Nold-Petry et al., 2015). IL-37 binds to IL-18Rα and recruits the IL-1R8 (also called 
SIGIRR or TIR8) to inhibit pro-inflammatory signalling(Nold-Petry et al., 2015) . IL-37 also acts 
in the nucleus with Smad3 suppressing expression of inflammatory genes(Nold et al., 2010) . IL-
38 was first characterized as similar to IL-36Ra for its antagonist function on IL-36R, however, 
the mechanism of IL-38 signalling is not yet fully elucidated and appears to play a role in 
inflammation resolution(Van De Veerdonk et al., 2012). IL-38 has been shown to bind to three 
receptors: IL-36R, IL-1R1 and IL-1 receptor accessory protein-like1 (IL-1RAPL1), thus exerting 
anti-inflammatory effects by competing with their agonistic ligands and inhibiting their 
signalling pathways(Mora et al., 2016),(Yuan et al., 2016).  
IL-38 produced a stronger inhibitory effect on IL-6 levels in comparison with either the action of 
IL-37b, or application of a combination of both recombinant cytokines (Figure 3). This 
observation is in agreement with their redundant inhibitory action on pro-inflammatory 
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signalling leading to IL-6 expression, also indicating the absence of possible synergistic effects 
from the simultaneous application of IL-37b and IL-38.  
 
Conclusion 
Our results demonstrated that a peptide derived from SARS-CoV-2 NSP10 can cause a 
significant increase of IL-6 secretion in human adenocarcinoma lung cells and resulted in 
cytotoxicity in an intestinal epithelial cell line. Our results also indicate that it is the zinc knuckle 
motif of NSP10, preserved in P1, but not in P2, that is likely to elicit this IL-6 inflammation 
marker increase response, emphasized by the notion that this motif is also found in other proteins 
known to cause increases in IL-6 expression. Since the elevated levels of IL-6 are a predictive 
molecular marker for the cytokine storm that accompanies COVID-19 pathology, correlating 
with poor prognosis, our findings suggest that therapeutic targeting the NSP10-induced 
inflammation should be pursued.  IL-37b and IL-38 produced in engineered plant bioreactors 
were able to mitigate the induction of IL-6, suggesting that their application in the 
immunotherapy of COVID-19 should be further investigated. 
 
MATERIALS AND METODS 
 
Design of the peptides  
 
The peptides were designed by using the homologous sequence of MHV’s NSP10 region 
interacting with NSP16 as this was the aim of inhibition. The HIV-Tat peptide sequence 
(YGRKKRRQRRRGSG) was added to the N-terminus. The peptides were modified with N-
acetylation and C-amidation, artificially synthesized, purified using High Performance Liquid 
Chromatography (HPLC) and ensured not to have any disulfide bonds using Mass Spectrometry 
(MS) (Peptides 2.0 Inc). Prior to use, peptides were dissolved in 1XPBS.  
 
 
Toxicity tests of the peptides for Caco-2 cells infected with SARS-CoV-2 virus 

Testing for toxicity of the peptides against cells infected with SARS-CoV-2 was done in a BSL-3 
facility at Utah State University, part of the NIH/NIAID program. Confluent or near-confluent 
cell culture monolayers of Caco-2 cells were prepared in 96-well disposable microplates the day 
before testing. Cells were maintained in MEM supplemented with 5% FBS. The peptides were 
dissolved in 1XPBS and concentrations of 0.1, 1.0, 10, 100, and 200 µg/mL were prepared.  Five 
microwells were used per dilution: three for infected cultures and two for uninfected toxicity 
cultures. On every plate controls for the experiment consisted of six microwells that were 
infected but not treated (virus controls) and six that were untreated and uninfected (cell controls). 
Peptide 1 and Peptide 2 were tested in parallel with a positive control drug using the same 
method as was applied for the peptides. The positive control was included with every test run. 
Growth media were removed and the peptides (0.1 mL) were applied to the wells at 2X 
concentration. Aliquots (0.1mL), containing virus at ~60 CCID50 (50% cell culture infectious 
dose) were added to the wells designated for virus infection. Media devoid of virus was added to 
the toxicity control wells and cell control wells. Plates were incubated at 37 oC with 5% CO2 
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until marked CPE (>80% CPE for most virus strains) was observed in virus control wells. The 
plates were then stained with 0.011% neutral red for two hours at 37oC in a 5% CO2 incubator. 
The neutral red medium was removed by complete aspiration, and the cells were rinsed 1X with 
PBS to remove residual dye. The PBS was completely removed, and the incorporated neutral red 
was eluted with 50% Sorensen’s citrate buffer/50% ethanol for at least 30 minutes. The dye 
content in each well was quantified using a microplate reader at 540 nm. The dye content in each 
set of wells was converted to a percentage of dye present in untreated control wells using a 
Microsoft Excel computer-based spreadsheet and normalized based on the virus control. The 
50% effective (EC50, virus-inhibitory) concentrations and 50% cytotoxic (CC50, cell-inhibitory) 
concentrations were then calculated by regression analysis. It was not possible for us to compute 
the 50% effective (EC50, virus-inhibitory) since Peptide 1 was too toxic at 11µM while Peptide 
2 had no detectable effect against the virus-infected cells even at 200 µM concentration, albeit 
being non-toxic at that concentration.  

 
Production and purification IL-37b and IL-38 
 
Recombinant human cytokines IL-37b and IL-38 (UniProt identifiers Q9NZH6 and Q8WWZ1, 
respectively) were produced in-planta by Solar Grants Biotechnology Inc. using proprietary 
methodologies that will be discussed elsewhere due to pending patent applications. Briefly, the 
cytokines were expressed in their mature forms (V46 – D218 for IL-37b, C2–W152 for IL-38) 
with a C-terminal HIS-tag, purified using immobilized metal-affinity chromatography (IMAC, 
His SpinTrap Kit, GE Healthcare) and 0.22 µm-filtered (Millipore-Sigma) to obtain sterile 
solutions. The predicted molecular masses (20.3 kDa for IL-37b; 18.3 kDa for IL-38) were 
observed  following Western blotting with protein-specific antibodies (MyBioSource Inc.). 
Native tetriary conformation was confirmed for each of the cytokines using protein-specific 
ELISA tests (R&D Systems Inc.).  
 
 
Cell culture for IL-6 measurements 
 
The human non-small cell lung cancer cell line NCI-H1792 was obtained from ATCC. Cells 
were grown in RPMI Medium 1640 (Gibco) supplemented with L-glutamine,  10% fetal bovine 
serum (Gibco), and 1% penicillin/streptomycin at 37°C in a humidified atmosphere containing 
5% CO2. For cell stimulation experiments, cells (5 x 104 per well) were seeded into 24-well 
plates and grown overnight. The next day, the cells were washed with OPTi-MEM (Gibco) and 
then pre-treated with plant-produced IL-38 (10 uL), IL-37b (10 uL), IL-38 plus IL-37b (5 uL 
each), or plant-produced GFP (1 ug) in 500 uL OPTi-MEM for 3 hrs at 37 oC. PBS (containing 
25% glycerol) was added to the controls. Subsequently, peptides (10 uM) were added and 
incubation was continued for 24 h after which the conditioned media was harvested for 
determination of IL-6 secretion by ELISA. 
 
 
ELISA assays 
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Correct folding of plant-produced IL-38 and IL-37b anti-inflammatory cytokines was assessed 
by enzyme-linked immunosorbent assay (ELISA) using the DuoSet Human IL-38/IL-1F10 kit 
(R&D systems) and the Human IL-37/IL-1F7 uncoated ELISA kit (Invitrogen), respectively, 
following the instructions of the manufacturers. Secreted IL-6 was assessed using the Human IL-
6 Uncoated ELISA kit (Invitrogen).  
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FIGURES 
 

         #     * 

 
 
Figure 1. Alignment of the NSP10-derived sequence employed to inhibit the replication of 
Murine Hepatitis Virus (MHV) with full length NSP10 sequences from SARS-CoV, SARS-
CoV-2, and MERS-CoV. * indicates a Proline to Valine substitution in MHV and MERS-CoV 
compared with SARS-CoV and SARS-CoV-2; # indicates residue His80 in SARS-CoV and 
SARS-CoV-2;  
 
 
 
 
Table 1. Amino acids sequences of Peptides P1 and P2 derived from the NSP10 protein of 
SARS-CoV-2 involved in the interaction with NSP16. Italics indicate amino acids of HIV-Tat 
sequence required for membrane penetration. Bold and underlined letters indicate substitution of 
Histidine with Arginine at position 26, corresponding to amino acid residue 80 in full length 
NSP10 (H80R). 
 
Peptide  Sequence 
P 1 YGRKKRRQRRRGSGFGGASCCLYCRCHIDHPNPKGFCDLKGKY 
P 2 YGRKKRRQRRRGSGFGGASCCLYCRCRIDHPNPKGFCDLKGKY 
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Figure 2. SARS-CoV-2 NSP10-derived sequences cause an increase in IL-6 secretion by human 
lung cancer cells. The human NSCLC cell line NCI-H1792 was incubated in the presence of 
NSP10-derived peptides P1 or P2, harbouring an N-terminal HIV-TAT sequence, or the TAT-
only peptide for 24 h. The secretion of IL-6 was measured by ELISA and normalized to the 
control (PBS). Shown are the average results of 3 independent experiments. *** P<0.001. 
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Figure 3.  IL-37b and IL-38 attenuate the Peptide 1-induced stimulation of IL-6 secretion by 
human cells.   
IL-6 secretion by the human NSCLC cell line NCI-H1792 into the conditioned media was 
measured by ELISA. The cells were pre-incubated for 3 h in the presence of plant-produced 
recombinant IL-38, IL-37b (1.0 ng/μL), or a combination of IL-38 + IL-37b (0.5 ng/μL each), as 
indicated. PBS (1X) and a His-tag containing plant-produced GFP were used as controls. IL-6 
secretion was stimulated by the addition of NSP10-derived Peptide 1 (10 μM) for 24 h. Shown 
are the average results of 4 independent experiments. Different letters above the columns 
indicate significant differences.  
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Figure 4. IL-37b and IL-38 attenuate the Peptide (P)1-induced stimulation of IL-6 secretion by 
human cells in a dose-dependent manner. 
IL-6 secretion by the human metastatic breast cancer cell line MDA-MB-231 into the 
conditioned media was measured by ELISA. The cells were pre-incubated for 3 h in the presence 
of plant-produced recombinant IL-38 or IL-37b at the indicated concentrations (ng/μL) prior to 

stimulation with peptide P1 (10 μM). PBS (1X) was added to the control. Shown are the average 
results of 3 independent experiments. ** P<0.01; * P<0.05, compared with the control. 
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